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Abstract

The paper proposes a new approach to certainty factor of decision rules
in knowledge based systems. The approach is based on rough set theory,
and can be viewed as a generalization of �Lukasiewicz’s ideas connected
with multivalued logic and probability. In particular Rough Modus Ponens
inference rule is defined and briefly discussed. Connection of the proposed
concepts with rough mereology is pointed out.

1 Introduction

Classical deductive reasoning is based on Modus Ponens inference rule, which
states that if a formula Φ is true and the implication Φ → Ψ is true then the
formula Ψ is also true. �Lukasiewicz first proposed to extend Modus Ponens
to the case when instead of true values probabilities are associated with Φ,
Φ → Ψ and Ψ [3], [5]. Later, independently, various probabilistic logics have
been proposed and investigated by many logicians and philosophers [1], [6].

Recently the generalization of Modus Ponens become a very important issue
in connection with knowledge based systems. Particularly interesting in this
context is the Generalized Modus Ponens, introduced by Zadeh in the setting
of fuzzy sets [16], [17], which next has been investigated by various authors [2],
[7], [14].

Skowron has proposed generalization of Modus Ponens in the framework
of rough set theory [13]. In this paper we also propose a generalization of
Modus Ponens within rough set theory, called a Rough Modus Ponens (RMP),
however different to that given in [13], and refering to �Lukasiewcz’s ideas. The
essence of our approach consists in association with the implication Φ → Ψ a
conditional probability, whereas with Φ and Ψ unconditional probabilities are
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associated. The assumption that the probability of implication Φ → Ψ is a
conditional probability is due to Ramsey [1] but similar ideas can be also found
in �Lukasiewicz, however, not expressed explicitly [3]. Association of conditional
probability with decision rules in the context of rough sets has been proposed
also by other authors (cf. [15[, [18]) but our aim is entirely different. We try
to set this issue rather in the frame work of logical research, establish sound
logical foundations for this kind of research and show that decision rules used
in the rough set approach play different role as MP inference rule in logical
reasoning, and thus they cannot be in fact treated as a simple generalization of
MP. Although association of conditional probabilities to implications is quite
obvious it leeds to logical and philosophical difficulties. Extensive discussion of
this problem can be found in [1].

Implication is strongly related to inclusion, i.e., if Φ → Ψ is true then every
x satisfying Φ satisfies also Ψ, or in other words |Φ| ⊆ |Ψ|, where |Φ| denotes
the set of all x satisfying Φ i.e., the meaning of Φ. To define RMP we will need
partial (rough) inclusion of sets and to this aim we will adopt the idea of rough
mereology proposed by Polkowski and Skowron [11], [12]. Thus the proposed
RMP has also connection with rough mereology, which can be understood as a
natural theory of rough inclusion, and consequently – rough implication.

This paper contains extended version of some ideas presented in [8], [9].

2 Multivalued logics as probability logics – a
�Lukasiewicz’s approach

In this section we present briefly basic ideas of �Lukasiewicz’s approach to mul-
tivalued logics as probability logics.

�Lukasiewicz associates with every so called indefinite proposition of one vari-
able x, Φ(x) a true value π(Φ(x)), which is the ratio of the number of all values
of x which satify Φ(x), to the number of all possible values of x. For example,
the true value of the proposition ”x is greater than 3” for x = 1, 2, . . . , 5 is 2/5.
It turns out that assuming the following three axioms

1) Φ is false if and only if π(Φ) = 0;

2) Φ is true if and only if π(Φ) = 1;

3) if π(Φ → Ψ) = 1 then π(Φ) + π(∼ Φ ∧ Ψ) = π(Ψ);

one can show that

4) if π(Φ ≡ Ψ) = 1 then π(Φ) = π(Ψ);

5) π(Φ) + π(∼ Φ) = 1;

6) π(Φ ∨ Ψ) = π(Φ) + π(Ψ) − π(Φ ∧ Ψ);
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Table 1: Exemplary data table

Patient (H) (M) (T) (F)
p1 no yes high yes
p2 yes no high yes
p3 yes yes very high yes
p4 no yes normal no
p5 yes no high no
p6 no yes very high yes

7) π(Φ ∧ Ψ) = 0 iff π(Φ ∨ Ψ) = π(Φ) + π(Ψ).

Obviously, the above properties have probabilistic flavour. With every implica-
tion Φ → Ψ one can associate conditional probability π(Ψ|Φ) = π(Φ∧Ψ)

π(Φ) .

In what follows the above ideas will be used to define the Rough Modus
Ponens. Let us mention that in applications we are often interested in properties
more specific than (1)-(7), related to properties of π defined by data tables.

3 Decision tables and decision rules

Usually we start considerartions on rough sets from the concept of a data table.
An example of a simple data table is shown in Table 1.

In the table H, M, T and F are abbreviations of Headache, Muscle-pain,
Temperature and Flu respectively.

Columns of the table are labelled by attributes (symptoms) and rows – by
objects (patients), whereas entries of the table are attribute values.

Such tables are known as information systems, attribute-value tables or in-
formation tables. We will use here the term information table.

Often we distinguish in an information table two classes of attributes, called
condition and decision (action) attributes. For example in Table 1 attributes
Headache, Muscle-pain and Temperature can be considered as condition at-
tributes, whereas the attribute Flu – as a decision attribute.

Each row of a decision table determines a decision rule, which specifies deci-
sions (actions) that should be taken when conditions pointed out by condition
attributes are satisfied. For example in Table 1 the condition (H,no), (M,yes),
(T,high) determines uniquely the decision (F,yes). Objects in a decision table
are used as labels of decision rules. Decision rules 2) and 5) in Table 1 have
the same conditions by different decisions. Such rules are called inconsistent
(nondeterministic, conflicting); otherwise the rules are referred to as consistent
(certain, deterministic, nonconflicting). Sometimes consistent decision rules are
called sure rules, and inconsistent rules are called possible rules. Decision tables
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containing inconsistent decision rules are called inconsistent (nondeterministic,
conflicting); otherwise the table is consistent (deterministic, non conflicting).

The number of consistent rules to all rules in a decision table can be used
as consistency factor of the decision table, and will be denoted by γ(C, D),
where C and D are condition and decision attributes respectively. Thus if
γ(C, D) = 1 the decision table is consistent and if γ(C, D) �= 1 the decision
table is inconsistent. For example for Table 1 γ(C, D) = 4/6.

Decision rules are often presented as implications and are called ”if... then...”
rules. For example, Table 1 determines the following set of implications:

1) if (H,no) and (M,yes) and (T,high) then (F,yes),

2) if (H,yes) and (M,no) and (T,high) then (F,yes),

3) if (H,yes) and (M,yes) and (T,very high) then (F,yes),

4) if (H,no) and (M,yes) and (T,normal) then (F,no),

5) if (H,yes) and (M,no) and (T,high) then (F,no),

6) if (H,no) and (M,yes) and (T,very high) then (F,yes),

From logical point of view decision rules are implications built up from ele-
mentary formulas of the from (attribute name, attribute value) and combined
together by means of propositional connectives ”and”, ”or” and ”implication”
in a usual way.

4 Dependency of attributes and decision rules

Intuitively, a set of attributes D depends totally on a set of attributes C, denoted
C ⇒ D, if all values of attributes from D are uniquely determined by values
of attributes from C. In other words, D depends totally on C, if there exists a
functional dependency between values of D and C. In Table 1 there are no total
dependencies whatsoever. If in Table 1, the value of the attribute Temperature
for patient p5 were normal instead of high, there would be a total dependency
{T } ⇒ {F}, because to each value of the attribute Temperature there would
correspond an unique value of the attribute Flu.

We would need also a more general concept of dependency of attributes,
called a partial dependency of attributes. Let us depict the idea by example,
referring to Table 1. In this table, for example, the attribute Temperature
determines uniquely only some values of the attribute Flu. That is, (T,very
high) implies (F,yes), similarly (T,normal) implies (F,no), but (T,high) does
not imply always (F,yes). Thus the partial dependency means that only some
values of D are determined by values of C.

Formally dependency can be defined in the following way. Let D and C be
subsets of A.
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We will say that D depends on C in a degree k (0 ≤ k ≤ 1), denoted C ⇒k D,
if k = γ(C, D).

If k = 1 we say that D depends totally on C, and if k < 1, we say that D
depends partially (in a degree k) on C.

For dependency {H, M, T } ⇒ {F} we get k = 4/6 = 2/3, because four out of
six patients can be uniquely classified as having flu or not, employing attributes
Headache, Muscle-pain and Temperature.

The set of decision rules associated with a decision table S = (U, C, D) can
be viewed as a description of the dependency C ⇒ D.

For example the set of decision rules 1), . . . , 6) associated with Table 1 can
be understood as a description of the dependency {H, M, T } ⇒ {F}.

5 Certainty factor of a decision rule

In order to express certainty of decision specified by a decision rule we would
need numerical characterization of the rule, showing to what extend the decision
can be trusted. To this end we define a certainty factor of the rule.

Let Φ and Ψ be logical formulas representing conditions and decisions, re-
spectively and let Φ → Ψ be a decision rule, where |Φ|S denote the meaning
of Φ in S, i.e., the set of all objects satisfying Φ in S, defined in a usual way,
where S = (U, C, D) is a decision table and U, C, D are objects, condition and
decision attributes, respectively.

With every decision rule Φ → Ψ we associate a number, called the certainty
factor of the rule, and defined as

µS(Φ, Ψ) =
card(|Φ|S ∩ |Ψ|S)

card(|Φ|S)
,

assuming card(|Φ|S) �= 0.
Of course 0 ≤ µS(Φ, Ψ) ≤ 1; if the rule Φ → Ψ is deterministic then

µS(Φ, Ψ) = 1, and for nondeterministic rules µS(Φ, Ψ) < 1. We will write
µ(Φ, Ψ) instead of µS(Φ, Ψ) if S is understood.

For example, the certainty factor for decision rules consider in section 3 are
as follows:

µ(Φ1, Ψ1) = 1, µ(Φ4, Ψ4) = 1,
µ(Φ2, Ψ2) = 1/2, µ(Φ5, Ψ5) = 1/2,
µ(Φ3, Ψ3) = 1, µ(Φ6, Ψ6) = 1,

where Φi, Ψi denote conditions and decisions of the rule i.
Let us notice that the certainty factor can be viewed as a conditional prob-

ability that an object x satisfies decision, provided it satisfies condition of the
rule, i.e.,
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µ(Φ, Ψ) = π(Ψ|Φ) = π(Φ∧Ψ)
π(Φ) , where π(Φ) = card(|Φ|S)

card (U) is an unconditional
probability that object of the universe U satisfies Φ.

It is also interesting to observe that the certainty factor of a decision rule is
a generalization of a rough membership function

µB
X(x) =

card(X ∩ B(x))
card(B(x))

,

where B(x) is an equivalence class, of the equivalence relation generated by the
set of attributes B, containing x.

The certainty factor can be also viewed as a degree to what a set X is
included in a set Y , i.e., it defines rough inclusion of sets – the basic concept in
rough mereology, introduced by Polkowski and Skowron [11], [12]. Hence rough
mereology seems to be a very good candidate for a natural theory of rough
(approximate) implications, or in other words – as basic theory for reasoning
about uncertain inference (decision) rules.

6 Rough Modus Ponens

With every decision rule Φ → Ψ one can associate a rough deduction rule called
Rough Modus Ponens

π(Φ); µ(Φ, Ψ)
π(Ψ)

,

where
π(Ψ) = π(∼ Φ ∧ Ψ) + π(Φ) · µ(Φ, Ψ). (∗)

This formula allows us to compute the probability of decisions in terms of prob-
ability of conditions and conditional probability of the decision rule, and leads
to a generalization of �Lukasiewicz’s axiom 3), which now has the form:

if π(Φ → Ψ) �= 0, then π(Ψ) = π(∼ Φ ∧ Ψ) + π(Φ) · µ(Φ, Ψ).
Probabilities involved in the Rough Modus Ponens inference rule can be

computed from data set or can be obtained from a knowledgeable expert.
For example, if Φ = (H,yes) and (M,no) and (T,high), Ψ = (F,yes) then

π(Φ) = 1/3, π(∼ Φ∧Ψ) = 1/2, µ(Φ, Ψ) = 1/2 and consequently we get π(Ψ) =
2/3. For Φ = (H, yes) and Ψ(F, no) we obtain π(Φ) = 1/2, π(∼ Φ ∧ Ψ) =
1/6, µ(Φ, Ψ) = 1/3 and finally π(Ψ) = 1/3.

The problem considered above is a part of a wider question pursued for many
years in AI and is related to common-sense reasoning methods. In classical logic
basic rule of inference is grounded on the assumption that if a premise Φ and
the implication Φ → Ψ are true then the conclusion Ψ must be also true.
This deduction rule is known as Modus Ponens. However in the common-sense
reasoning methods we must admit that a premise and an inference rule are
often not known with certainty, but with some probability and therefore the
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conclusion must be also equipped with a proper probability measure. Classical
logic does not offer methods to solve this dilemma and paradigm of classical
logic is no more valid in this case. Consequently Modus Ponens cannot be
postulated as a fundamental reasoning rule for common-sense reasoning. Rough
Modus Ponens appears to be one of the possible answers to this dilemma.

Although, formally RMP can be considered as a generalization of MP, yet
there are essential practical and philosophical differences between the to rules
of inference.

Classical MP is an universal logical rule of inference valid in any system,
whereas RMP is restricted to a specific data table and can be used to reason
about specific experimental knowledge hidden in the data table. Moreover, in
the rough set approach we are rather interested not with using single decision
rules but we have to use a set of decision rules determined by a dependency
between condition and decision attributes. Thus we have to deal not with
a single RMP rule of inference but with a family of RMP’s induced by the
dependency. Consequently, the RMP needs further modification since in the
rough set approach we deal not with sets but with families of sets (partitions).
Therefore the term ∼ Φ ∧ Ψ may be omitted in every decision rule and the
formula (*) can be replaced by the formula

π(Φ) = Σπ(Φ) · µ(Φ, Ψ) = Σπ(Φ ∧ Ψ) (∗∗)

where Σ is taken over all conditions Φ associated with the decision corresponding
to Ψ.

This process should be repeated for each decision class for a given table.

7 Conclusions

Very many mathematical models have been proposed to deal with uncertainty of
decision rules in knowledge based systems and master uncertainty in reasoning.
The presented rough set approach seems to be a very natural answer to this
problem and it has a very inherent interpretation in data sets.

Particularly interesting seems the connection of the proposed approach with
rough mereology, which appear to be a very well suited basis for managing
uncertainty of inconsistent decision rules in knowledge based systems, but this
question requires further research.

It seems also interesting to employ to the Rough Modus Ponens interval
probability, in sense proposed in [4], [8]. This would allow to replace in the
Rough Modus Ponens crisp probabilities by rough probabilities [8] and thus
relax strict restriction on probabilities involved in the inference rules.
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