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Abstract. The paper discusses basic concepts of rough set theory. Starting point 
of the theory are data tables which are used to define rudiments of the theory: 
approximations, dependency and reduction of attributes, decision rules and others. 
Various applications of the theory are outlined and future problems pointed out. 
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1 Introduction 
Rough set theory is a new approach to imperfect knowledge. Particularly it offers 
a new perspective to vagueness and uncertainty, fundamental issues discussed in 
modern philosophy, logic and AI. Recently, researcher interested in cognitive 
sciences, machine learning, data mining and others contributed essentially to this 
area. The most important contributions, no doubt, are fuzzy set theory and the 
theory of evidence.  

Rough set theory is still another look on vagueness and uncertainty. Although it 
is somehow related to fuzzy set theory [5, 6, 14, 33, 37, 40, 51, 58, 61, 62, 72, 95, 
107, 111, 112] and the evidence theory, [76] it can be viewed as a independent 
discipline in its own rights.  

We witnessed a rapid grow of interest in rough set theory and its application, 
world wide. Many international workshops, conferences and seminars included 
rough sets in their programs. Over a thousand papers have been published on 
rough sets and their applications so far. 

Rough set theory hinges on the assumption that every object of the universe of 
discourse has some characteristic features, which are represented by information 
(knowledge, data) about the object. Objects having the same features are 
indiscernible. The indiscernibility relation leads to the so called "boundary-line" 
approach to vagueness, first formulated by father of modern logic, Gotlob Frege 
[17]. According to Frege "the concept without a sharp boundary", i.e. vague 
concept, must have boundary-line examples which cannot be classified, neither to 
the concept nor to its complement. Thus from philosophical point of view rough 
set theory can be understood as a special case of Frege's idea. 



Practically, rough set theory can be seen as a new approach to data analysis, 
known recently as also data mining. In general, data mining is a methodology for 
discovering hidden patterns in data. Rough set theory has proved to be useful in 
data mining, and it "... constitutes a sound basis for data mining applications" 
[13]. The theory offers mathematical tools to discover hidden patterns in data. It 
identifies partial or total dependencies (i.e. cause-effect relations) in data bases, 
eliminates redundant data, gives approach to null values, missing data, dynamic 
data and others.  

Many real life, nontrivial applications of this methodology for knowledge 
discovery have proved it usefulness. Rough set theory has been successfully 
applied in many areas. Medicine [57, 59, 68, 77, 78, 79, 92, 93, 97, 100, 101, 102, 
103, 106], pharmacology [30, 31], banking, financial and market analysis [3, 19, 
20, 82, 83, 84] are areas where rough set approach showed its advantages. Very 
interesting results have been also obtained  in speaker independent speech 
recognition and acoustics [9, 10, 11, 12, 29]. The rough set approach seems also 
important for various engineering applications, like machine diagnosis [54], 
process control [1, 8, 36, 40, 43, 69, 90, 91, 96, 114, 115, 119], material science 
[28], databases [4, 7, 16, 18, 27, 74, 85] and others [2, 22, 23, 24, 25, 26, 67, 73, 
86, 113]. More about applications of rough set theory can be found in [34, 35, 39, 
41, 42, 56, 58, 65, 80, 81, 99, 104, 105, 117].  

Rough set theory, has also links between Boolean reasoning methods [75], 
statistics [15, 32, 87, 94], neural networks [44, 45, 46, 48, 49, 50, 52, 53, 88, 110], 
mathematical morphology [70], mereology [71], just to name few.  

The theory is not competitive but rather complementary to other methods and 
can also be often used jointly with other approaches (e.g. fuzzy sets, genetic 
algorithms, statistical methods, neural networks etc.) 

Rough set theory has been generalized in many ways, but we are going to 
present in this paper basic concepts of this theory only. Rudiments of  rough set 
theory can be found in [63, 66, 78, 89]. Readers interested in more advanced 
results are advised to consult suitable literature. 

2 Information Tables 
The basic concepts of rough set theory can be formulated in quite general terms, 
but in order to give more intuitive insight into the theory we will start our 
consideration from data tables called information tables, information systems or  
attribute-value systems. Column of the table are labeled by attributes, rows by 
objects and  entries of the table are attribute values. An example of information 
table is shown below. 
 



Table 1. An example of an information table 

 H M T F 

p1 
p2 
p3 
p4 
p5 
p6 

no 
yes 
yes 
no 
yes 
no 

yes 
no 
yes 
yes 
no 
yes 

high 
high 
v. high 
normal 
high 
v. high 

yes 
yes 
yes 
no 
no 
yes 

 
 
Columns of the table are labeled by attributes Headache (H), Muscle-pain (M), 
Temperature (T) and Flu (F) and rows − by patients (objects) p1, p2, p3, p4, p5 
and p6. 

Each row of the table can be seen as information about specific patient. For 
example patient p2 is characterized in the table by the following attribute-value 
set  

{(Headache,  yes),  (Muscle-pain,  no),  (Temperature,  high),  (Flu, yes)}.  
Let us observe that each subset of attributes divides the set of all objects in the 

table into classes having the same features, i.e. clumps of objects which are 
indiscernible in view of the available data. For example, in the table patients p2, 
p4 and p6 are indiscernible with respect to the attribute Headache, since all they 
have the same value of this attribute. Similarly, patients p3 and p5 are 
indiscernible in terms of attributes Headache and Temperature, etc. Thus each 
subset of attributes induces on the set of objects an equivalence relation, whose 
equivalence classes form granules (blocks, clusters) of objects having the same 
features. These granules will be referred to as elementary sets, which are basic 
building bricks of rough set theory.  

Now we present the above concepts formally.   
Let S = (U, A) be an information table, where U and A, are finite, non-empty 

sets called the universe, and a set attributes respectively. With every attribute  
a ∈A  we associate  a set Va  of its values, called the domain of a. Any subset B of 
A determines a binary relation I(B) on U which will be called an indiscernibility 
relation, and is defined as follows: 

(x, y)∈I(B) if and only if  a(x) = a(y) for every a∈A, where a(x) denotes the 
value of attribute a for element x.  

Obviously I(B) is an equivalence relation. The family of all equivalence classes 
of I(B), i.e., partition determined by B, will be denoted by U/I(B), or simple U/B; 
an equivalence class of I(B), i.e., block of the partition U/B, containing x will be 
denoted  by B(x).  



If (x, y)∈I(B) we will say that x and y are B-indiscernible. Equivalence classes 
of the relation I(B) (or blocks of the partition U/B) are refereed to as B-elementary 
sets.  

In the table patients p2, p3 and p5 are indiscernible with respect to the attribute 
Headache, patients p3 and p6 are indiscernible with respect to attributes Muscle-
pain and Flu, and patients p2 and p5 are indiscernible with respect to attributes 
Headache, Muscle-pain and Temperature. Hence, for example, the attribute 
Headache generates two elementary sets {p2, p3, p5} and {p1, p4, p6}, whereas 
the attributes Headache and Muscle-pain form the following elementary sets: {p1, 
p4, p6}, {p2, p5} and {p3}. 

3 Approximation of  Sets 
It can be seen from Table 1 that the concept "flu", i.e. the set {p1, p2, p3, p6} (or 
the concept "not flu", i.e. the set {p4, p5}) cannot be defined in terms of attributes 
Headache, Muscle-pain and Temperature, because patients p2 and p5 have the 
same symptoms, i.e. values of attributes Headache, Muscle-pain and Temperature, 
but p2 has flu and p5 has not. Therefore we propose to define two set, called the 
lower and the upper approximation of a concept, which can be defined in terms of 
features contained in the table. The lower approximation of a concept is the set of 
all objects which can be surely classified as belonging to the concept, whereas the 
upper approximation of set is the set of all objects which possible belong to the 
concept − in view of available data. 

Formally approximations are operations on sets defined as follows: 
B X x U B x X∗ = ∈ ⊆( ) { : ( ) } , 

B X x U B x X∗ = ∈ ∩ ≠ ∅( ) { : ( ) } , 

which assign to every subset X of the universe U two sets and called 
the B-lower and the B-upper approximation of X, respectively. 

B X∗( ) B X∗( )

The set  
BN X B X B XB ( ) ( ) ( )= −∗

∗  
will be referred to as the B-boundary region of X.  
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then the set X is 
crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) ≠ ∅, the set X 
is rough (inexact) with respect to B.  

Rough set can be also characterized numerically by the following coefficient 

α B X card B X
card B X

( )
( ( ))

( ( ))
= ∗

∗
, 

called accuracy of approximation. Obviously 0 ≤ αB(X) ≤ 1. If αB(X) = 1, X is 
crisp with respect to B (X is precise with respect to B), and otherwise, if  
αB(X) < 1, X is rough with respect to B (X is vague with respect to B).  

Let us depict above definitions by examples referring to Table 1. Consider the 
concept "flu", i.e., the set X = {p1, p2, p3, p6} and the set of attributes  



B = {Headache, Muscle-pain, Temperature}. Hence = {p1, p3, p6} and  

= {p1, p2, p3, p5, p6}. For this case we get αB ("flu") = 3/5. It means that 
the concept "flu" can be characterized partially employing symptoms, Headache, 
Muscle-pain and Temperature. Taking only one symptom B = {Headache} we get 

= ∅, = U and αB("flu") = 0, which means that the concept "flu"  
cannot be characterized in terms of attribute Headache only i.e., this attribute is 
not characteristic for flu whatsoever. However, taking the attribute  
B = {Temperature} we get = {p3, p6}, = {p1, p2, p3, p5, p6} and 
αB(X) = 2/5, which means that the single symptom Temperature is less 
characteristic for flu, than the whole set of symptoms, but also characterizes flu 
partially.  

B X∗( )

B X∗( )

B X∗( ) B X∗( )

B X∗( ) B X∗( )

4 Rough Membership Function 
Rough sets can be also defined using a rough membership function, defined as  

μ X
B x card B x X

card B x
( )

( ( ) )
( ( ))

=
∩ . 

Obviously  
μ X

B x( ) [ , ]∈ 0 1 . 

Value of the membership function is kind of conditional probability, and 
can be interpreted as a degree of certainty that x can be classified as X,  employing 
set of attributes B. 

μ X xB ( )

The  rough  membership  function, can be used  to define approximations and 
the boundary region of a set, as shown below:  

B X x U xX
B

∗ = ∈ =( ) { : ( ) }μ 1 , 

B X x U xX
B∗( ) { : ( ) }= ∈ >μ 0 , 

BN X x U xB X
B( ) { : ( ) }= ∈ < <0 1μ . 

The rough membership function can be generalized as follows [71]: 

μ( , )
( )X Y card X Y

card X
=

∩ , 

where X, Y ⊆ U, X ≠ ∅. 
Function μ(X,Y) is an example of a rough inclusion [71] and expresses the 

degree to which X is included in Y. Obviously, if μ(X, Y) = 1, then X ⊆ Y. 
If X is included in a degree k we will write  X ⊆k Y. 
The rough inclusion function can be interpreted as a generalization of the 

mereological relation "part of", and reads as "part in a degree". 
For example, p1 belongs to the concept "flu" (i.e. the set {p1, p2, p3, p6}) with 

degree 1, whereas p2 belongs to this set with degree 0,5.  



5 Dependency of Attributes 
Our main problem can be also formulated in another way. Instead of using 
approximations of sets we can use the concept of dependency of attributes. 

Intuitively, a set of attributes D (called decision attributes) depends totally on a 
set of attributes C (called condition attributes), denoted C ⇒ D, if  all values of 
attributes of D are uniquely determined by values of attributes of C. In other 
words, D depends totally on C, if there exists a functional dependency between 
values of D and C. In Table 1 there are not total dependencies  whatsoever. If in 
Table 1,  the value of the attribute Temperature for patient p5 were "no" instead of 
"high", there would be a total dependency {Temperature}⇒ {Flu}, because to 
each value of the attribute Temperature there would correspond unique value of  
the attribute Flu.  

Formally dependency  can be defined  in the following way.   
Let D and C be subsets of A. We say that D depends totally on C, if and only if 

I(C) ⊆ I(D). That means that the partition generated by C is finer than the partition 
generated by D. 

We would need also a more general concept of dependency of attributes,  called 
a partial dependency of attributes. For example, in Table 1, the attribute 
Temperature determines uniquely only some values of the  attribute Flu. That is, 
(Temperature, very high) implies (Flu, yes), similarly (Temperature, normal) 
implies  (Flu, no), but (Temperature, high) does not imply always (Flu, yes). Thus 
the partial dependency means that only some values of D are determined by 
values of  C. 

Formally, the above idea can be formulated as follows.   
Let D and C be subsets of A. We say that D depends in degree k, 0 ≤ k  ≤ 1, on 

C, denoted C ⇒k D,  if 

k C D card POS D
card U

card C X

card U
C x U D= = = ∗∈∑γ ( , )

( ( ))
( )

( ( ))

( )
/ , 

where   
POS D C XC

X U I D

( ) ( )
/ ( )

= ∗
∈
U . 

The expression POSC(D), called a positive region of the partition U/D with 
respect to C, is the set of all elements of U that can be uniquely classified to 
blocks of the partition U/D, by means of C. 

Notice that for k = 1 we get the previous definition of total dependency.  
For dependency {Headache, Muscle-pain, Temperature}⇒ {Flu} we get k = 4/6 

= 2/3, because four out of six patients can be uniquely classified as having flu or 
not, employing attributes Headache, Muscle-pain and Temperature.  

If we were interested in how exactly  patients can be diagnosed using only the 
attribute Temperature, that is − in the degree of the dependence {Temperature}  
⇒{Flu}, we would get k = 3/6 = 1/2, since in this case only  three patients p3, p4 
and p6 out of six can be uniquely classified as having flu. In contrast to the 



previous case patient p4 cannot be classified  now as having flu or not. Hence the 
single attribute Temperature offers worse classification than the whole set of 
attributes Headache, Muscle-pain and Temperature. It is interesting to observe 
that neither Headache nor Muscle-pain can be used to recognize flu, because for 
both dependencies {Headache}⇒{Flu} and {Muscle-pain}⇒{Flu} we have 
k = 0. 

6 Reduction of Attributes 
Another important  issue in our approach is data reduction. For example, it is 
easily seen that if we drop in Table 1 either the attribute Headache or  Muscle-
pain we get the data set which is equivalent to the original one, in regard to 
approximations and  dependencies. That is we get in this case the same accuracy 
of approximation and degree of dependencies as in the original table, however 
using smaller set of  attributes.  

This concept can be formulated more precisely as follows. Let C ⇒k D. A 
minimal subset C' of C, such that γ(C, D)= γ(C', D) is called a reduct of C. 

It is easily seen that in Table 1 we have two reducts, {Temperature, Muscle-
pain} and {Temperature, Headache}. 

Thus a reduct is a set of condition attributes that preserves the degree of 
dependency. It means that a reduct is a minimal subset of condition attributes that 
enables the same decisions as the whole set of condition attributes. 

Obviously a set of condition attributes may have more then one reduct. 
Intersection of all reducts is called the core. The core in Table 1 is the attribute 
Temperature. Thus the core is the set of attributes  that cannot be eliminated from 
the information table without changing its dependencies and approximations. 

7 Decision Rules and Consistency Factor  
It we distinguish in an information table two classes of attributes, condition and 
decision attributes, such tables are called decision tables. For example in Table 1 
attributes Headache, Muscle-pain and Temperature are condition attributes, 
whereas  the attribute Flu − is a decision attribute.   

Each row of a decision table determines a decision rule, which specifies 
decisions (actions) that should be taken when conditions pointed out by condition 
attributes are satisfied. For example, in Table 1 the condition (Headache, no), 
(Muscle-pain, yes), (Temperature, high) determines uniquely the decision  (Flu, 
yes).  Decision rules 2) and 5) in Table 1 have the same conditions by different 
decisions. Such rules are called inconsistent (nondeterministic, conflicting, 
possible); otherwise the rules are referred to as consistent (deterministic, non 
conflicting, sure). Decision tables containing inconsistent decision rules are called 
inconsistent; otherwise the table is consistent.  

Decision rules are often presented as implications and are called  "if..., then..." 
rules. For example rule 1) in Table 1 can be presented as implication  
if (Headache, no) and (Muscle-pain, yes) and (Temperature, high) then (Flu, yes). 



To express this idea more precisely we need a formal language associated with 
any information table S = (U, A). The language is defined in a standard way and 
we assume that the reader is familiar with the construction. 

Given x∈U and B ⊆ A by we mean a formula such that a(x) = v 
and v ∈Va. 

Φ x
B

a B a v= ∧ ∈ ( , )

Every dependency C ⇒k D determines a set of decision rules 
{ }Φ Φx

C
x
D

x U→ ∈ . 

We say that a decision rule is true in S, if | | , where 

denotes the meaning of in S, defined in a usual way. 

Φ Φx
C

x
D→ | |Φ Φx

C
S x

D
S⊆

| |Φ x
C

S Φ x
C

Let .Hence the decision rule is true in S if CS(x)⊆DS(x).  C xS
C

S( ) | |= Φ x Φ Φx
C

x
D→

A decision rule is true in a degree l in S, if l = μ(CS(x), DS (x)) > 0, 
i.e., CS (x) ⊆l DS (x). 

Φ Φx
C

x
D→

Rough inclusion in this case boils down to the rough membership function. As a 
consequence rough membership can be interpreted as a generalized truth value. 

The degree of truth of a decision rule can be also interpreted as a certainty 
factor of the rule.  

Let us observe that the rough membership can be interpreted both as conditional 
probability and at the same time as partial truth value. 

The above considerations lead to a inference rule, called the rough modus 
ponens, defined as below: 

π μ
π

( ); ( , )

( )

Φ Φ Ψ
Ψ

x
C

x
C

x
D

x
C

 , 

where 

π( )
(| | )

)
Φ Φ

x
C x

C
Scard

card U
=

(
, 

μ( , )
(| | )

| |
Φ Ψ Φ Ψ

Φ
x
C

x
D x

C
x
D

S

x
C

S

card
card

=
∧  

and 
π π π μ( ) ( ) ( ) ( ,Ψ Φ Ψ Φ Φ Ψx

D
x
C

x
D

x
C

x
C

x
D= ∧ + ⋅~ )

Φ

)

, 
or 

π π μ( ) ( ( ) ( , ))
( )

Φ Ψ ΨD
x

y
C

y D x
y
C

y
D= ⋅

∈
∑  . 

The number can be interpreted as the probability, that x has the property 

, and the number − as certainty factor of the decision rule 

. 

π(Φ x
C

Φ x
C μ( , )Φ Ψx

C
x
D 

Φ Ψx
C

x
D→



Hence the inference rule, the rough modus ponens, enables us to calculate the 
probability of conclusion as a function of the probability of the premise  

and the certainty factor of the decision rule . 

Ψ x
D Φ x

C

μ( , )Φ Ψx
C

x
D Φ Ψx

C
x
D→

8 Conclusions 
Rough set theory attracted researchers and practitioners all over the world. They 
contributed essentially to its theoretical foundations as well as to wide range of 
non trivial applications of the theory. Besides, software based on rough set 
approach to data analysis has been developed in many countries.  

The theory has many important advantages. Some of them are listed below. 
• Provides efficient algorithms for finding hidden patterns in data. 
• Finds minimal sets of data  (data reduction).  
• Evaluates significance of data. 
• Generates minimal sets of decision rules from data. 
• It is easy to understand. 
• Offers straightforward interpretation of obtained results.  
Despite many serious achievements in rough set theory further investigations 

are here still needed. Particularly its algebraic, logical and probabilistic aspects 
require more research. 

Beside pure theoretical research many problems related closer to applications 
require due attention. 
Despite of many valuable methods of  efficient, optimal decision rule generation 
methods from data,  developed in recent years based on rough set theory − more 
research here is needed, particularly, when quantitative attributes are involved. In 
this context also further discretization methods for quantitative attribute values are 
badly needed. Comparison to other similar methods still requires due attention, 
although important results have been obtained in this area. Particularly interesting 
seems to be a study of the relationship between neural network and rough set 
approach to feature extraction from data.  

Rough control and rough databases seem very promising domains of research 
and applications in the years to come. 
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