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Abs t rac t .  Vagueness for a long time has been studied by philosophers, 
logicians and linguists. Recently researchers interested in AI contributed 
essentially to this area. 
In this paper we present a new approach to vagueness, called rough set 
theory. The starting of the theory theory is the assumption that fun- 
damental mechanisms of human reasoning are based on the ability to 
classify object of interest, i.e. group objects into similarity classes, which 
form granules (basic concepts) of knowledge about the universe of dis- 
course (e.g. color, height, weight etc.). Every union of basic concepts is 
called a precise (crisp) concept, otherwise the concept is called imprecise 
(rough). Thus rough concepts (sets) cannot be expressed in terms of ele- 
mentary concepts (set). Therefore with each imprecise concept a pair of 
precise concepts, called its lower and upper approximation, is associated. 
Approximations are basic operations of rough set theory. 
The paper contains basics of rough set theory, shows some of its ap- 
plications, and the relationship to fuzzy sets, the theory of evidence, 
discriminant analysis and boolean reasoning methods are pointed out. 

1 I n t r o d u c t i o n  

Vagueness has been studied for many years by researchers interested in math-  
ematics, philosophical logic and philosophy of language (see e.g. [1, 2, 6, 8, 12, 
13, 30, 36, 47, 59, 69, 70, 72]). Recently, researchers interested in AI contributed 
essentially to this area of research. The most important  contributions seemingly 
are fuzzy set theory (see [92]) and the theory of evidence (see [74]). 

This paper presents another approach to vagueness based on rough set theory 
(see [60]). 

Rough set theory bears on the assumption tha t  we have initially some in- 
formation (knowledge) about elements of the universe we are interested in. Evi- 
dently to some elements of the universe the same information can be associated 
and consequently the elements can be similar or indiscernible, in view of the 
available information. Similarity is assumed to be a reflexive and symmetric re- 
lation, whereas the indiscernibility relation - also transitive. Thus similarity is a 
tolerance relation and indiscernibility is an equivalence relation. 

The concepts of similarity and indiscernibility a t t racted attention of philoso- 
phers and logicians for many years (see e.g. [88, 91]), nevertheless these concepts 
are still far of being understood fully. 
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2 T h e  B o u n d a r y - l i n e  A p p r o a c h  t o  V a g u e n e s s  

The idea of vagueness is usually connected with the so called "boundary-line" 
approach first formulated by Frege (see [21]), who writes: 

"The concept must have a sharp boundary. To the concept without a sharp 
boundary there would correspond an area that had not a sharp boundary-line all 
around " 

Thus according to Frege "the concept without a sharp boundary",  i.e. vague 
concept, must have boundary-line examples which cannot be classified, on the 
basis of available information, neither to the concept nor to its complement. For 
example the concept of an odd (even) number is precise, because every number is 
either odd or even - whereas the concept of a beautiful women is vague, because 
for some women we cannot decide whether they are beautiful or not (there are 
boundary-line cases). 

In the rough set approach vagueness is due to the lack of information about 
some elements of the universe. If with some elements the same information is 
associated, in view of this information these elements are indiscernible. For exam- 
ple if some patients suffering from a certain disease display the same symptoms, 
they are indiscernible with respect to these symptoms. It turns out that  the 
indiscernibility leads to the boundary-line cases, i.e. some elements cannot be 
classified neither to the concept nor to its complement, in view of the available 
information and thus form the boundary-line cases. 

Now let us present these ideas more formally. 
Suppose we are given a finite not empty set U called the universe, and let I 

be a binary relation on U. By I(x) we mean the set of all y E U such that  yIx.  
If I is reflexive and symmetric, i.e. 

xlx ,  for every x E U, 

xly,  implies y lx  for every x, y E U, 

then I is a tolerance relation. If I is also transitive, i.e. xIy  and yIz implies 
xlz ,  then I is an equivalence relation. In this case I(x) = [x]i , i.e. I(x) is an 
equivalence class of the relation I containing element x. If I is a tolerance relation 
and xIy, then x, y are called similar with respects to I (I-similar), whereas if I 
is an equivalence relation and xIy,  then x, y are referred to as indiscernible with 
respect to I (I-indiscernible). For the sake of simplicity we will assume in this 
paper tha t  I is an equivalence relation. 

Let us define now two following operations on sets 

t , ( x )  = {x e u :  l(x) c x } ,  

I*(X) = {x E U: I(x) MX r 0}, 

assigning to every subset X of the universe U two s e t s / ,  (X) and I* (X) called 
the 1-1ower and the 1-upper approximation of X respectively. The set 

B N d X )  = l * ( X )  - I , ( X )  
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will be referred to as the I-boundary region of X. 
If the boundary region of X is the empty set, i.e. BNI(X)  = q}, then X will 

be called crisp (exact) with respect to I; in the opposite case, i.e. if BNI(X)  # 0, 
X will be referred to as rough (inexact) with respect to I.  

Thus rough sets seems to be a natural mathematical model of vague concepts. 
One can easily show the following properties of approximations: 

1) I . (X) c_ X C_ I*(X), 
2) I.(O) = I*(O) = O,I.(U) : I*(U) = U, 
3) I*(X u Y) = I*(x) u I*(V), 
4) I .  (X n Y) = I .  (X) n I .  (Y), 
5) X C_ Y implies I . (X) C_ I .(Y) and I*(X) g I*(Y), 
6) I . (X U Y) D_ I .(X) U I.(Y),  
7) I * ( X A Y )  C_ I*(X) nI* (Y) ,  
8) I .  ( - X )  = - I *  (X), 
9) I * ( - X ) = - I . ( X ) ,  

10) I . (I . (X))  = I*(I.(X)) = I .(X),  
11) I*(I*(X)) = I,(I*(X)) = I*(X). 

It is easily seen that  the lower and the upper approximation of a set are interior 
and closure operations in a topology generated by the indiscernibility relation. 
Thus vagueness is related to some topological properties of inexact concepts. 

Vagueness can be also characterized numerically by defining the following 
coefficient, called the accuracy of approximation 

~ ( x ) -  II,(X)l 
lI*(x)i' 

where IX] denotes the cardinality of X.  
Obviously 0 _ o~I(X) __. 1. If a~(X) = 1, X is crisp with respect to I (the 

concept X is precise with respect to I), and otherwise, if ai(X) < 1, X is rough 
with respect to I (the concept X is vague with respect to I). 

3 Topo log ica l  Class i f i ca t ion  of  V a g u e n e s s  

It turns out that  the above considerations give rise to the following four basic 
classes of rough sets, i.e. four classes of vagueness: 

a) I . (X) # ~ and I*(X) # U, iff X is roughly I-observable, 
b) I .  (Z)  = 0 and I* (X) r U, iff X is internally I-unobservable, 
c) I . (Z)  # 0 and I . (X)  = U, iff X is externally I-unobservable, 
d) I .  (X) = ~ and I* (X) = U, iff X is totally Lunobservable. 

The intuitive meaning of this classification is the following. 
If X is roughly /-observable we are able to decide for some elements of U 

whether they belong to X or - X .  
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If X is internally I-unobservable we are able to decide whether some elements 
of U belong to - X ,  but  we are unable to decide for any element of U whether 
it belongs to X or not. 

If X is externally I-unobservable we are able to decide for some elements of 
U whether they belong to X,  but  we are unable to decide for any element of U 
whether it belongs to - X  or not. 

If X is totally I-unobservable, we are unable to decide for any element of U 
whether it belongs to X or - X .  

Tha t  means, that  X is roughly observable if there are some elements in the 
universe which can be positively classified, to X or - X .  

External  I-unobservability of a set refers to a situation when positive classi- 
fication is possible for some elements, but  it is impossible to determine that  an 
element does not belong to X. 

4 A n  E x a m p l e  

In this section we will illustrate the above ideas intuitively, by means of an 
indiscernibility relation generated by data. 

Data are often presented as a table, columns of which are labeled by at- 
tributes, rows by objects of interest and entries of the table are attribute values. 
For example, in a table containing information about patients suffering from a 
certain disease objects are patients (strictly specking their ID's), at tr ibutes can 
be, for example, blood pressure, body temperature etc., whereas the entry corre- 
sponding to object Smiths and the at t r ibute blood preasure can be normal. Such 
tables are known as in]ormation systems. 

T a b l e  1. Example of an information system 

Patient  Headache Muscle-pain Temperature  Flu 

p l  no yes high yes 
p2 yes no high yes 
p3 yes yes very high yes 
p4 no yes normal no 
p5 yes no high no 
p6 no yes very high yes 

Each row of the table can be seen as information about  specific patient.  For 
example patient p2 is characterized in the table by the following attribute-value 
set 

(Headache, yes), (Muscle-pain, no), (Temperature,  high), (Flu, yes), 

which form information about  the patient.  
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Obviously cach subset of attributes defines an indiscernibility (equivalence) 
relation on the set of patients. Patients are indiscernible by a set of attributes if 
they have the same values of the attributes. 

For example, patients p2, p3 and p5 are indiscernible with respect to the 
attribute Headache, patients p3 and p6 are indiscernible with respect to the 
attributes Muscle-pain and Flu, and patients p2 and p5 are indiscernible with 
respect to the attributes Headache, Muscle-pain and Temperature. 

Patient p2 has flu, whereas patient p5 does not, and they are indiscernible 
with respect to the attributes Headache, Muscle-pain and Temperature, hence 
flu cannot be characterized in terms of the attributes Headache, Muscle-pain 
and Temperature. Thuse p2 and p5 are the boundary-line cases, which cannot 
be properly classified in view of the available knowledge. The remaining patients 
pl, p3 and p6 display symptoms which enable us to classify them with certainty 
as having flu, patients p2 and p5 cannot be excluded as having flu and patient 
p4 for sure does not have flu, in view of the displayed symptoms. Thus the lower 
approximation of the set of patients having flu is the set {pl, p3, p6} and the 
upper approximation of this set is the set {pl, p2, p3, p5, p6}, whereas the 
boundary-line cases are patients p2 and p5. Similarly p4 does not have flu and 
p2, p5 cannot be excludes as having flu, thus the lower approximation of this 
concept is the set {p4}, whereas - the upper approximation - is the set {p2, 
p4, p5} and the boundary region of the concept "not flu" is the set {p2, p5}, 
the same as in the previous case. Hence the accuracy of approximation of "flu", 
a(X/tu) = 3/5 and a(X~ot/l~) = 1/3. 

5 V a g u e n e s s  a n d  U n c e r t a i n t y  

A vague concept has a boundary-line cases, i.e. elements which cannot be with 
certainty classified as elements of the concept i.e., we are uncertain whether the 
boundary-line cases belong to the concept or not. Hence uncertainty is related to 
the membership of elements to a set. Therefore in order to discuss the problem of 
uncertainty from the rough set perspective we have to define a rough membership 
function, and investigate its properties. 

The rough membership function can be defined employing the relation I in 
the following way (see [63]): 

_ IX n Z(x)l  
II( )l 

Obviously 0 < p~ (x) _< 1. 
The rough membership has a probabilistic flavour and can be interpreted as 

a conditional probability which expresses a degree to which an element belongs 
to a set. For example, patient pl can be classified as having ftu on the basis of 
his body temperature with probability 3/5. 

The rough membership function can be used to define the approximations 
and the boundary region of a set, as shown below: 

X.(X) = {x e U: ~ ( x )  = 1}, 
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r ( x )  = {x e u :  . ~ ( x )  > 0}, 

B N I ( X )  = {z �9 U:  0 < ,~x(x) < 1}. 

Thus there exists a strict connection between vagueness and uncertainty. As we 
mentioned above vagueness is related to sets (concepts), whereas uncertainty is 
related to elements of sets, and the rough set approach shows clear connection 
between the two concepts. 

It can be shown (see [63]) that the rough membership function has the fol- 
lowing properties: 

a) # ~ ( x ) = l i f f x � 9  
b) # ~ ( x ) = 0 i f f x � 9  
c) 0 < #I BNI(X) ,  x(X) < l i f f x � 9  
d) If I = {(x,x) :x  �9 U} , then #~c(x) is the characteristic function of X, 
e) If xIy,  then/~c (x) = # / (y ) ,  
f) Pb-x(X)  = 1 - pI x(x)  for any x �9 U, 
g) #xuy(X) >_ max(# / (x ) ,# I (x ) )  for any x �9 U, 
h) . ~ n . ( x )  -< m i n ( . ~ ( x ) , . ~ ( x ) )  for any x �9 U, 
i) If X is a family of pair wise disjoint sets of U, then p/x(X) = )-'~xex # / ( x )  

for any x �9 U. 

The above properties show clearly the difference between fuzzy and rough mem- 
berships. In particular properties g) and h) show that the rough membership 
can be regarded as a generalization of of fuzzy membership. 

6 A p p l i c a t i o n s  

Rough set theory has found many interesting applications. The rough set ap- 
proach seems to be of fundamental importance to AI and cognitive sciences, espe- 
cially in the areas of machine learning, knowledge acquisition, decision analysis, 
knowledge discovery from databases, expert systems, inductive reasoning and 
pattern recognition. It seems of particular importance to decision support sys- 
tems. 

The main advantage of rough set theory is that it does not need any prelimi- 
nary or additional information about data - like probability in statistics, or basic 
probability assignment in Dempster-Shafer theory and grade of membership or 
the value of possibility in fuzzy set theory. 

Rough set theory has been successfully applied in many real-life problems e.g., 
in medicine, pharmacology, engineering, banking, financial and market analysis 
and others. Some exemplary applications are listed below. 

Medicine turned out to be a very interesting domain of application of rough 
sets (see e.g., [28, 82, 83, 84, 85, 87]). In pharmacology the analysis of relation- 
ships between the chemical structure and the antimicrobial activity of drugs (see 
[43, 44, 45, 46]) has been successfully investigated. Banking applications include 
evaluation of a bankruptcy risk (see [80, 81]) and market research (see [24, 95]). 
Very interesting results have been also obtained in speaker independent speech 
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recognition (see [10, 14, 15, 16, 17]) and acoustics (see [40, 41]). The rough set ap- 
proach seems also important for various engineering applications, like diagnosis 
of machines using vibroacoustics symptoms (noise, vibrations) (see [55, 56, 57]), 
material sciences (see [33]) and process control (see e.g., [53, 54, 67, 86, 96]). 
Application in linguistics (see e.g., [26, 27, 39, 51]) and environment (see [29]), 
databses (see e.g., [3, 4, 5, 73]) are other important domains, where rough set 
proved to be a valuable tool. 

More about applications of rough set theory can be found in the references 
(see e.g., [48, 49, 78, 93]). Besides, many other fields of application, e.g., time 
series analysis, image processing and character recognition, are being extensively 
explored. 

7 Conclusion 

Rough set theory seems to be well suited as a mathematical model of vagueness 
and uncertainty. Vagueness is a property of sets (concepts) and is strictly related 
to the existence to the boundary region of a set, whereas uncertainty is a property 
of elements of sets and is related to the rough membership function. In the rough 
set approach both concepts are closely related and are due to the indiscernibility 
caused by insufficient information about the world. 

Rough set theory overlaps to a certain degree many other mathematical 
theories. Particularly interesting is the relationship with fuzzy set theory and 
Dempster-Shafer theory of evidence. The concepts of rough set and fuzzy set are 
different since they refer to various aspects of imprecision (see [63]) whereas the 
connection with theory of evidence is more substantial (see [76]). Besides, rough 
set theory is related to discriminant analysis (see [42]), Boolean reasoning meth- 
ods (see [77]) and others. The relationship between rough set theory and decision 
analysis is presented in (see [64, 79]). More details concerning these relationships 
can be found in the references. Nevertheless rough set theory can be viewed in 
its own rights as an independent discipline with considerable achievements to its 
credit. 
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