Rough Fuzzy Hybridization
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1 Introduction

The concept of the rough set — a mathematical basis for reasoning about vague-
ness and uncertainty proved to be a natural instrument to inquire into many
theoretical and practical problems related to data analysis. Although many seri-
ous real-life problems have been formulated and solved in the framework of rough
set theory it seems that the extension of this theory to rough relations and rough
functions is badly needed, for numerous applications can not be covered by the
concepts of a rough set only.

The objective of this paper is to give some ideas concerning rough functions
along the lines proposed by the author in [Pal, Pa2, Pad4, Pa5, Pa6] and this
Paper is a modified version of [Pa6], where basic concepts of rough calculus have
been proposed. Some similar concepts have been considered by Nakamura and
Rosenfeld in [NR1].

It is interesting that ideas presented in this paper are not entirely new and
their origin can be traced back to calculus of finite differences by George Boole
(cf.[Bo1])). '

Physical phenomena are usually described by differential equations. Solutions
of these equations are real valued-functions, i.e., functions which are defined
and valued on continuum of points. However, due to limited accuracy of mea-
Surements and computations, we are unable to observe (measure) or compute
(Slmulate) exactly the abstract solutions. Consequently, we deal with approxi-
maFe rather than exact solutions, i.e., we are using discrete and not continuous
Variables and functions.

Thus abstract mathematical models of physical systems are expressed in
terms of req] functions, whereas observed or computational models are described

Y data sets obtained as a result of measurements or computations - which use
10t real but rational numbers from a finite subset of ratinal numbers.
onence an important question arises - what is the relationship between these

‘?PI?roaches, i.e., based on continuous or discrete mathematics philosophy?
elds_lmllar problems have been faced in image processing as perceived by Rosen-

m [Ro3] and pursued by Nakamura and others in [NA1, NA2, NA3]J.
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Another tool developed for discrete system analysis is the so called »cg).
to-cell mapping theory” [Hsl], in which real numbers are replaced by interva)g
Due to the lack of sound mathematical foundations, this method seems to g |
better suited to computer simulation than to prove theorems about discretq
systems. It is worthwhile to mention that the idea of cell-to-cell mapping hyg

found interesting application in the design and analysis of fuzzy controllers [PT]
Pa6, SC1]. ’

Some aspects of the considered problems are also related to interval analysis
first anticipated by Warmus in [Wal, Wa2] and developed extensively by many
authors recently.

Independently of practical problems caused by the ”continuous versus dis- '
crete” antinomy, the philosophical question, of how to avoid the concept of ip-
finity in mathematical analysis, has been tackled for a long time by logicians,
Nonstandard analysis [Rol], finistic analysis [Myl] and infinitesimal analysis
[CS1] provide various views on this topics.

In this paper we are going to investigate on the relationship between real
and discrete functions based on the rough set philosophy. In particular we define
rough (discrete) lower and upper representation of real functions and define and
investigate some properties of these representations, such as rough continuity,
rough derivatives, rough integral and rough differential equations - which can be
viewed as discrete counterparts of real functions.

In particular we are interested how discretization of the real line effects basic
properties of real functions, such as continuity, differentiability, etc. It turns out
that some properties of real functions have counterparts in the case of discrete
functions, but this is not always the case. The proposed approach is based on
the rough set philosophy, in which the indiscernibility relation, defined in our
case on the set of reals, is the starting point of our considerations.

The proposed approach differs essentially from numerical and approximation
methods, even though we use, in some cases, similar terminology (e.g., approxi-
mation of function by another function) - for our attempt is based on functions
defined and valued in the set of integers - however it has some overlaps with
nonstandard, finistic and infinitesimal analysis, mentioned above.

Last but not least the proposed philosophy can be seen as a generalization
of qualitative reasoning [Kul, Wel], where three-valued (+,0, —, i.e., increas-
ing, not changing, decreasing) qualitative derivatives are replaced by more gen-
eral concept of multi-valued qualitative derivatives, so that expressions such as
"slowly increasing”, "fast increasing”, ”very fast increasing” etc. can be used
instead of only ”increasing”.

Ideas shown in this paper have been presented at the International Con-
ference on Intelligent Systems, Augustow, June 5-10, 1995, Poland and Joint
Conference on Information Sciences (JCIS’95), Wrightsville Beach, Sept 28 -
Oct 1, 1995, North Carolina, USA.
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2 Scale, Discretization and Indiscernibility

This section introduces the basic concept of our approach - the indiscernibility
relation. As mentioned in the introduction, real-valued parameters of a physical
system can be exactly measured or computed with some approximation only.
Therefore, we will introduce the concept of a scale, which is a finite set of integers
{0,1,...,n} and is intended to be used as a set of measurement units, like kg, km,
hr, etc. - and a mapping of the scale into the set of real numbers. Elements of the
scale, i.e., measurement units, are understood as approximations of real numbers,
inaccessible due to our lack of infinite precision of measurement or computation.
Notice that the concept of the scale is similar to that of the landmark, used in
the qualitative reasoning methods, but both concepts are used differently.

Every scale determines uniquely a partition of the real line, or, in other words,
defines an equivalence relation on reals, called in what follows an iniscernibility
relation. Elements of the same equivalence class of the indiscernibility relation
are said to be indiscernible with respect to the scale, and can be expressed ap-
proximately only by units of the scale. Thus, due to the use of the assumed scale
real-valued parameters are replaced by approximate, integer-valued parameters.

A more formal presentation of the above ideas is given below [Obl].

Let [n] = {0,1,...,n} be a set of natural numbers. A strictly monotonic
function d : [n] — R, i.e., such that for all i,5 € [n], i < j implies d(i) < d(j)
will be called a scale. S

Any scale d : [n] =R is a finite increasing sequence of reals g, z1,...,Z,,
such that z; = d(z), for very 7 € [n] - thus it can be seen as a discretization of
the closed interval R, = (d(0),d(n)) = (zo, T,).

Given a scale d : [n] =R then one can define two functions

d«(z) = maz{i € [n] : z; < z}
d*(z) = mzn{z € [n]:z; >z}

for every z ¢ R,.

_ Qn the interval R,, = (z9,z,) we define an equivalence relation I, called the
ndiscernibility relation, and defined thus

zly iff di(z) = di(y) and d*(z) = d*(x).

The family of all equivalence classes of the relation Iy, or the partition of the
'terval R,,, is given below

{xO}a ($0>$1)a {$1}1 (m1’$2)7 {1;2}’ s ((L‘n_1,.’L'n), {xN}

:Eere each equivalence classe [z]q is an interval such that [z]ls = (zi,2it1)
never x; < z < x4, and [z;)g = {x;} for all i € [n].

o IfIfi ST < T4y, then Ly(z) = d(di(z)) = z; and Lq(z) = d(d*()) = zi41,
" d(z) and I;(z) are the ends of the interval (z;,z;4+1); if = z;, then
*dl2) = I*(p) = g,

zimT:l'e ends of the interval (x;,x;41) are called the lower and the upper d-appro-

a%on of z, respectively.
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Fig. 1. The lower and upper approximation of a real function

The above discussed ideas are illustrated in Fig. 1.

Suppose we are given two scales d : [n] -+ R and e : [m] — R, and let
f: R, — Ry, be a function, where R,,, R,, denote the both side closed intervals
(%0, Tn), (Yo,ym) respectively. We define its lower rough representation f, with
respect to d and e and its upper rough representation f* with respect to d and
e defined on [n] and valued in [m], as

fe(i) = eu(f(2))

f7(@) = e*(f(z))

where d.(z) = z;, for all i € [n] (see Fig. 1).

Thus with every real function one can associate two discrete functions; its
lower and upper approximation. These approximations are uniquely determined
by indiscernibility relations superimposed on the domain and range of the real
function. ’

Let us observe that the just-defined approximations of real functions are
different from those considered in approximation theory.
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In what follows we are going to give some properties of discrete functions,
defined and valued in the set of integers - mimicking some properties of real
functions. It turns out that for this class of functions one can define concepts
similar to that of real function, like continuity, derivatives, integrals, etc. These
concepts display similar properties to those of real functions, and consequently
discrete functions obtained as a result of measurements can be treated similarly
to real functions. :

We will start our consideration by defining rough (approximate) continuity
for discrete functions.

3 Roughly Continuous Discrete Functions

The concept of continuity is strictly connected with real functions. Intuitively a
function is continuous if a small change of its argument causes a small change
of its value, or in other words - it cannot ”vary too fast” [CJ1]. A similar idea
can be employed also in the case of discrete functions, and we will say that a
discrete function is roughly (approximately) continuous if a small change of its
argument causes a small change of its value. In fact the concept of continuity of
discrete functions has been used for a long time in qualitative reasoning [Kul,
Wel] and others (cf. [Chl, Pal, Ro2]). Below the formal definition of roughly
continuous function is given and some elementary properties of these functions
are presented.

A discrete function f : [n] — [m] is roughly continuous iff for all i,5 €
[n], li - j| = 1 implies | f(i) - f(5)| < 1.

The intermediate value property is valid for roughly continuous discrete func-
tions as shown by the following proposition.

Proposition1. A discrete function f : [n] = [m] s roughly continuous iff for
adli,j € [n],i # j, and for every q between f(i) and f(j) there exist p € [n]
between i and j for which f(p) = q.

Thus the basic property of continuous real functions, the intermediate value
Fheorem, after slight modifications is also valid for discrete functions. Hence
It seems that the idea of continuity need not be necessarily attributed to real
functiong only, and can be extended to discrete functions.

4 Rough Derivatives and Rough Integrals of Discrete
Nctions

I\,IOW we are

tions going to define two basic concepts in our approach to discrete func-

isp ;na?ne-ly the rough derivative and the rough integral. It turns out that they

that tgeslmllar properties to ”classical” (.ierlvatives and 1nt§grals..Let us observe
" For ;’ 3}‘6 defined not on réals but on integers (representing finite set of data).
- % discrete function f : [n] — [m] we define the rough derivative f' as

f'@) = Af(@) = fi+1) - f(&), foralli € [n —1].
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We say that f : [n] — [m] has Darboux property if for every i € [n — 1] we
have that f'(¢) € {-1,0,1}. Thus for f : [n] — [m] having rough Darboyy
property and i € [n — 1] the value f'(i) is that e; € {~1,0,1} which make,
CfE+D) =70 + o

Proposition 2. A discrete function f : [n] — [m] is roughly continuous iff f pqq
Darboux property. ‘

Diréctly from the definition of the rough derivative for discrete functions, we gh.
tain the following counterpart of the well known theorem of differential calculyg
(cf. [Pa6)).

Proposition3. Let f and g be discrete function with domain [n] and range [m]
respectively. Than for f + g, fg and f/g we have

a) (f+9)(@) = fGE)+4'(),
b) (f9)'(3) = f'(i)g(i) + f(1)g' (1) + f'(1)g' (5),
f(0)9() ~ f(i)g'(5)

c) | (f/9)'(3) =

!
g2(0) + 9()g' (7
;From the definition of the rough derivative of discrete function and Proposition
3 we get the following proposition.

Proposition4. 1) The rough derivative of a constant discrete function is equal
to zero.

2) If f(i) =i + k, where k is an integer constant, then f'(i) = 1.

3) If (i) = ki, then f'(i) = k.

4) If fG) = k', then f'(i) = (k — 1)k ; for k = 2 we have f'(i) = 2.

5) If f(3) = i* , then f'(i) = Ti_o(5)i*~9 — ik,

In particular, if k = 2 we get f'(i) = 2i+1; for k = 3 we have f'(i) = 3i®>+3i+1,
etc.

Higher order derivatives can be also defined in the same manner. In general,
k-th rough derivative f(*) of a discrete function f is defined by the following
well known formula in the difference calculus

)
FOE) = G0+ k- ).
j=0

The following egxample illustrates application of the above formula. |




Notice that f is a discrete function f : [n] = [m] defined on n + 1 points, i.e.,
on the set {0,1,...,n}, and f® : [n — k] — [m] is defined on'n — k + 1 points.
Thus each discrete function f : [n] — [m] has at most derivatives up to the n-th
order. v
Consequently each discrete function f : [n] = [m] is uniquely defined by the set
of the following initial conditions £(™(0), f*~1(0),..., f1)(0), f(9(0), where
F0(0) = £(0). |

Some important properties of real functions are not valid for discrete func-
tions, as shown by the following two propositions.

Proposition 5. Assume that a discrete function f : [n] = [m] has a mazimum
(minimum) at i € (n), where (n) = {1,2,...,n — 1}. Then not necessarily
f'@) =0.

Rolle’s theorem does not hold for discrete functions, as shown by the proposition
below.

Proposition6. Let f : [n] — [m] be a discrete, function, such that f(0) =
f(n) = 0. Then not necessarily there ezxists i € (n) such that f'(i) = 0.

We say that a discrete function f is roughly smooth if its first rough derivative
is roughly continuous. It can be easily seen that for roughly smooth functions
the above two propositions are valid, provided that they are slightly modified.
Detailed discussion of this problem is left to the reader.

Next we define integration of discrete functions.

Let f : [n] — [m] be a discrete function. By a rough integral of f we mean
the function '

where A(j) = (j+1) —j = 1.
The following important property holds.

FHAG) =D F(HAG)
j=0

Proposition 7. .
f0AG) = f@&) + &
§=0
where k s an integer constant.

In other words

i—1
@) =10+ £G)

i=0
O in recursive form |

f+1) = f()+ f'(i)
£(0) = k.

Tglg_ Proposition can be used for solving rough differential equations, and will
15cused in the next section. |
o (€ teader is advised to compare the concept of the rough derivative and
TOugh integral with corresponding concepts considered in [Bol].

. With the initial condition
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5 . Rough Differential Equations

Starting from the notion of a rough derivative for discrete functions one can ]
define a concept of differential equation for discrete functions, called in what
follows a rough differential equation [Ob2] (see also [Bol]). Rough differentiy)
equation, together with initial condition can be solved inductively by employ.
ing Proposition 7, which gives the relationship between initial condition, rough
derivative and the solution.

Ordinary 1-st order differential equation is shown below

f'(z) = &(z, f(z))
where @ is a real valued function on the Cartesian product of reals.

Similarly one can define a rough differential equation, for discrete functions
as

(*) f'(i) = 8@, £(i))
where @ is an integer valued function defined on the Cartesian product [n] x [m)],
Because f'(i) = f(i + 1) — f(¢), the rough differential equation can be pre-
sented as )

fi+1) =23, f(i) + £(2)

which together with an initial condition
f(0) = jo, jo € [m]
defines uniquely the solution of the rough differential equation (x).

Ezample 1. Consider a very simple rough differential equation given by the for-
mula

(xx) fl@) =4i+1
with the initial condition f(0) = 2.

By employing Proposition 3 one can easily show that the solution of this
equation has the form

£6) = £(0) + 2 =

We can also solve this equation by using Proposition 7. Suppose we are given
the rough differential equation (*#) in tabular form, and we do not know its
analytical presentation. In this case, by Proposition 7 we have

fi+1) = £6) + ')
with f(0) = 2, which yields

f(0)=2
F(1) =£(0)+f(0)=3
f@)=f1)+fQ1)=8
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F3) = £(2) + £(2) =17
F(4) = £3) + /(3) = 30
£(5) = (4) + £'(4) = 47

etc.

Thus we have two ways of solving rough differential equations. The first one is
similar to that used in analysis, and it boils down to symbolic manipulation on
formulas, whereas the second is suitable to functions presented in tabular form.

Ideas presented in this section can be easily extended for two-dimensional

case (cf. [Grl, Wal]).

6 Conclusion

In this paper we have defined and investigated notions of rough (approximate)
continuity, rough derivatives, rough integrals and rough differential equations
for discrete functions, i.e., functions defined and valued on the set of integers.
We have shown that the introduced concepts mirror some basic properties of
calculus, and that discrete functions display properties similar to those of real
functions, however this is not always the case.

However, it should be noted that the porposed approach essentialy differs
from numerical methods because: firstly, our domains are finite hence we do
not consider method convergence typical to numerical methods; secondly, rough
differential equations should be derived from finite date sets in contrast to nu-
merical methods obtained from given differential equations.

Many problems connected with the proposed approach still remain open. We
did not cover much of material needed a serious consideration in connection
with "rough (approximate) calculus”. Nevertheless we hope that some funda-
mental notions have been clarified and sound foundations for further research
and applications have been laid down.
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