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Summary. In this note we define the concept of approximate truth, and outline the
corresponding logic, called the rough (approximate) logic, in short R-logic. The starting
point of our considerations is the notjon of a.rough set introduced by the author earlier,
as mathcmatical tool to deal with the imprectse information.

Tle .oncept of approximate truth has called attention of many researchers in philo-
sophy, logic and recently in computer science. The latest were mainly motivated by
artificial intelligence research in expert system, approximate reasoning methods and other.

The anz of this note is to provide a theoretical framework to this kind of problems,

where truth is not krown exactly but only with a certain approximation.

: 1. Introduction. The need to speak of partial truth has been recognized

‘ long time ago. Relevant literature can be found in many books and papers

' concerning the subject. We refer here only to the paper of Hilpinen [1],
because our approach is somewhat similar to that presented in [1].

Starting point of our considerations is the concept of a rough set and
an approximation space introduced in [3]. Next, a logic with the approxima-
tion space is associated, in which five logical values are assumed: truth,
falsity, rough truth, rough falsity and rough inconsistency. Some elementary
_properties of this logic are shown. The rough (approximate) truth and
falsity represent our partial knowledge about the world and with the increase
of our knowledge the roughly true (or false) formulas tend to be more

, true (or false) and approach the truth and falsity closer and closer. Thus

~ the truth and falsity is-the limit of our partial knowledge. Hence the
rough truth and rough falsity can be Seen as an inductive truth and falsity,
and truth and falsity are of deductive nature.

Arother kind of logical investigations associated with rough sets and
approximate reasoning can be found in [2, 4. 5] but our approach is
different to that considered in those papers, because we are mainly interested
here in the concept of partial truth.
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2. Approximation space, rough sets. By an approximation space we mean
an ordered pair A = (U, R), where U is a set called the universe, and
R = UxU is a binary relation over U, called the indiscernibility relation.
We assume that R is an equivalence relation. Equivalence classes of R
are refered as elementary sets in 4. Any finite union of elementary sets
in A 1s called R-discernible set (or set discernible in A). Indiscernible sets
in A are called rough sets in A.

The indiscernible relation R represents our knowledge about the universe
U, in the approximation space A. The finer the indiscernibility relation is,
the more accurate knowledge we have about the universe and we are able
to discern more exactly the elements of the universe. In practicall application
the indiscernibility relation is determined by the accuracy of observation,
measurement or description of phenomena we are interested in.

The basic conceptions on which our approach is based are those of
a lower and upper approximation of X = U.

By the lower approximation of X in 4 (RX) we mean the set

RX = {xeU:[x]; = X},
and by the upper approximation of X in A (RX) we mean the set
- RX = {xeU:[x]an X #0},

where [x]g denote.s the equivalence class of R, containing the element x.
The boundary of X in A is the set

BNy (X)=RX—RX.

~ Obviously, set X is discernible in A if RX = RX; otherwise set X is
indiscernible in A (rough in A).

Intuitively speaking, if our knowledge about the universe is not precise
enough, we are unable to discern object in the universe and consequently
we cannot discern some subset of the universe, or in other words —if we
observe a subset X of the universe with some approximation determined
by the indiscernibility relation R, in general we are unable to observe the
subset exactly, but only with a certain approximation. The boundary of the
set X is the region which cannot be recognized because of the default
in our knowledge:

Let us notice that the idea of “imprecise” sets can be also expressed
employing two membership relations g, € defined as follows:

xexg X iff xeRX and xé&g X iff xeRX,

which reads: “x surely bzlongs to X~ and “v possibly belongs to X™ - respecti-
vely. The modal logic flavor is easily seen from the definition.
Each approximation space 4 = (U, R) defines uniquely the topological
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space T, = (U, DIS(R)), where DIS(R) is the family of all R-discernible
sets in A —and it is the family of all open and closed sets (the topology
of T,) in T,. Thus, the upper and lower approximations are interior and
closure in T,, respectively, and have hence the following properties:
1) RX € VS RX
2) RU=RU=U; RO=R0 =0
3) R(XVY)2 RXVRY
4) R(XuY)=RX _RY
5) B(XnY)=RXBY
6) R(X~Y)= RX ~RY
7) RX = —R(-X)
8) RX = —R (—X).
In the topology generated by an approximation space we have additional
properties:
9) RRX = RRX = RX
10) REX = RRX = RX.
"Sets in the approximation space A =(U, R) can be classified from the
topological point of view in the following way:
1) if BX = RX, X is discernible in A
"RX # RX, X is indiscernible in .{ (rough in A).
Rough sets can be classified into the following four classes:
2a) if RX #0 and RX # U, X is roughly discernible in A (RDIS)
2b) if RX = 0 X is internally indiscernible in A (IIND)
2c) if RX = !7, X is externally indiscernible in A (EIND)
2d) if RX =0 and RX = U, X is totally indiscernible in 4 (TIND).
It is obvious that: '
a) if X = U 1s discernible (roughly discernible or totally indiscernible)
in A, sois —X;
b) if X = U 1is internally (extetnally) indiscernible in A, then _X s
externally (internally) indiscernible in A.

3. Rough logic. We assume in R_v-logic the following notations: p, g, r etc,
are propositional variables, T and"F stand for truth and falsity. The basic
propositional connectives are (—), ( +), and ( ). Lower case greek letters ¢,
Y etc, denote formulas of R-logic, and are defined in usual way. The
semantics of R-logic is defined by means of interpretation function ([/) in
a standard way, ie. the function {]|) assigns to each formula ¢ in R-logic
its meaning in the universe U, in the following wav:

HIT|=U
2) |F|=10
3) =l =U-—|ol
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Al vyl = ol Uyl
3) I A ¥l = ol Ay,

By a model of R-logic we mean a system M = (U, R, |), where (U, R)

Is an app}oximation space and () is an interpretation function,
We say that ¢ is grue on xeU in M, if xelp|, and we write &= _ o,
or val, (p) = T; otherwise @ is false on x in M.
If lo|=U we say that formula
IS false in M, and we write k=

(or valy, (¢) = F), respectively.

Of course formula ® is true in M, if and only if ¢ is true on every
xeU, and ¢ is false in M, if and only if ¢ is false for some xeU.

) ~Formula«’§é‘i‘s surely trueon xeU in M=, 0) if xeR ]qol (or xgglol);
formula ¢ ‘is possibly true o R

f - Mgt

@ is true in M; otherwise formula @
v (9) (Or valy (@) =’T),. and" Eylp)=F
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nxelUin M(=,,0), if X€R |p| (or x&g|op|).
Facr 1.
a) =R ® iff [x]r © o \
b) =17 @ iff [x]e o] # 0. o A

i

. If gl is EIND, we sa
= @ (or valy (9) = RT).

Obviously if ¢ is roughly true in M,
on every xe U.

If ¢ is roughly true in M, then —¢ will be called roughly false in M,
and we shall write &, ¢ (or valg (¢) = RF). « : '

y that ¢ is roughly true in M, and we write

then ¢ is possibly true in M

Fact 2. Formula ¢ 1s roughly false in M,
Formula ¢ is roughly inconsistent in M,
roughly false in M. The following fact is obvio

if and only if |g| is IIND.

if lo| is roughly true and
us:

Fact 3. Formula

¢ is roughly inconsistent in M if and only if lo| 1s
TIND.

4. Degree of truth. In the R-logic we

can introduce degree of truth in
the following way:

If ¢ and ¢ are roughly true in M, then we shall sa
true than ¢ in M (or Y is less true than
(Of 4o <oy if @ 5y,

If ¢ and i are roughly false in M and ¢ <y
more false than .

Of course, if ¢ and Y are both roughly true in M, and @ 1S more true
than , then —¢ is more Julse than —y.

y that ¢ is more
®), symbolically &= RP > Fpy

, then ¢ will be called B

......
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Fact 4. If ¢ and ¢ are both roughly true in M, then ¢ v ¥ is not
less true than either ¢ or ¢, and ¢ A ¥ is not more true than either
@ or . :

Let ¢,, @3, ..., @, .. be an infinite sequence of formulas in R-logic, such
that ¢;,, is more true then @;, for every i (1 <i<n), ie. ExRQ;<EgQi+;.

- The following facts are obvious

Fact 5.

b BV I-ed=) 8l-0i=0.

Fact 6. The following conditions are equivalent

C) U B I‘Pll = U:
i=1

d N Ri-el=0
i=1

Instead of (c) and (d) we can write

e) lim sup val (¢;) = T,

f) lin}. inf val (—¢;) = F.

The intuitive meaning of the above properties may be explained in the
following way: if ¢; is roughly true in M, we can also say that ¢; is
inductively true in M, ie. true —according to our present state of knowledge.
More knowledge alow us to replace formula ¢; by more true formula ¢, ,
etc. —eventually the process leads to the true formula ¢, which is the limit
of roughly true formulas ¢;. The limit formula ¢ can be called deductively
true. Thus, the process of acquiring knowledge leads from partial (inductive)
truth, to total (deductive) truth.
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3. IMaBask. [Tpub.mkeHnast Jornka

B HacTosweil padoTe paccMaTpUBAETCS NOHATHE NPUEIM*KEHHOR NPaBabl U JaeTcs HaGpOCcok
COOTRETCTREHHOR tornku. Mcxonnodt Touxo#t npeanaraemsiX paccykKICHHH ABIAETCA npexie 3.
BBC.ICIHIOE UBTOPOM NOHATHE ,.NpHOMMKEHHOro MHoXecTsa™ (rough set) xak MATEMATHYECKOTO = ]
HHCTPYMEHTA AA8 aHanu3a npubamxeHHOH HHGDOpPMaUMH.

[MousTue npuOIMKEHHON NpaBAbl yXe OAaBHO BLIZLIBANIO MHTepec dumocodos, NOruxkos, WS
a B nocneidee Bpems WM HHDOpMaTHkOB. J[IM8 NOCTEIHMX ITO MOHATHE HHTepecHO 1o S
MOBOAY NPOBEEHUS HCCIENOBATENLCKUX PABOT MO HCKYCCTBEHHOMY MHTEIUIEKTY. a OCOOEHHO J:
M0 YKCMEPTHBIM CHCTEMAM, 10 METOIAM aBTOMATH3AUMH MPUBTHKEHHBIX PACCYKIEHHMA U ApyrHM. 3B

Lens HacToAwe#t paboTvl — DaTb HAGPOCOK TEOPETHYECKOW KOHUETUMH, NO3IBOAAIOLLEH
u3y4aTb npobjembi, KOrda He SBIASETCS W3BECTHOH BCA NpaBia. a IMIUbL HEKOTOPOE et }
npubankeHune.
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