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In the rough set theory with every decision rule two conditional probabilities, called
certainty and co�erage factors, are associated. These two factors are closely related with
the lower and the upper approximation of a set, basic notions of rough set theory. It is
shown that these two factors satisfy the Bayes’ theorem. The Bayes’ theorem in our case
simply shows some relationship in the data, without referring to prior and posterior
probabilities intrinsically associated with Bayesian inference in our case and can be used

Ž .to ‘‘inverse’’ decision rules, i.e., to find reasons explanation for decisions. � 2001 John
Wiley & Sons, Inc.

1. INTRODUCTION

This paper is a modified version of Ref. 1. The relationship between rough
Ž .set theory see Refs. 7�11 and Bayes’ theorem is shown. However the meaning

of Bayes’ theorem in our case and that in statistical inference is different.
Statistical inference grounded on the Bayes’ rule supposes that some prior

Ž .knowledge prior probability about some parameters without knowledge about
the data is given first. Next the posterior probability is computed when the data
is available. The posterior probability is then used to verify the prior probability.

In the rough set philosophy with every decision rule, two conditional
probabilities, called certainty and co�erage factors, are associated. These two
factors are closely related with the lower and the upper approximation of a set,
basic concepts of rough set theory. It turned out that these two factors satisfy
the Bayes’ theorem without referring to prior and posterior probabilities. This
property enables us to explain decisions in terms of conditions, i.e., to compute
certainty and coverage factors of ‘‘inverse’’ decision rules, without referring to
prior and posterior probabilities intrinsically associated with Bayesian reasoning.
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2. INFORMATION SYSTEM AND DECISION TABLE

The starting point of rough set based data analysis is a data set, called an
information system.

An information system is a data table, whose columns are labeled by
attributes, rows are labeled by objects of interest, and entries of the table are
attribute values.

Ž .Formally by an information system we will understand a pair S � U, A ,
where U and A, are finite, nonempty sets called the uni�erse, and the set of
attributes, respectively. With every attribute a � A we associate a set V , of itsa
�alues, called the domain of a. Any subset B of A determines a binary relation
Ž .I B on U, which will be called an indiscernibility relation, and is defined as

Ž . Ž . Ž . Ž . Ž .follows: x, y � I B if and only if a x � a y for every a � A, where a x
Ž .denotes the value of attribute a for element x. Obviously I B is an equivalence

Ž .relation. The family of all equivalence classes of I B , i.e., partition determined
Ž . Ž .by B, will be denoted by U�I B , or simple U�B; an equivalence class of I B ,

Ž .i.e., block of the partition U�B, containing x will be denoted by B x .
Ž . Ž .If x, y belongs to I B we will say that x and y are B-indiscernible or

Ž . Žindiscernible with respect to B. Equivalence classes of the relation I B or
.blocks of the partition U�B are referred to as B-elementary sets or B-granules.

If we distinguish in an information system two classes of attributes, called
condition and decision attributes, respectively, then the system will be called a
decision table.

Ž .A simple, tutorial example of an information system a decision table is
shown in Table I.

The table contains data about six car types, where F, P, and S are
condition attributes and denote fuel consumption, selling price and size respec-
tively, whereas M denotes marketability and is the decision attribute.

Besides, T denotes the car type and N the number of cars sold of a given
type.

Each row of the decision table determines a decision obeyed when specified
conditions are satisfied.

Table I. An example of an information system.

T F P S M N

1 med. med. med. poor 8
2 high med. large poor 10
3 med. low large poor 4
4 low med. med. good 50
5 high low small poor 8
6 med. low large good 20
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3. APPROXIMATIONS

Ž . Ž .Suppose we are given an information system a data set S � U, A , a
subset X of the universe U, and subset of attributes B. Our task is to describe
the set X in terms of attribute values from B. To this end we define two

Ž . � Ž .operations assigning to every X � U two sets B� X and B X called the
B-lower and the B-upper approximation of X, respectively, and defined as
follows:

B� X � B x : B x � X� 4Ž . Ž . Ž .�
x�U

B� X � B x : B x � X � � .� 4Ž . Ž . Ž .�
x�U

Hence, the B-lower approximation of a set is the union of all B-granules that
are included in the set, whereas the B-upper approximation of a set is the union
of all B-granules that have a nonempty intersection with the set. The set

BN X � B� X � B� XŽ . Ž . Ž .B

will be referred to as the B-boundary region of X.
Ž .If the boundary region of X is the empty set, i.e., BN X � �, then X isB

Ž . Ž .crisp exact with respect to B; in the opposite case, i.e., if BN X � �, X isB
Ž .referred to as rough inexact with respect to B.

� 4 �� 	 � 	 � 	 � 	4For example, for B � F, P, S and the set X � 1 
 2 
 3 
 5 of
Ž . �� 	 � 	 � 	4 � Ž . �� 	cars with poor marketability we have B� X � 1 
 2 
 5 , B X � 1 


� 	 � 	 � 	 � 	4 Ž . �� 	 � 	4 � 	2 
 3 
 5 
 6 and BN X � 3 
 6 , where i denotes the set of allB
cars of type i.

4. DECISION RULES

Ž .With every information system S � U, A we associate a formal language
Ž .L S , written L when S is understood. Expressions of the language L are

logical formulas denoted by �, �, etc. built up from attributes and attribute-
Ž . Ž . Ž .value pairs by means of logical connectives � and , � or , � not in the

� �standard way. We will denote by � the set of all objects x � U satisfying �S

in S and refer to as the meaning of � in S.
The meaning of � in S is defined inductively as follows:

Ž . �Ž .� � Ž . 41 a, � � x � U : a � � x for all a � A and � � VS a
Ž . � � � � � �2 � � � � � 
 �S S S
Ž . � � � � � �3 � � � � � � �S S S
Ž . � � � �4 � � � U � � .S S

� �A formula � is true in S if � � U.S

A decision rule in L is an expression � � �, read if � then �; � and �
are referred to as conditions and decisions of the rule, respectively.
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An example of a decision rule is given below:

F , med � P , low � S, large � M , poorŽ . Ž . Ž . Ž .

� � � �Obviously a decision rule � � � is true in S if � � � .S S

With every decision rule � � � we associate a conditional probability
Ž .� � � � that � is true in S given � is true in S with the probabilityS
Ž . Ž� � . Ž .� � � card � �card U , called the certainty factor introduced first bySS

2 Ž .Łukasiewicz see also 5, 6, and 12 and defined as follows:

� �card � � �Ž .S
� � � � �Ž .S � �card �Ž .S

� �where � � �.S

This coefficient is widely used in data mining and is called ‘‘confidence
coefficient’’.

Ž .Obviously, � � � � � 1 if and only if � � � is true in S.S
Ž .If � � � � � 1, then � � � will be called a certain decision rule; ifS

Ž .0 � � � � � � 1 the decision rule will be referred to as a possible decisionS
rule.

Besides, we will also use a co�erage factor proposed by Tsumoto3, 4 and
defined as follows:

� �card � � �Ž .S
� � � � � ,Ž .S � �card �Ž .S

which is the conditional probability that � is true in S, given � is true in S with
Ž .the probability � � .S

5. DECISION RULES AND APPROXIMATIONS

� 4Let � � � be a set of n decision rules � � �, � � �, . . . , � � �i n 1 2 n
such that:

� �all conditions � are pairwise mutually exclusive, i.e., � � � � �,Si i j
n 1Ž .

for any 1  i , j  n , i � j, and � � � � � 1.Ž .Ý S i
i�1

� 4Let C be the set of condition attributes and let � � � be a set of decisioni n
Ž .rules satisfying eq. 1 .

Then the following relationships are valid:

Ž . Ž� �.a C� � � ��S i
SŽ .� ��� �1i

�Ž . Ž� � .b C � � �S � i
SŽ .0�� ��� 1i



DRAWING CONCLUSIONS�ROUGH DATA SETS 7

Ž . Ž� �.c BN � � � .�C S i
SŽ .0�� ��� �1i

The above properties enable us to introduce the following definitions:

Ž . � � Ž� � .i If � � C� � , then formula � will be called the C-lower approximationS S
Ž .of the formula � and will be denoted by C� � .

Ž . � � �Ž� � .ii If � � C � , then the formula � will be called the C-upper approxima-S S
�Ž .tion of the formula � and will be denoted by C � .

Ž . � � Ž� � .iii If � � BN � , then � will be called the C-boundary of the formula �S SC
Ž .and will be denoted by BN � .C

In this way we are allowed to approximate not only sets but also formulas.
Let us consider the following example.

Ž .The C-lower approximation of M, poor is the formula

C� M , poor � F , med. � P , med. � S, med.Ž . Ž . Ž . Ž .Ž .
� F , high � P , med. � S, largeŽ . Ž . Ž .Ž .
� F , high � P , low � S, smallŽ . Ž . Ž .Ž .

Ž .The C-upper approximation of M, poor is the formula

C� M , poor � F , med. � P , med. � S, med.Ž . Ž . Ž . Ž .Ž .
� F , high � P , med. � S, largeŽ . Ž . Ž .Ž .
� F , med. � P , low � S, largeŽ . Ž . Ž .Ž .
� F , high � P , low � S, smallŽ . Ž . Ž .Ž .

Ž .The C-boundary of M, poor is the formula

BN M , poor � F , med. � P , low � S, largeŽ . Ž . Ž . Ž .C

Ž .After simplification using the rough set approach not presented here we get
the following approximations:

C� M , poor � F , med. � P , med. � F , highŽ . Ž . Ž . Ž .Ž .
C� M , poor � F , med. � F , highŽ . Ž . Ž .

From the above considerations it follows that any decision � can be
uniquely described by the following decision rules:

C� � � � ,Ž .
C� � � � ,Ž .

BN � � � ,Ž .C
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or equivalently

C� � � � ,Ž .
BN � � �.Ž .C

Thus for the considered example we can get two decision rules:

F , med. � P , med. � F , high � M , poorŽ . Ž . Ž . Ž .Ž .
F , med. � P , low � M , poorŽ . Ž . Ž .

which are associated with the lower approximation and the boundary region of
Ž . Ž .the decision M, poor , respectively and describe decision M, poor .

Ž .For the decision M, good we get the following decision rules:

F , low � M , goodŽ . Ž .
F , med. � P , low � M , goodŽ . Ž . Ž .

This coincides with the idea given by Ziarko13 to represent decision tables
by means of three decision rules corresponding to positive region, the boundary
region, and the negative region of a decision.

6. INVERSE DECISION RULES

Often we are interested in explanation of decisions in terms of conditions,
i.e., give reasons to decisions. To this end we have to ‘‘inverse’’ the decision
rules, i.e., to exchange mutually conditions and decisions in a decision rule.

For example, for the set of decision rules describing poor and good
marketability:

cer . co� .
F , med. � P , med. � F , high � M , poor 1.00 0.87Ž . Ž . Ž . Ž .Ž .
F , med. � P , low � M , poor 0.17 0.13Ž . Ž . Ž .Ž 1Ž .

F , low � M , good 1.00 0.71Ž . Ž .
F , med. � P , low � M , good 0.83 0.29Ž . Ž . Ž .

we get the following inverse decision rules:

cer . co� .
M , poor � F , med. � P , med. � F , high 0.87 1.00Ž . Ž . Ž . Ž .Ž .
M , poor � F , med. � P , low 0.13 0.17Ž . Ž . Ž .Ž . 2Ž .
M , good � F , low 0.71 1.00Ž . Ž .
M , good � F , med. � P , low 0.83 0.83Ž . Ž . Ž .

Ž .We can get more specific decision rules replacing sets of decision rules 1
Ž . Žand 2 by means of simple decision rules a decision rule is simple if it does not

.contain logical connectives � .
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Ž .Thus instead of decision rules 1 we will have:

cer . co� .
F , med. � P , med. � M , poor 1.00 0.27Ž . Ž . Ž .
F , high � M , poor 1.00 0.60Ž . Ž .

3Ž .F , med. � P , low � M , poor 0.17 0.13Ž . Ž . Ž .
F , low � M , good 1.00 0.71Ž . Ž .
F , med. � P , low � M , good 0.83 0.29Ž . Ž . Ž .

Ž .and decision rules 2 can be replaced by:

cer . co� .
M , poor � F , med. � P , med. 0.27 1.00Ž . Ž . Ž .
M , poor � F , high 0.60 1.00Ž . Ž .

4Ž .M , poor � F , med. � P , low 0.13 0.17Ž . Ž . Ž .
M , good � F , low 0.71 1.00Ž . Ž .
M , good � F , med. � P , low 0.29 0.89Ž . Ž . Ž .

From the set of decision rules and their certainty and coverage factors we
can draw the following conclusions:

Ž .1 Cars with medium fuel consumption and medium price or high fuel consump-
Ž .tion always have poor marketability sell poorly .

Ž .2 17% cars with medium fuel consumption and low price have poor marketability
Ž .sell poorly .

Ž . Ž .3 Cars with low fuel consumption always have good marketability sell well .
Ž .4 83% cars with medium fuel consumption and low price have good marketability

Ž .sell well .

The above conclusions can be explained by means of inverse decision rules as
follows:

Ž �.1 87% cars selling poorly have medium fuel consumption and medium price
Ž . Ž .27% or high fuel consumption 60% .

Ž �.2 13% cars selling poorly have medium fuel consumption and low price.
Ž �.3 71% cars with low fuel consumption are selling well.
Ž �.4 83% cars selling well have medium fuel consumption and low price.

7. PROPERTIES OF DECISION RULES

� 4 Ž .If � � � is a set of decision rules satisfying condition 1 , then the welli n
known formula for total probability holds:

n

� � � � � � � � � � 2Ž . Ž . Ž . Ž .ÝS S i S i
i�1
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Moreover for any decision rule � � � the following Bayes’ theorem is valid:

� � � � � � �Ž . Ž .S j S j
� � � � � 3Ž .Ž .S j nÝ � � � � � � �Ž . Ž .i�1 S i S i

Ž .That is, any decision table or any set of implications satisfying condition 1
satisfies the Bayes’ theorem, without referring to prior and posterior probabili-
ties�fundamental in Bayesian data analysis philosophy. Bayes’ theorem in our

Ž .case says that: if an implication � � � is true to the degree � � � � then theS
Ž .implication � � � is true to the degree � � � � .S

This property explains the relationships between the certainty and coverage
factors and can be used to explain decisions in terms of conditions, i.e., it can be
used to compute coverage factors by means of certainty factors, but this is more
complicated than the direction computation from the data. The Bayes’ theorem
is more useful when instead of data table like Table I we are given some
probabilities, but we will not discuss this issue in this paper.

8. CONCLUSIONS

It is shown in this paper that any decision table satisfies Bayes’ theorem.
This enables us to apply Bayes’ theorem to ‘‘inverse’’ decision rules without
referring to prior and posterior probabilities, inherently associated with ‘‘classi-
cal’’ Bayesian inference philosophy.

The inverse decision rules can be used to explain decisions in terms of
conditions, i.e., to give reasons for decisions.

Let us observe that the conclusions drawn from the data are not universally
true, but are valid only for the data. Whether they are valid for a bigger universe
depends if the data is a proper sample of the bigger universe or not.

Thanks are due to Professor Andrzej Skowron and the anonymous referee for their
critical remarks.
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