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1 Introduction

The problem of imperfect knowledge has been tackled for a long time by philosophers,
logicians and mathematicians. Recently it became also a crucial issue in the area of arti-
ficial intelligence. There are many approaches to the problem of how to understand and
manipulate imperfect knowledge. The most popular one is, no doubt, the fuzzy set theory
proposed by Zadeh.
This paper presents still another attempt to this problem – proposed by the author

in (Pawlak, 1982) and called rough set theory. The theory has attracted attention of
many researchers and practitioners all over the world, who contributed essentially to its
development and applications.
Rough set theory overlaps to a certain degree many other mathematical theories.

Particularly interesting is the relationship with fuzzy set theory and Dempster-Shafer
theory of evidence. The concepts of rough set and fuzzy set are different since they refer
to various aspects of imprecision (Pawlak and Skowron, 1994) whereas the connection with
theory of evidence is more substantial (Skowron and Grzyma�l-Busse, 1994). Besides, rough
set theory is related to discriminant analysis (Krusińska et al., 1992), Boolean reasoning
methods (Skowron and Rauszer, 1992) and others. The relationship between rough set
theory and decision analysis is presented in (Pawlak and S�lowiński, 1994, S�lowiński, 1993).
More details concerning these relationships can be found in the references.
Despite of the relationships rough set theory can be viewed in its own rights, as an

the independent discipline.
Rough set theory has found many interesting applications. The rough set approach

seems to be of fundamental importance to AI and cognitive sciences, especially in the
areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery
from databases, expert systems, inductive reasoning and pattern recognition. It seems of
particular importance to decision support systems.
The main advantage of rough set theory is that it does not need any preliminary

or additional information about data – like probability in statistics, or basic probability
assignment in Dempster-Shafer theory and grade of membership or the value of possibility
in fuzzy set theory.
The rough set theory has been successfully applied in many real-life problems in

medicine, pharmacology, engineering, banking, financial and market analysis and others.
Some exemplary applications are listed below.
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There are many applications in medicine (Grzyma�la-Busse andWoolerly 1994, S�lowiński
K., et al., 1988, S�lowiński K., 1992, S�lowiński K., and Sharif 1993, S�lowiński K., et
al., 1995, Tanaka et al., 1992). In pharmacology the analysis of relationships between
the chemical structure and the antimicrobial activity of drugs (Krysiński 1990, 1992,
1992, 1995) has been successfully investigated. Banking applications include evaluation
of a bankruptcy risk (S�lowiński R., and Zopounidis 1993, 1994) and market research
(Golan and Edwards 1993, Ziarko and Katzberg 1989). Very interesting results have been
also obtained in speaker independent speech recognition (Brindle 1994, Czyżewski 1995,
Czyżewski and Kaczmarek 1993, 1995, 1995) and acoustics (Kostek 1995, 1995, 1995,
1995). The rough set approach seems also important for various engineering applications,
like diagnosis of machines using vibroacoustics, symptoms (noise, vibrations) (Nowicki et
al., 1992, 1992, 1992), material sciences (Jackson et al., 1994) and process control (Lin
1995, Mr ozek 1992, Munakata 1995, P�lonka and Mrózek 1995, Szladow and Ziarko 1992,
Ziarko 1992, Ziarko and Katzberg 1989). Application in linguistics (Grzyma�la-Busse et al.,
1995, Grzyma�la-Busse and Than 1993, Kobayashi and Yokomori 1995, Moradi et al., 1995)
and environment (Gunn et al., 1994), databses (Beaubouef and Petry 1995, Braubouef et
al., 1995, Cercone and Han 1993, Shenoi 1995, Ziarko 1991) are other important domains.
More about applications of the rough set theory can be found in (Grzyma�la-Busse 1995,

Lin 1994, S�lowiński R., 1992, Wang 1995, Ziarko 1993, Tsumoto et al., 1996). Besides,
many other fields of application, e.g., time series analysis, image processing and character
recognition, are being extensively explored.
Application of rough sets requires a suitable software. Many software systems for

workstations and personal computers based on rough set theory have been developed.
The most known include LERS (Grzyma�la-Busse 1992), Rough DAS and Rough Class
and DATALOGIC (Szladow 1993). Some of them are available commercially.
One of the most important and difficult problem in software implementation of the pre-

sented approach is optimal decision rule generation from data. Many various approaches
to solve this task can be found in (Bazan et al., 1995, 1994, Grzyma�la-Busse et al., 1995,
Skowron 1995, Skowron and Stepaniuk 1994, Tsumoto and Tanaka 1995, Wróblewski
1995). The relation to other methods of rule generation is dwelt in (Grzyma�la-Busse et
al., 1995).
The theory has many important advantages. Some of them are listed below.

• Provides efficient algorithms for finding hidden patterns in data.
• Finds minimal sets of data (data reduction).
• Evaluates significance of data.
• Generates sets of decision rules from data.
• It is easy to understand.
• Offers straightforward interpretation of obtained results.
• Most algorithms based on the rough set theory are particularly suited for parallel
processing, but in order to exploit this feature fully, a new computer organization
based on rough set theory is necessary.
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Although rough set theory has many achievements to its credit, nevertheless several the-
oretical and practical problems require further attention.
Especially important is widly accessible efficient software development for rough set

based data analysis, particularly for large collections of data analysis.
Despite of many valuable methods of efficient, optimal decision rule generation meth-

ods from data, developed in recent years based on rough set theory – more research here
is needed, particularly, when quantitative attributes are involved. In this context also
further discretization methods for quantitative attribute values are badly needed. Also
an extensive study of a new approach to missing data is very important. Comparison to
other similar methods still requires due attention, although important results have been
obtained in this area. Particularly interesting seems to be a study of the relationship
between neural network and rough set approach to feature extraction from data.
Last but not least, rough set computer is badly needed for more serious computations

in decision support. Some research in this area is already in progress.
For basic ideas of rough set theory the reader is referred to (Grzyma�la-Busse 1995,

Pawlak 1991, Pawlak et al 1995, S�lowiński 1995, Szladow and Ziarko 1993).

2 Basic Philosophy

The rough set concept is a new mathematical approach to vagueness and uncertainty. The
rough set philosophy is founded on the assumption that with every object of the universe
of discourse we associate some information (data, knowledge). E.g., if objects are patients
suffering from a certain disease, symptoms of the disease form information about patients.
Objects characterized by the same information are indiscernible (similar) in view of the
available information about them. The indiscernibility relation generated in this way is
the mathematical basis of rough set theory.
Any set of all indiscernible (similar) objects is called an elementary set, and form a

basic granule (atom) of knowledge about the universe. Any union of some elementary sets
is referred to as crisp (precise) set – otherwise the set is rough (imprecise, vague).
Consequently each rough set has boundary-line cases, i.e., objects which cannot be

with certainty classified as members of the set or of its complement. Obviously crisp sets
have no boundary-line elements at all. That means that boundary-line cases cannot be
properly classified by employing the available knowledge.
Thus, the assumption that objects can be ”seen” only through the information avail-

able about them leads to the view that knowledge has granular structure. Due to the
granularity of knowledge some objects of interest cannot be discerned and appear as the
same (or similar). As, a consequence vague concepts, in contrast to precise concepts,
cannot be characterized in terms of information about their elements. Therefore in the
proposed approach we assume that any vague concept is replaced by a pair of precise
concepts – called the lower and the upper approximation of the vague concept. The lower
approximation consists of all objects which surely belong to the concept and the upper
approximation contains all objects which possible belong to the concept. Obviously, the
difference between the upper and the lower approximation constitute the boundary region
of the vague concept. Approximations are two basic operations in the rough set theory.
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3 An Example

For the sake of simplicity we first explain the above ideas intuitively, by means of examples.
Data are often presented as a table, columns of which are labeled by attributes, rows

by objects of interest and entries of the table are attribute values. For example in a table
containing information about patients suffering from a certain disease objects are patients
(strictly specking their ID’s), attributes can be for example blood pressure, body tem-
perature etc., whereas the entry corresponding to object Smiths and the attribute blood
preasure can be normal. Such tables are known as information systems, attribute-value ta-
bles or information tables. We will use here the term information table. Below an example
of information table is presented.

Suppose we are given data about 6 patients, as shown in Table 1.

Patient Headache Muscle-pain Temperature Flu
p1 no yes high yes
p2 yes no high yes
p3 yes yes very high yes
p4 no yes normal no
p5 yes no high no
p6 no yes very high yes

Table 1

Columns of the table are labelled by attributes (symptoms) and rows – by objects
(patients), whereas entries of the table are attribute values. Thus each row of the table
can be seen as information about specific patient. For example patient p2 is characterized
in the table by the following attribute-value set

(Headache, yes), (Muscle-pain, no), (Temperature, high), (Flu, yes),

which form information about the patient.
In the table patients p2, p3 and p5 are indiscernible with respect to the attribute

Headache, patients p3 and p6 are indiscernible with respect to attributes Muscle-pain
and Flu, and patients p2 and p5 are indiscernible with respect to attributes Headache,
Muscle-pain and Temperature. Hence, for example, the attribute Headache generates two
elementary sets {p2, p3, p5} and {p1, p4, p6}, whereas the attributes Headache and
Muscle-pain form the following elementary sets: {p1, p4, p6}, {p2, p5} and {p3}. Similarly
one can define elementary sets generated by any subset of attributes.
Patient p2 has flu, whereas patient p5 does not, and they are indiscernible with respect

to the attributes Headache, Muscle-pain and Temperature, hence flu cannot be charac-
terized in terms of attributes Headache, Muscle-pain and Temperature. Hence p2 and p5
are the boundary-line cases, which cannot be properly classified in view of the available
knowledge. The remaining patients p1, p3 and p6 display symptoms which enable us to
classify them with certainty as having flu, patients p2 and p5 cannot be excluded as hav-
ing flu and patient p4 for sure does not have flu, in view of the displayed symptoms. Thus
the lower approximation of the set of patients having flu is the set {p1, p3, p6} and the
upper approximation of this set is the set {p1, p2, p3, p5, p6}, whereas the boundary-line
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cases are patients p2 and p5. Similarly p4 does not have flu and p2, p5 cannot be excludes
as having flu, thus the lower approximation of this concept is the set {p4} whereas – the
upper approximation – is the set {p2, p4, p5} and the boundary region of the concept
”not flu” is the set {p2, p5}, the same as in the previous case.

4 Rough Sets and Approximations

As mentioned in the introduction, the starting point of the rough set theory is the indis-
cernibility relation, generated by information about objects of interest. The indiscernibility
relation is intended to express the fact that due to the lack of knowledge we are unable to
discern some objects employing the available information. That means that, in general,
we are unable to deal with single objects but we have to consider clusters of indiscernible
objects, as fundamental concepts of our theory.
Now we present above considerations more formally.
Suppose we are given two finite, non-empty sets U and A, where U is the universe,

and A – a set attributes. With every attribute a ∈ A we associate a set Va, of its values,
called the domain of a. Any subset B of A determines a binary relation I(B) on U , which
will be called an indiscernibility relation, and is defined as follows:

xI(B)y if and only if a(x) = a(y) for every a ∈ A,
where a(x) denotes the value of attribute a for element x.

Obviously I(B) is an equivalence relation. The family of all equivalence classes of
I(B), i.e., partition determined by B, will be denoted by U/I(B), or simple U/B; an
equivalence class of I(B), i.e., block of the partition U/B, containing x will be denoted
by B(x).
If (x, y) belongs to I(B) we will say that x and y are B-indiscernible. Equivalence

classes of the relation I(B) (or blocks of the partition U/B) are refereed to as B-elementary
sets. In the rough set approach the elementary sets are the basic building blocks (concepts)
of our knowledge about reality.
The indiscernibility relation will be used next to define basic concepts of rough set

theory. Let us define now the following two operations on sets

B∗(X) = {x ∈ U : B(x) ⊆ X},

B∗(X) = {x ∈ U : B(x) ∩X �= ∅},
assigning to every subset X of the universe U two sets B∗(X) and B∗(X) called the
B-lower and the B-upper approximation of X, respectively. The set

BNB(X) = B∗(X)−B∗(X)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then the set X is

crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) �= ∅, the set X is to
as rough (inexact) with respect to B.
One can easily show the following properties of approximations:

(1) B∗(X) ⊆ X ⊆ B∗(X),
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(2) B∗(∅) = B∗(∅) = ∅, B∗(U) = B∗(U) = U,
(3) B∗(X ∪ Y ) = B∗(X) ∪ B∗(Y ),
(4) B∗(X ∩ Y ) = B∗(X) ∩ B∗(Y ),
(5) X ⊆ Y implies B∗(X) ⊆ B∗(Y ) and B∗(X) ⊆ B∗(Y ),
(6) B∗(X ∪ Y ) ⊇ B∗(X) ∪B∗(Y ),
(7) B∗(X ∩ Y ) ⊆ B∗(X) ∩B∗(Y ),
(8) B∗(−X) = −B∗(X),
(9) B∗(−X) = −B∗(X),
(10) B∗(B∗(X)) = B∗(B∗(X)) = B∗(X),

(11) B∗(B∗(X)) = B∗(B∗(X)) = B∗(X),

where −X denotes U −X.
It is easily seen that the lower and the upper approximation of a set are interior and

closure operations in a topology generated by the indiscernibility relation.
One can define to the following four basic classes of rough sets, i.e., four categories of

vagueness:

a) B∗(X) �= ∅ and B∗(X) �= U, iff X is roughly B-definable,
b) B∗(X) = ∅ and B∗(X) �= U, iff X is internally B-indefinable,
c) B∗(X) �= ∅ and B∗(X) = U, iff X is externally B-definable,
d) B∗(X) = ∅ and B∗(X) = U, iff X is totally B-indefinable.
The intuitive meaning of this classification is the following.
If X is roughly B-definable, this means that we are able to decide for some elements

of U whether they belong to X or −X, using B.
If X is internally B-indefinable, this means that we are able to decide whether some

elements of U belong to −X, but we are unable to decide for any element of U , whether
it belongs to X or not, using B.
IfX is externally B-indefinable, this means that we are able to decide for some elements

of U whether they belong to X, but we are unable to decide, for any element of U whether
it belongs to −X or not, using B.
If X is totally B-indefinable, we are unable to decide for any element of U whether it

belongs to X or −X, using B.
Rough set can be also characterized numerically by the following coefficient

αB(X) =
|B∗(X)|
|B∗(X)|

called accuracy of approximation, where |X| denotes the cardinality of X. Obviously
0 ≤ αB(X) ≤ 1. If αB(X) = 1, X is crisp with respect to B (X is precise with respect to
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B), and otherwise, if αB(X) < 1, X is rough with respect to B (X is vague with respect
to B).
Let us depict above definitions by examples referring to Table 1. Consider the con-

cept ”flu”, i.e., the set X = {p1, p2, p3, p6} and the set of attributes B = {Headache,
Muscle-pain, Temperature}. Concept ”flu” is roughly B-definable, because B∗(X) =
{p1, p3, p6} �= ∅ and B∗(X) = {p1, p2, p3, p5, p6} �= U. For this case we get αB(”flu”) =
3/5. It means that the concept ”flu” can be characterized partially employing symptoms,
Headache, Muscle-pain and Temperature. Taking only one symptom B = {Headache} we
get B∗(X) = ∅ and B∗(X) = U , which means that the concept ”flu” is totally indefinable
in terms of attribute Headache, i.e., this attribute is not characteristic for flu whatso-
ever. However, taking single attribute B = {Temperature} we get B∗(X) = {p3, p6} and
B∗(X) = {p1, p2, p3, p5, p6}, thus the concept ”flu” is again roughly definable, but in this
case we obtain αB(X) = 2/5, which means that the single symptom Temperature is less
characteristic for flu, than the whole set of symptoms, and patient p1 cannot be now
classified as having flu in this case.

5 Rough Sets and Membership Function

Rough sets can be also defined using a rough membership function, defined as

µBX(x) =
|X ∩B(x)|
|B(x)| .

Obviously
µBX(x) ∈ [0, 1].

Value of the membership function µX(x) is kind of conditional probability, and can be
interpreted as a degree of certainty to which x belongs to X (or 1−µX(x), as a degree of
uncertainty).
The rough membership function, can be used to define approximations and the bound-

ary region of a set, as shown below:

B∗(X) = {x ∈ U : µBX(x) = 1},
B∗(X) = {x ∈ U : µBX(x) > 0},

BNB(X) = {x ∈ U : 0 < µBX(x) < 1}.
It can be shown (Pawlak and Skowron 1994) that the rough membership function has

the following properties:

a) µBX(x) = 1 iff x ∈ B∗(X),
b) µBX(x) = 0 iff x ∈ −B∗(X),
c) 0 < µBX(x) < 1 iff x ∈ BNB(X),
d) If I(B) = {(x, x) : x ∈ U} , then µBX(x) is the characteristic function of X,
e) If xI(B)y, then µBX(x) = µ

B
X(y) provided I(B),

f) µBU−X(x) = 1− µBX(x) for any x ∈ U ,
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g) µX∪Y (x) ≥ max(µBX(x), µBY (x)) for any x ∈ U,
h) µBX∩Y (x) ≤ min(µBX(x), µBY (x)) for any x ∈ U,
i) If X is a family of pair wise disjoint sets of U , then µB∪X(x) =

∑
X∈X µBX(x) for any

x ∈ U ,
The above properties show clearly the difference between fuzzy and rough memberships. In
particular properties g) and h) show that the rough membership formally can be regarded
as a generalization of fuzzy membership, for the max and the min operations for union
and intersection of sets respectively for fuzzy sets are special cases of that for rough sets.
But let us recall that the ”rough membership”, in contrast to the ”fuzzy membership”,
has probabilistic flavor.
It can be easily seen that there exists a strict connection between vagueness and uncer-

tainty. As we mentioned above vagueness is related to sets (concepts), whereas uncertainty
is related to elements of sets. Rough set approach shows clear connection between these
two concepts.

6 Decision Tables and Decision Algorithms

Sometimes we distinguish in an information table two classes of attributes, called condition
and decision (action) attributes. For example in Table 1 attributes Headache, Muscle-pain
and Temperature can be considered as condition attributes, whereas the attribute Flu –
as a decision attribute.
Each row of a decision table deteremines a decision rule, which specifies decisions

(actions) that should be taken when conditions pointed out by condition attributes are
satisfied. For example in Table 1 the condition (Headache, no), (Muscle-pain, yes), (Tem-
perature, high) determines uniquely the decision (Flu, yes). Objects in a decision table are
used as labels of decision rules. Decision rules 2) and 5) in Table 1 have the same conditions
by different decisions. Such rules are called inconsistent (nondeterministic, conflicting);
otherwise the rules are referred to as consistent (certain, deterministic, nonconflicting).
Sometimes consistent decision rules are called sure rules, and inconsistent rules are called
possible rules. Decision tables containing inconsistent decision rules are called inconsis-
tent (nondeterministic, conflicting); otherwise the table is consistent (deterministic, non
conflicting).
The number of consistent rules to all rules in a decision table can be used as consistency

factor of the decision table, and will be denoted by γ(C,D), where C and D are condition
and decision attributes respectively. Thus if γ(C,D) = 1 the decision table is consistent
and if γ(C,D) �= 1 the decision table is inconsistent. For example for Table 1 γ(C,D) =
4/6.
Decision rules are often presented as implications and are called ”if... then...” rules.

For example rule 1) in Table 1 can be presented as implication
if (Headache, no) and (Muscle-pain, yes) and (Temperature, high) then (Flu, yes).
A set of decision rules is called a decision algorithm. Thus with each decision table we

can associate a decision algorithm consisting of all decision rules occurring in the decision
tables.
We must however, make distinction between decision tables and decision algorithms.

A decision table is a collection of data, whereas a decision algorithm is a collection of
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implications, e.g., logical expressions. To deal with data we use various mathematical
methods, e.g., statistics (see Krusińska et al., 1992), but to analyze implications we must
employ logical tools (see Pawlak 1991). Thus these two approaches are not equivalent,
however for simplicity we will often present here decision rules in form of implications,
without referring deeper to their logical nature, as it is often practiced in AI.

7 Dependency of Attributes

Another important issue in data analysis is discovering dependencies between attributes.
Intuitively, a set of attributes D depends totally on a set of attributes C, denoted C ⇒ D,
if all values of attributes from D are uniquely determined by values of attributes from C.
In other words, D depends totally on C, if there exists a functional dependency between
values of D and C. In Table 1 there are not total dependencies whatsoever. If in Table
1, the value of the attribute Temperature for patient p5 were ”no” instead of ”high”,
there would be a total dependency {Temperature} ⇒ {Flu}, because to each value of the
attribute Temperature there would correspond unique value of the attribute Flu.
We would need also a more general concept of dependency of attributes, called a

partial dependency of attributes. Let us depict the idea by example, referring to Table
1. In this table, for example, the attribute Temperature determines uniquely only some
values of the attribute Flu. That is, (Temperature, very high) implies (Flu, yes), similarly
(Temperature, normal) implies (Flu, no), but (Temperature, high) does not imply always
(Flu, yes). Thus the partial dependency means that only some values of D are determined
by values of C.
Formally dependency can be defined in the following way. Let D and C be subsets of

A.
We will say that D depends on C in a degree k (0 ≤ k ≤ 1), denoted C ⇒k D, if

k = γ(C,D).
If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends

partially (in a degree k) on C.
The coefficient k expresses the ratio of all elements of the universe, which can be

properly classified to blocks of the partition U/D, employing attributes C.
Thus the concept of dependency of attributes is strictly connected with that of con-

sistency of the decision table.
For dependency {Headache, Muscle-pain, Temperature} ⇒ {Flu} we get k = 4/6 =

2/3, because four out of six patients can be uniquely classified as having flu or not,
employing attributes Headache, Muscle-pain and Temperature.
If we were interested in how exactly patients can be diagnosed using only the attribute

Temperature, that is – in the degree of the dependence {Temperature} ⇒ {Flu}, we would
get k = 3/6 = 1/2, since in this case only three patients p3, p4 and p6 out of six can be
uniquely classified as having flu. In contrast to the previous case patient p4 cannot be
classified now as having flu or not. Hence the single attribute Temperature offers worse
classification than the whole set of attributes Headache, Muscle-pain and Temperature. It
is interesting to observe that neither Headache nor Muscle-pain can be used to recognize
flu, because for both dependencies {Headache} ⇒ {Flu} and {Muscle-pain} ⇒ {Flu} we
have k = 0.
It can be easily seen that if D depends totally on C then I(C) ⊆ I(D). That means

that the partition generated by C is finer than the partition generated by D. Notice, that
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the concept of dependency discussed above corresponds to that considered in relational
databases.
If D depends in degree k, 0 ≤ k ≤ 1, on C, then

γ(C,D) =
|POSC(D)|
|U | ,

where
POSC(D) =

⋃

X∈U/I(D)
C∗(X).

The expression POSC(D), called a positive region of the partition U/D with respect to
C, is the set of all elements of U that can be uniquely classified to blocks of the partition
U/D, by means of C.
Summing up: D is totally (partially) dependent on C, if all (some) elements of the

universe U can be uniquely classified to blocks of the partition U/D, employing C.

8 Reduction of Attributes

We often face a question whether we can remove some data from a data-table preserving
its basic properties, that is – whether a table contains some superfluous data. For example,
it is easily seen that if we drop in Table 1 either the attribute Headache or Muscle-pain
we get the data set which is equivalent to the original one, in regard to approximations
and dependencies. That is we get in this case the same accuracy of approximation and
degree of dependencies as in the original table, however using smaller set of attributes.
In order to express the above idea more precisely we need some auxiliary notions. Let

B be a subset of A and let a belong to B.

• We say that a is dispensable in B if I(B) = I(B−{a}); otherwise a is indispensable
in B.

• Set B is independent if all its attributes are indispensable.
• Subset B′ of B is a reduct of B if B′ is independent and I(B′) = I(B).

Thus a reduct is a set of attributes that preserves partition. It means that a reduct is
a minimal subset of attributes that enables the same classification of elements of the
universe as the whole set of attributes. In other words, attributes that do not belong to a
reduct are superfluous with regard to classification of elements of the universe.
For example in Table 3 we have two reducts {a, b, e} and {b, d, e}.
Reducts have several important properties. In what follows we will present two of

them.
First, we define a notion of a core of attributes. Let B be a subset of A. The core of

B is the set off all indispensable attributes of B. The following is an important property,
connecting the notion of the core and reducts

Core(B) =
⋂
Red(B),

where Red(B) is the set off all reducts of B.
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Because the core is the intersection of all reducts, it is included in every reduct, i.e.,
each element of the core belongs to some reduct. Thus, in a sense, the core is the most
important subset of attributes, for none of its elements can be removed without affecting
of the classification power of attributes.
In Table 3 the core is the set {b, e}.
To further simplification of an information table can eliminate some values of attribute

from the table in such a way that we are still able to discern objects in the table as the
original one. To this end we can apply similar procedure as to eliminate superfluous
attributes, which is defined next.

• We will say that the value of attribute a ∈ B, is dispensable for x, if [x]I(B) =
[x]I(B−{a}); otherwise the value of attribute a is indispensable for x.

• If for every attribute a ∈ B the value of a is indispensable for x, then B will be
called orthogonal for x.

• Subset B′ ⊆ B is a value reduct of B for x, iff B′ is orthogonal for x and [x]I(B) =
[x]I(B′).

The set of all indispensable values of attributes in B for x will be called the value core of
B for x, and will be denoted COREx(B).
Also in this case we have

COREx(B) =
⋂
Redx(B),

where Redx(B) is the family of all reducts of B for x.
Suppose we are given a dependency C ⇒ D. It may happen that the set D depends

not on the whole set C but on its subset C ′ and therefore we might be interested to find
out this subset. In order to solve this problem we need the notion of a relative reduct,
which will be defined and discussed next.
Let C,D ⊆ A. Obviously if C ′ ⊆ C is a D-reduct of C, then C ′ is a minimal subset of

C such that
γ(C,D) = γ(C ′, D).

• We will say that attribute a ∈ C isD-dispensable in C, if POSC(D) = POS(C−{a})(D);
otherwise the attribute a is D-indispensable in C.

• If all attributes a ∈ C are C-indispensable in C, then C will be called D-independent.
• Subset C ′ ⊆ C is a D-reduct of C, iff C ′ is D-independent and POSC(D) =
POSC′(D).

The set of all D-indispensable attributes in C will be called D-core of C, and will be
denoted by CORED(C). In this case we have also the property

CORED(C) =
⋂
RedD(C),

where RedD(C) is the family of all D-reducts of C.
If D = C we will get the previous definitions.
For example in Table 1 there are two relative reducts with respect to Flu {Headache,

Temperature} and {Muscle-pain, Temperature} of the set of condition attributes {Headache,
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Muscle-pain, Temperature}. That means that either the attribute Headache or Muscle-pain
can eliminated from the table and consequently instead of Table 1 we can use either Ta-
ble 3

Patient Headache Temperature Flu
p1 no high yes
p2 yes high yes
p3 yes very high yes
p4 no normal no
p5 yes high no
p6 no very high yes

Table 3

or Table 4

Patient Muscle-pain Temperature Flu
p1 yes high yes
p2 no high yes
p3 yes very high yes
p4 yes normal no
p5 no high no
p6 yes very high yes

Table 4

For Table 1 the relative core of with respect to the set {Headache, Muscle-pain,
Temperature} is the Temperature. This confirms our previous considerations showing that
Temperature is the only symptom that enables, at least, partial diagnosis of patients.
We will need also a concept of a value reduct and value core. Suppose we are given

a dependency C ⇒ D where C is relative D-reduct of C. To further investigation of
the dependency we might be interested to know exactly how values of attributes from
D depends on values of attributes from C. To this end we need a procedure eliminating
values of attributes form C which does not influence on values of attributes from D.

• We say that value of attribute a ∈ C, is D-dispensable for x ∈ U , if

[x]I(C) ⊆ [x]I(D) implies [x]I(C−{a}) ⊆ [x]I(D);

otherwise the value of attribute a is D-indispensable for x.

• If for every attribute a ∈ C value of a is D-indispensable for x, then C will be called
D-independent (orthogonal) for x.

• Subset C ′ ⊆ C is a D-reduct of C for x (a value reduct), iff C ′ is D-independent for
x and

[x]I(C) ⊆ [x]I(D) implies [x]I(C′) ⊆ [x]I(D).
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The set of all D-indispensable for x values of attributes in C will be called the D-core of
C for x (the vlaue core), and will be denoted CORExD(C).
We have also the following property

CORExD(C) =
⋂
RedxD(C),

where RedxD(C) is the family of all D-reducts of C for x.
Using the concept of a value reduct, Table 3 and Table 4 can be simplified as follow

Patient Headache Temperature Flu
p1 no high yes
p2 yes high yes
p3 – very high yes
p4 – normal no
p5 yes high no
p6 – very high yes

Table 5

Patient Muscle-pain Temperature Flu
p1 yes high yes
p2 no high yes
p3 – very high yes
p4 – normal no
p5 no high no
p6 – very high yes

Table 6

We can also present the obtained results in a form of a decision algorithm.
For Table 5 we get

if (Headache, no) and (Temperature, high) then (Flu, yes),
if (Headache, yes) and (Temperature, high) then (Flu, yes),
if (Temperature, very high) then (Flu, yes),
if (Temperature, normal) then (Flu, no),
if (Headache, yes) and (Temperature, high) then (Flu, no),
if (Temperature, very high) then (Flu, yes).

and for Table 6 we have

if (Muscle-pain, yes) and (Temperature, high) then (Flu, yes),
if (Muscle-pain, no) and (Temperature, high) then (Flu, yes),
if (Temperature, very high) then (Flu, yes),
if (Temperature, normal) then (Flu, no),
if (Muscle-pain, no) and (Temperature, high) then (Flu, no),
if (Temperature, very high) then (Flu, yes).

The following important property
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a) B′ ⇒ B − B′, where B′ is a reduct of B,
connects reducts and dependency, and can be used for discovering of dependencies in data.
Besides, we have the following properties

b) If B ⇒ C, then B ⇒ C ′, for every C ′ ⊆ C,
in particular

c) If B ⇒ C, then B ⇒ {a}, for every a ∈ C.
Moreover, the following property is valid

d) If B′ is a reduct of B, then neither {a} ⇒ {b} nor {b} ⇒ {a} holds, for every
a, b ∈ B′, i.e., all attributes in a reduct are pairwise independent.

For example in Table 3 we have the following dependecies:

{a, b, e} ⇒ {c, d},
{b, d, e} ⇒ {a, c},

and consequently the first dependency yields

{a, b, e} ⇒ {c},
{a, b, e} ⇒ {d},

whereas the second, gives

{b, d, e} ⇒ {a},
{b, d, e} ⇒ {c}.

That means that issues discussed in the debate are related and should not be discussed
simultinously.

9 Indiscernibility Matrices and Functions

To compute easily reducts and the core we will use discernibility matrix (Skowron et al.,
1991), which is defined next.
By an discernibility matrix of B ⊆ A denotedM(B) we will mean n×n matrix defined

as:
(cij) = {a ∈ B : a(xi) �= a(xj)} for i, j = 1, 2, . . . , n.

Thus entry cij is the set of all attributes which discern objects xi and xj .
The discernibility matrix M(B) assigns to each pair of objects x and y a subset of

attributes δ(x, y) ⊆ B, with the following properties:
i) δ(x, x) = ∅,
ii) δ(x, y) = δ(y, x),

iii) δ(x, z) ⊆ δ(x, y) ∪ δ(y, z).

14



These properties resemble properties of semi-distance, and therefore the function δ may
be regarded as qualitative semi-matric and δ(x, y) – qualitative semi-distance. Thus the
discernibility matrix can be seen as a semi-distance (qualitative) matrix.

Let us also note that for every x, y, z ∈ U we have
iv) |δ(x, x)| = 0,
v) |δ(x, y)| = |δ(y, x)|,
vi) |δ(x, z)| ≤ |δ(x, y)|+ |δ(y, z)|.
It is easily seen that the core is the set of all single element entries of the discernibility
matrix M(B), i.e.,

CORE(B) = {a ∈ B : cij = {a}, for some i, j}.
Obviously B′ ⊆ B is a reduct of B, if B′ is the minimal (with respect to inclusion) subset
of B such that

B′ ∩ c �= ∅ for any nonempty entery c (c �= ∅) in M(B).
In other words reduct is the minimal subset of attributes that discerns all objects dis-
cernible by the whole set of attributes.
Every discernibility matrix M(B) defines uniquely a discernibility (boolean) function

f(B) defined as follows.
Let us assign to each attribute a ∈ B a binary boolean variable a, and let Σδ(x, y)

denotes boolean sum of all boolean variables assigned to the set of attributes δ(x, y). Then
the discernibility function can be defined by the formula

f(B) =
∏

(x,y)∈U2
{Σδ(x, y) : (x, y) ∈ U2 and δ(x, y) �= ∅}.

The following property establishes the relationship between disjunctive normal form of
the function f(B) and the set of all reducts of B. (Skowron et al., 1991).

All constituents in the minimal disjunctive normal form of the function f(B) are all
reducts of B.
In order to compute the value core and value reducts for x we can also use the dis-

cernibility matrix as defined before and the discernibility function, which must be slightly
modified:

fx(B) =
∏

y∈U
{Σδ(x, y) : y ∈ U and δ(x, y) �= ∅}.

Relative reducts and core can be computed also using discernibility matrix, which
needs slight modification

cij = {a ∈ C : a(xi) �= a(xj) and w(xi, xj)},
where w(xi, xj) ≡ xi ∈ POSC(D) and xj �∈ POSC(D) or

xi �∈ POSC(D) and xj ∈ POSC(D) or
xi, xj ∈ POSC(D) and (xj , xj) �∈ I(D)
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for i, j = 1, 2, . . . , n (Skowron et al., 1991).
If the partition defined by D is definable by C then the condition w(xi, xj) in the

above definition can be reduced to (xi, xj) �∈ I(D).
Thus entry cij is the set of all attributes which discern objects xi and xj that do not

belong to the same equivalence calss of the relation I(D).
The remaining definitions need a little changes.
The D-core is the set of all single element entries of the discernibility matrix MD(C),

i.e.,
CORED(C) = {a ∈ C : cij = (a), for some i, j}.

Set C ′ ⊆ C is the D-reduct of C, if C ′ is the minimal (with respect to inclusion) subset
of C such that

C ′ ∩ c �= ∅ for any nonempty entry c (c �= ∅) in MD(C).

Thus D-reduct is the minimal subset of attributes that discerns all equivalence classes of
the relation I(D) discernible by the whole set of attributes.
Every discernibility matrix MD(C) defines uniquely a discernibility (boolean) function

fD(C) which is defined as before we have also the following property:
All constituents in the disjunctive normal form of the function fD(C) are all D-reducts

of C.
For computing value reducts and the value core we use as a starting point the dis-

cernibility matrix MD(C) and discernibility function will have the form:

fxD(C) =
∏

y∈U
{Σδ(x, y) : y ∈ U and δ(x, y) �= ∅}.

10 Significance of Attributes and Approximate Re-
ducts

As it follows from considerations concerning reduction of attributes, they can be not
equally important, and some of them can be eliminated from an information table with-
out loosing information contained in the table. The idea of attribute reduction can be
generalized by introduction a concept of significance of attributes, which enable us eval-
uation of attributes not only by two-valued scale, dispensable – indispensable, but by
assigning to an attribute a real number from the closed interval [0,1], expressing how
important is an attribute in an information table.
Significance of a attribute can be evaluated by measuring effect of removing the at-

tribute from an information table on classification defined by the table. Let us first start
our consideration with decision tables.
Let C and D be sets of condition and decision attributes respectively and let a be

a condition attribute, i.e., a ∈ C. As shown previously the number γ(C,D) expresses a
degree of consistency of the decision table, or the degree of dependency between attributes
C and D, or accuracy of approximation of U/D by C. We can ask how the coefficient
γ(C,D) changes when removing an attribute a, i.e., what is the difference between γ(C,D)
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and γ((C − {a}, D). We can normalize the difference and define the significance of an
attribute a as

σ(C,D)(a) =
(γ(C,D)− γ(C − {a}, D))

γ(C,D)
= 1− γ(C − {a}, D)

γ(C,D)
,

and denoted simple by σ(a), when C and D are understood.

Obviously 0 ≤ σ(a) ≤ 1. The more important is the attribute a the greater is the
number σ(a). For example for condition attributes in Table 1 we have the following results:

σ(Headache) = 0,
σ(Muscle-pain) = 0,
σ(Temperature) = 0.75.

Because the significance of the attribute Temperature or Muscle-pain is zero, removing
either of the attribute from condition attributes does not effect the set of consistent
decision rules, whatsoever. Hence the attribute Temperature is the most significant one
in the table. That means that by removing the attribute Temperature, 75% (three out of
four) of consistent decision rules will disappear from the table, thus lack of the attribute
essentially effects the ”decisive power ” of the decision table.
For a reduct of condition attributes, e.g., Headache, Temperature, we get

σ(Headache) = 0.25,
σ(Temperature) = 1.00.

In this case, removing the attribute Headache from the reduct, i.e., using only the
attribute Temperature, 25% (one out of four) consistent decision rule will be lost, and
dropping the attribute Temperature, i.e., using only the attribute Headache 100% (all)
consistent decision rules will be lost. That means that in this case making decisions is
impossible at all, whereas by employing only the attribute Temperature some decision
can be made.
Thus the coefficient σ(a) can be understood as an error which occurs when attribute

a is dropped. The significance coefficient can be extended to set of attributes as follows:

σ(C,D)(B) =
(γ(C,D)− γ(C −B,D))

γ(C,D)
= 1− γ(C − B,D)

(γC,D)
,

denoted by ε(B), if C and D are understood, where B is a subset of C.
If B is a reduct of C, then ε(B) = 1, i.e., removing any reduct from a set of decision

rules unable to make sure decisions, whatsoever.
Any subset B of C will be called an approximate reduct of C, and the number

ε(C,D)(B) =
(γ(C,D)− γ(B,D))

γ(C,D)
= 1− γ(B,D)

(γC,D)
,

denoted simple as ε(B), will be called an error of reduct approximation. It expresses how
exactly the set of attributes B approximates the set of condition attributes C. Obviously
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ε(B) = 1− σ(B) and ε(B) = 1− ε(C −B). For any subset B of C we have ε(B) ≤ ε(C).
If B is a reduct of C, then ε(B) = 0.
For example, either of attributes Headache and Temperature can be considered as

approximate reducts of {Headache, Temperature}, and
ε(Headache) = 1,
ε(Temperature) = 0.25.

But for the whole set of condition attributes {Headache, Muscle-pain, Temperature}
we have also the following approximate reduct

ε(Headache, Muscle-pain) = 0.75.

The concept of an approximate reduct is a generalization of the concept of a reduct
considered previously. A minimal subset B of condition attributes C, such that γ(C,D) =
γ(B,D), or ε(C,D)(B) = 0 is a reduct in the previous sense. The idea of an approximate
reduct can be useful in cases when a smaller number of condition attributes is preferred
over accuracy of classification.

11 Conclusions

As mentioned in the introduction the rough set methodology has found many applications
in medical data analysis, finance, voice recognition, image processing and others. However
the approach presented in this paper is to simple to many real-life applications and was
extended in many ways by various authors. In particular the indiscernibility understood
as an equivalence relation seems to restrictive in many cases and has been replaced by
more general concepts, e.g., a tolerance relation. In the presented approach attributes
assumed qualitative values, but in many application real-value attributes are necessary.
Many methods of continues variables discretization have been proposed and explored.
Also methods for effective reduct computation and decision rule generation are of primary
importance for practical applications. The detailed discussion at the above issues can be
found in the references.
Rough set theory has many important advantages in data analysis. Some of them are

listed below.

1. Provides efficient algorithms for finding hidden patterns in data

2. Finds minimal sets of data (data reduction)

3. Evaluates significance of data

4. Generates minimal sets of decision rules from data

5. It is easy to understand and offers straightforward interpretation of results

The method is particularly suited for parallel processing, but in order to exploit this
feature fully a new hardware solution are necessary.
More than 1000 papers have been published on rough set theory and its applications

till now. Despite many important theoretical contributions and extensions of the original
model some essential research problems still requires due attention. For example:
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1. Rough logic, based on the concept rough truth is a very important issue

2. Theory of rough relation and rough function is necessary in many applications

3. Comparison with many other approaches dealing with imperfect knowledge is of
primary significance.

Besides, some practical problems related with application of rough sets in many domains
are of great importance.

1. Efficient and widely assessable software is necessary to further development of var-
ious applications

2. Development of rough set computer seems to be a must in order to pursue many
new applications.

Last but not least ”rough control” seems to be a very promising area of application of the
rough set concept.
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[8] Czyżewski , A., (1995) , ”Speaker-Independent Recognition of Digits - Experiments
with Neural Networks, fuzzy logic and rough sets”, Journal of the Intelligent Au-
tomation and Soft Computing (to appear).
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telligent Systems. Lecture Notes in Artificial Intelligence Vol. 689, Springer-Verlag,
Berlin, 642–651.
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Intelligent Decision Support. Handbook of Applications and Advances of the Rough
Set Theory, Kluwer Academic Publishers, Dordrecht, 77–93.
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rough sets”, in: R. S�lowiński (ed.), Intelligent Decision Support. Handbook of Ap-
plications and Advances of the Rough Set Theory, Kluwer Academic Publishers,
Dordrecht, 49–60.

[85] Szladow, A., (1993), ”Datalogic/R: Mining the knowledge in databases”, PC AI ,
7/1, 40–41.

[86] Szladow, A., and Ziarko W., (1993), ”Rough sets: Working with imperfect data”,
AI Expert, 7, 36–41.

[87] Tanaka, H., Ishibuchi, H., and Shigenaga, T., (1992) ”Fuzzy inference system based
on rough sets and its application to medical diagnostic”, in: R. S�lowiński (ed.),
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