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Abstract 

Rough set theory can be perceived as a new approach to vagueness and uncertainty. It seems 
to be of fundamental importance to AI and cognitive sciences, especially in the areas of ma-
chine learning, knowledge acquisition, decision analysis, knowledge discovery from data-
bases, expert systems, inductive reasoning, pattern recognition, decision support systems and 
data mining.  

In the paper basic concepts of rough set theory will be given and comparison with classical 
set and fuzzy sets briefly discussed. 

Keywords: rough sets, fuzzy sets, vagueness 

Introduction 

The notion of a set is a fundamental concept for a whole contemporary mathematics, and set 
theory introduced by George Cantor in 1883 is, no doubt, a mile stone in development of 
modern mathematical thinking. It is well known that the concept of an infinite set has a very 
serious drawback − it leads to antinomies. This defect has rather philosophical than practical 
significance. In order to cure this fault several remedies have been proposed: axiomatisation 
(Zermelo-Freankel), theory of classes (von Nemann), type theory (Russell and Whitehead). 
Besides, instead of improving cantor's set theory another set theories have been proposed, 
e.g., mereology (Lesniewski) and alternative set theory (Vopenka).  

Another important issue connected with a concept of the set is vagueness. Vague notions are 
notoriously used, e.g., in medicine, law, economy, and politics − and are intrinsically adhered 
to method of thinking and debates in those domains.  

Vague concepts are characterized by a "boundary region", which consists of all elements 
which cannot be classified to the concept or its complement. For example, the concept of an 
odd (even) number is precise, because every number is either odd or even − whereas the con-
cept of a beautiful women is vague, for some women we cannot decide, with certainty, 
whether they are beautiful or not. This approach is know in a philosophical literature as 



boundary-line approach to vagueness and is attributed to Gotlob Frege, who first formulate 
this idea in 1894. 

Vagueness for many years attracted attention of philosophers and logicians. Recently, com-
puter scientist also got interested in vagueness, for many computer applications, in particular 
referring to artificial intelligence, badly need use of vague notions and vague concepts based 
reasoning methods.  

The most successful theoretical  approach to vagueness is no doubt fuzzy set theory proposed 
by Zadeh. Basic idea of  fuzzy set theory hinges on fuzzy membership function, which allows 
partial membership of elements to a set, i.e., it allows that elements can belong to a set to  
"a degree". 

Rough set theory is another mathematical approach to vagueness. The theory has an overlap 
with many other theories, in particular with fuzzy sets. Many papers have been published on 
connections of rough set theory and many others similar approaches. In particular the relation 
between fuzzy set and rough sets have been pursued by many authors (e.g., [1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 13, 16, 18, 19, 21, 22, 23, 30]. 

Philosophy of Rough Sets 

Rough set philosophy is based on the assumption that, in contrast to the classical set theory,  
we have some additional information (knowledge, data) about elements of a set. All elements 
with the same information are indiscernible (similar) in view of the available information and 
form blocks, which can be understood as elementary granules of knowledge. These granules 
are called elementary sets or concepts, and can be considered as elementary building blocks 
(atoms) of our knowledge about reality we are interested in. Elementary concepts can be com-
bined into compound concepts, i.e., concepts that are uniquely defined in terms of elementary 
concepts. Any union of elementary sets is called a crisp set, and any other sets are referred to 
as rough (vague, imprecise). With every set X we can associate two crisp sets, called the lower 
and the upper approximation of X. The lower approximation of X is the union of all elemen-
tary set which are included in X, whereas the upper approximation of X  is  the union of all 
elementary set which have non-empty intersection with X. In other words the lower approxi-
mation of a set is the set of all elements that surely belongs to X, whereas the upper approxi-
mation of X is the set of all elements that possibly belong to X. The difference of the upper 
and the lower approximation of X is its boundary region. Obviously a set is rough if it has non 
empty boundary region whatsoever, otherwise the set is crisp. Elements of the boundary re-
gion cannot be classified, employing the available knowledge, either to the set or its comple-
ment. Approximations of sets are basic operation in rough set theory and are used as main 
tools to deal  with vague and uncertain data. 

Indiscernibility and Approximations of Sets 

The starting point of rough set theory is the indiscernibility relation, generated by information 
about objects of interest. The indiscernibility relation is intended to express the fact that due 



to the lack of knowledge we are unable to discern some objects employing the available in-
formation. That means that, in general, we are unable to deal with single objects but we have 
to consider clusters (granules, atoms) of indiscernible objects, as fundamental concepts of 
knowledge. Below we present the above ideas formally.   

Suppose we are given two finite, non-empty sets U and A, where U is the universe, and A − a 
set attributes. With every attribute a ∈ A  we associate a set Va, of its values, called the do-
main of a. The pair S = (U, A) will be called an information system or a data table. Any subset 
B of A determines a binary relation IB on U, which will be called an indiscernibility relation, 
and is defined as follows: xIBy if and only if  a(x) = a(y) for every a ∈ A, where a(x) denotes 
the value of attribute a for element x. Obviously IB is an equivalence relation. The family of 
all equivalence classes of IB, i.e., the partition determined by B,  will be denoted by U/IB, or 
simply U/B; an equivalence class of IB, i.e., the block of the partition U/B, containing  x will 
be denoted  by B(x).  

If (x, y) belongs to IB  we will say that x and  y are B-indiscernible. Equivalence classes of the 
relation IB (or blocks of the partition U/B) are referred to as B-elementary concepts or  
B-granules. As mentioned previously in the rough set approach the elementary concepts are 
the basic building blocks (concepts) of our knowledge about reality. 

The indiscernibility relation will be used next to define basic concepts of rough set theory. Let 
us define now the following two operations on sets 

B X x U B x X∗ = ∈ ⊆( ) { : ( ) },  

B X x U B x X∗ = ∈ ∩ ≠ ∅( ) { : ( ) },  

assigning to every subset X of the universe U two sets and called the B-lower 
and the B-upper approximation of X, respectively. The set 

B X∗ ( ) B X∗ ( )

BN X B X B XB ( ) ( ) ( )∗
∗= −  

will be referred to as the B-boundary region of X. 

If the boundary region of X is the empty set, i.e., , then the set X is crisp (exact) 

with respect to B; in the opposite case, i.e., if , the set X is referred to as rough 
(inexact) with respect to B. 

BN XB ( ) = ∅

BN XB ( ) ≠ ∅

Rough sets can be also defined using a rough membership function, defined as  
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Value of the membership function μX (x) is kind of conditional probability, and can be inter-
preted as a degree of certainty to which x belongs to X (or 1 − μX (x), as a degree of uncer-
tainty). 

Dependency of Attributes 

Approximations of sets are strictly related with the concept of dependency (total or partial) of 
attributes. 

Intuitively, a set of attributes D (decision attributes) depends totally on a set of attributes C 
(condition attributes), denoted C D⇒ , if all values of attributes from D are uniquely deter-
mined by value of attribute form C. In other words, D depends totally on C, if there exists a 
functional dependency between values of D and C. 

We would also need a more general concept of dependency of attributes, called the partial 
dependency of attributes. Partial dependency means that only some values of D are deter-
mined by values of C. 

Formally dependency can be defined in the following way. Let D and C be subsets of  A. 

We will say that D depends on C in a degree ( )k k0 ≤ ≤ ,1 denoted C D if  k⇒ ,
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called a positive region of the partition U/D with respect to C, is the set of all elements of U 
that can be uniquely classified to blocks of the partition U/D, by means of C. 

Obviously 
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If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends partially (in a 
degree k) on C.  

The coefficient k expresses the ratio of all elements of the universe, which can be properly 
classified to block of the partition U/D, employing attributes C and will be called the degree 
of the dependency, which can be also interpreted as a probability that  x ∈ U belongs to one of 
the decision classed determined by decision attributes. 



Reduction of Attributes 

We often face a question whether we can remove some data from a data table preserving its 
basic properties, that is − whether a table contains some superfluous data. This can be formu-
lated as follows: 

Let , be sets of condition and decision attributes, respectively. We will say that 
is a D-reduct (reduct with respect to D) of C, if 

C D A, ⊆
′ ⊆C C ′C is a minimal subset of C such that 

( ) ( )γ γC D C D, ,= ′ . 

Thus reduct enables us to make decisions employing minimal number of conditions. 

Decision Rules and Certainty Factor 

With every dependency  we can associate a set of decision rules, specifying deci-
sions that should be taken when certain condition are satisfied. In other words every depend-
ency  determines a set of formulas of the form: „if ... then”. In order to express cer-
tainty of decision specified by a decision rule we will we define a certainty factor of the rule. 

C k⇒ D

DC k⇒

Let Φ and Ψ be logical formulas representing conditions and decisions, respectively and let        
Φ →Ψ  be a decision rule, where ΦS denote the meaning of Φ in the system S, i.e., the set of 
all objects satisfying Φ in S, defined in a usual way. 

With every decision rule Φ →Ψ we associate a number, called the certainty factor of the rule, 
and defined as 

μ S
S S

S

( , )
| |

| |
Φ Ψ

Φ Ψ
Φ

=
∩

. 

Of course ; if the rule Φ →Ψ is deterministic then μS(Φ, ψ) = 1, and for non-

deterministic rules . 

0 ≤ μ S ( , )Φ Ψ 1≤

μ S ( , )Φ Ψ < 1

With every decision rule Φ →Φ one can associate a rough deduction rule called rough modus 
ponens 
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where πS(Φ ) = 
| |

| |

Φ S

U
 and π S (Ψ ) = πS (∼Φ ∧Ψ ) + πS (Φ ) ⋅ μS (Φ,Ψ ). 

This rule allows to compute the probability of decisions in terms of probability of conditions 
and conditional probability of the decision rule. 

Conclusion 

Rough set theory is a new approach to imperfect knowledge. It overlaps with many other 
theories and approaches, nevertheless it can be consider in its own rights as a mature inde-
pendent discipline. Particularly interesting is the relationship between rough sets and fuzzy 
sets. Both approaches are not competitive but complementary and they address different as-
pects of imperfect knowledge. 

Rough set theory has been  successfully applied in many real-life problems, in medicine, 
pharmacology, engineering, banking, financial and market analysis and others. 

For basic ideas of rough set theory the reader is advised to consult the enclosed references. In 
particular in Polkowski and Skowron [20] one can find list of over one thousand publications 
on rough sets and their applications and information about rough set software for data analy-
sis. 
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