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1 Introduction

This paper is an extension of articles Pawlak (1987, 1994), where some ideas concerning
rough functions were outlined. The concept of the rough function is based on the rough
set theory (cf. Pawlak, 1991) and is needed in many applications, where experimental
data are processes, in particular as a theoretical basis for rough controllers (cf. Czogala
et al., 1994, Mrozek and Plonka, 1994).

The presented approach is somehow related to nonstandard analysis (Robinson, 1970),
measurement theory (cf. Orlowska and Pawlak, 1984) and cell-to-cell mapping (cf. Hsu,
1980) but these aspects of rough functions will be not considered here.

In recent years we witness rapid grow of development and applications of fuzzy con-
trollers. The philosophy behind fuzzy control is that instead of describing, as in the case
of classical control theory, the process being controlled in terms of mathematical equa-
tions - we describe the behavior of human controller in terms of fuzzy decision rules,
i.e. rules that involve rather qualitative then quantitative variables and can be seen as
a common-sense model of the controlled process, similarly as in qualitative physics phys-
ical phenomena are described in terms of qualitative variables instead of mathematical
equations.

The idea of rough (approximate) control steams yet from another philosophical back-
ground. It is based on the assumption that the controlled process is observed and data
about the process are registered. The data are then used to generate the control algo-
rithms, which can be afterwards optimized. Both, the generation of the control algorithm
from observation, as well the optimization of the algorithm can be based on the rough set
theory, which seems to be very well suited for this kind of tasks. The control algorithms
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obtained in this way are objective and can be viewed as an intermediate approach between
classical and fuzzy approach to control systems.

In some cases the observation can be postponed and control algorithm can be obtained
directly from the knowledgeable expert, similarly as in the fuzzy set approach. In this
case the control algorithm can be also simplified using the rough set theory technic.

In general we assume that a rough controller can be seen as an implementation of
rough (approximate) function, i.e. function obtained as a result of physical measurements
with predetermined accuracy, depending on assumed scale.

The aim of this paper is to give basic ideas concerning rough functions, which are
meant to be used as a theoretical basis for rough controllers synthesis and analysis. The
presented ideas can be also applied to other problems – in general to discrete dynamic
systems, and will be discussed in further papers.

2 Basic of the Rough Set Concept

Basic ideas of the rough set theory can be found in Pawlak (1991). In this section we will
give only those notions which are necessary to define concepts used in this paper.

Let U be a finite, nonempty set called the universe, and let I be an equivalence relation
on U , called an indiscernibility relation. By I(x) we mean the set of all y such that xIy,
i.e. I(x) = [x]I , i.e.- is an equivalence class of the relation I containing element x. The
indiscernibility relation is meant to capture the fact that often we have limited information
about elements of the universe and consequently we are unable to discern them in view
of the available information. Thus I represents our lack of knowledge about U .

We will define now two basic operations on sets in the rough set theory, called the
I-lower and the I-upper approximation, and defined respectively as follows:

I∗(X) = {x ∈ U : I(x) ⊆ X},
I∗(X) = {x ∈ U : I(x) ∩ X �= ∅}.

The difference between the upper and the lower approximation will be called the I-
boundary of X and will be denoted by BNI(X), i.e.

BNI(X) = I∗(X) − I∗(X).

If I∗(X) = I∗(X) we say the the set is I-exact otherwise the set X is I-rough. Thus rough
sets are sets with unsharp boundaries.

Usually in order to define a set we use the membership function. The membership
function for rough sets is defined by employing the equivalence relation I as follows:

μI
X =

card(X ∩ I(x))

cardI(x)
.

Obviously
μI

X(x) ∈ [0, 1].

The value of the membership function expresses the degree to which the element x belongs
to the set X in view of the indiscernibility relation I.

The above assumed membership function, can be used to define the two previously
defined approximations of sets, as shown below:

I∗(X) = {x ∈ U : μI
X(x) = 1},

I∗(X) = {x ∈ U : μI
X(x) > 0}.
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3 Rough Sets on the Real Line

In this section we reformulate the concepts of approximations and the rough membership
function referring to the set of reals, which will be needed to formulate basic properties
of rough real functions.

Let R be the set of reals and let (a,b) be an open interval. By a discretization of the
interval (a,b) we mean a sequence S = {x0, x1, . . . , xn} of reals such that a = x0 < x1 <
. . . < xn = b. Besides, we assume that 0 ∈ S. The ordered pair A = (R, S) will be referred
to as the approximation space generated by S or simple as S-approximation space. Every
discretization S induces the partition π(S) = {{x0}, (x0x1), {x1}, (x1, x2), {x2}, (x2, x3),
{x3}, . . . , {xn−1}, (xn−1, xn), {xn}}on(a, b). By S(x) (or [x]S) we will denote block of the
partition π(S) containing x. In particular, if x ∈ S then S(x) = {x}. The closed interval
[a,b] will be denoted by S ′(x), and will be referred to as the closure of S(x).

In what follows we will be interested in approximating intervals (0, x) = Q(x) for any
x ∈ [a, b].

Suppose we are given an approximation space A = (R, S). By the S-lower and the
S-upper approximation of Q(x), denoted by S∗(Q(x)) and S∗(Q(x)) respectively, we mean
sets defined below:

S∗(Q(x)) = {y ∈ R : S(y) ⊆ Q′(x)}
S∗(Q(x)) = {y ∈ R : S(y) ∩ Q′(x) �= ∅}.

The above definitions of approximations of the interval < 0, x > can be understood as
approximations of the real number x which are simple the ends of the interval S(x),
therefore we will use the following abbreviations: S∗(Q(x)) = S∗(x) and S∗(Q(x)) =
S∗(x). If X ⊆ R, then Δ(X) = Sup|x − y|, x, y ∈ X. In particular Δ(S(x)) will be
denoted by ΔS(x) and will be called the length of X with respect to scale S.

In other words given any real number x and a discretization S, by the S-lower and the
S-upper approximation of x we mean the numbers S∗(x) and S∗(x), which can be defined
as

S∗(x) = Sup{y ∈ S : y ≤ x}
S∗(x) = Inf{y ∈ S : y ≥ x}.

for x ≥ 0 and
S∗(x) = Inf{y ∈ S : y ≥ x}
S∗(x) = Sup{y ∈ S : y ≤ x}.

for x ≤ 0.
Thus S(x) = (S∗(x), S∗(x)).

We will say that the number x is exact in A = (R, S) if S∗(x) = S∗(x), otherwise the
number x is inexact (rough) in A = (R, S). Of course x is exact iff x ∈ S. Thus to every
inexact number x we can associate pair of exact numbers S∗(x) and S∗(x) (the lower and
the upper approximations) and the interval S(x)).

Any discretization S can be interpreted as a scale (e.g. km, in, etc), by means of which
reals from R are measured with some approximation due to the scale S.

Remark

We can also assume that the discretizatin S induces partition π(S) = {(−INF, x0),
{x0}, (x0x1), {x1}, (x1, x2), {x2}, (x2, x3), {x3}, . . . , {xn−1}, (xn−1, xn), {xn}, (xn, +INF )}
on R. In this case for x > b the upper approximation of x is S∗(x) = +INF , and similarly
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for x < a, we have S∗(x) = −INF. However for the sake of simplicity we will not consider
this case here. �

The introduced idea of the rough set on the real line corresponds exactly to those
defined for arbitrary sets and can be seen as a special case of the general definition.

Now we give the definition of the next basic notion in the rough set approach - the
rough membership function – referring to the real line (cf. Pawlak and Skowron, 1993).

The rough membership function for set on the real line have the form

μQ(x)(y) =
Δ(Q(x) ∩ S(y))

Δ(S(y))
,

where Δ(X) = Sup|x− y|, x, y ∈ X.

Assuming that x = y, we get

μQ(x)(y) = μ(y),

which can be understood as an error of measurement of x in scale S.

4 Rough Sequencies and Rough Functions

Let A = (R, S) be an approximation space and let {an} be an infinite sequence of real
numbers.

A sequence {an} is roughly convergent in A = (R, S), (S-convergent), if there exists
i such that for every j > i S(aj) = S(ai); S∗(ai) and S∗(ai) are referred to as the rough
lower and the rough upper limit (S-upper, S-lower limit) of the sequence {an}. Any roughly
convergent sequence will be called rough Cauchy sequence.

A sequence {an} is roughly monotonically increasing (decreasing) in A = (R, S), (S-
increasing (S-decreasing)), if S(an) = S(an+1) or an < an+1(an > an+1) and S(an) �=
S(an+1).

Obviously, {a} is the Cauchy sequence iff {a} is roughly monotonically increasing or
decreasing.

A sequence {an} is roughly periodic in A = (R, S) (S-periodic), if there exists k such
that S(an) = S(an+k). The number k is called the period of {an}.

A sequence {an} is roughly constant in A = (R, S) (S-constant), if S(an) = S(an+1).
Suppose we are given a real function f : X → Y with discretizations S and P on X

and Y respectively. With every function f we associate the function Ff : π(S) → π(P )
such that

Ff(S(x)) = P (f(x)).

Thus the function Ff assigns unequally to each block of the partition π(S) one block of
the partition π(P ). We can enumerate blocks of partitions π(S) and π(P ) by integers in
the following way:

N(S(x)) = i, 0leqi ≤ n, if S∗(x)) = x1, where S = {x0, x1, . . . , xn}. Now instead of
function Ff we can use the function fS : {n} → {n}, from integers to integers defined as
follows:

fS(i) = N(P (f(xi)).

The function fS will be called the discretization of f.
The function fS can be used to define some properties of real functions.
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A function f is roughly monotonically increasing (decreasing) if fS(i + 1) = f(i) + α,
where α is a non-negative integer, (α is non-positive integer), for every i = 0, 1, 2, . . . n−1.

A function f is roughly periodic if there exist k such that fS(i) = fS(i + k) for every
i = 0, 1, . . . , n − 1.

A function f is roughly constant if fS(i) = fS(i + 1), for every i = 0, 1, . . . , n − 1.
Now we give a definition of a very important concept, the rough continuity of real

function.
Suppose we are given a real function f : X → Y , where both X and Y are sets of

reals and S, P are discretizations of X and Y respectively.
A function f is (S,P)-continuous (roughly continuous) in x if

f(S(x)) ⊆ P (f(x)).

In other words a function f is roughly continuous in x iff for every y ∈ S(x)f(y) ∈ P (f(x)).
If f is roughly continuous in x for every x ∈ δ(S), where δ(S) = (x0, xn), we say that

f is (S,P)-roughly continuous.
The intuitive meaning of this definition is obvious. Whether the function is roughly

continuous or not depends on the information we have about the function, i.e. it depends
on how exactly we ”see” the function through the available information (the indiscerni-
bility relation).

Obviously a function f is roughly continuous iff Ff (i + 1) ∈ {−1, 0, +1} for every
i = 0, 1, . . . , n − 1}.

Particularly interesting is the relationship between dependency of attributes in infor-
mation systems and the rough continuity of functions

Let S = (U, A), be an information system, (cf. Pawlak, 1991), where U is a finite set
of objects, called the universe and A is a finite set of attributes. With every attribute
a ∈ A a set of values of attribute a, called domain of a, is associated and is denoted by
Va . Every attribute a ∈ A can be seen as a function a : U → V , which to every object
x ∈ U assigns a value of the attribute a. Any subset of attributes B ⊆ A determines
the equivalence relation IND(B) = {x, y ∈ U : a(x) = a(y)for everya ∈ A}. Let
B, C ⊆ A. We will say that the set of attributes C depends on the set of attributes B,
in symbols B → C, iff IND(B) ⊆ IND(C). If B → C then there exists a dependency
function fB,C : Vb1xVb2x . . . xVbn → Vc1xVc2x . . . xVcm , such that fB,C(v1, v2, . . . , vn) =
(w1, w2, . . . , wm), iff σ(v1) ∩ σ(v2)∩, . . . ,∩σ(vn) ⊆ σ(w1) ∩ σ(w2)∩, . . . ,∩σ(wm), where
v1 ∈ Vb, wj ∈ Vcj

, σ(v) = {x ∈ U : a(v) = x} and v ∈ Va. The dependency function
B → C, where B = {b1, b2, . . . , bn} and C = {c1, c2, . . . , cm} assigns uniquely to every
n-tuple of values of attributes from B the m-tuple of values of attributes from C.

There exists the following important relationship. B → C iff fB,C is (B,C)-roughly
continuous.

Many other basic concepts concerning functions can be expressed also in the rough
function setting.

By the (P)-lower approximation of f we understand the function f∗ : X → Y such
that

f∗(x) = P∗(f(x))for everyx ∈ X.

Similarly the (P)-upper approximation of f is defined as

f ∗(x) = P ∗(f(x))for everyx ∈ X.

We say that a function f is exact in x iff f∗(x) = f ∗(x); otherwise the function f is inexact
(rough) in x. The number f ∗(x) − f∗(x) is the error of approximation of f in x.
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If f is a (S,P)-continuous function, then Ff is exact for every x ∈ S.
Finally in many applications we need the fix point properties of functions.
We say that x is a rough fix-point (rough equilibrium point) of a real function f if

Ff(N(S∗(x)) = N(S∗(x).

5 Optimal Discretization of Rough Functions

The function fS : S → Y such that fS(x) = f(x) for any x ∈ S will be called a S-discrete
representation of f or in short S-discretization of f.

Our main task is to give interpolation algorithm for discrete representation fS giving
the best approximation of f.

Let us first consider the linear interpolation formula. The linear interpolation of f will
be denoted by fαFs and is defined as follows:

fα(x) = f(S∗(x)) + μQ(S∗(x))(x).Δf(S(x)),

where Δf(S(x)) = f(S∗(x)) − f(S∗(x)).
The number |fα(x) − f(x)|

f(x)

will be called the relative error of the interpolation of f in x. The maximal error of
interpolation will be called the error of interpolation of f.

If f(S∗(x)) and f(S∗(x)) are unknown we can use another interpolation formulas shown
below.

1) Lower interpolation

f 1
α(x) = P∗(f(S∗(x))) + μQ(S∗(x))(x).Δ1f(S(x)),

where Δ1f(S(x)) = P∗(f(S∗(x))) − P∗(f(S∗(x)));

2) Upper interpolation

f 2
α(x) = P ∗(f(S∗(x))) + μQ(S∗(x))(x).Δ2f(S(x)),

where Δ2f(S(x)) = P ∗(f(S∗(x))) − P ∗(f(S∗(x)));

3) Lower cross interpolation

f 3
α(x) = P∗(f(S∗(x))) + μQ(S∗(x))(x).Δ3f(S(x)),

where Δf(S(x)) = P ∗(f(S∗(x))) − P∗(f(S∗(x)));

4) Upper cross interpolation

f 4
α(x) = P ∗(f(S∗(x))) + μQ(S∗(x))(x).Δ4f(S(x)),

where Δ4f(S(x)) = P∗(f(S∗(x))) − P ∗(f(S∗(x)));
The meaning of the above interpolation formulas is obvious.
We will be also interested in the following problem. Given a function f : X → Y and

a number 0 ≤ ε ≤ 1. Find categorizations S and P such the the error of interpolation of
f is less than ε.
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The following algorithm solves the problem.

x0 = z ∈ X

xi+1 = Sup{x > x1 : |f(y)− pxix(y)| ≤ ε}for anyy ∈ (xi, x >,

where pxi,x(y) denotes the straight line determined by points xi, x.

6 Conlusions

Rough function concept is meant to be used as a theoretical basis for rough controllers.
Basic definitions concerning rough functions were given and some basic properties of these
functions investigated.

Applications of the above discussed ideas will be presented in the forthcoming papers.
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