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In this article a mathematical model of conflict situations, based on three binary 
relations: alliance, conflict and neutrality, is introduced. Axioms for alliance and conflict 
relations are given and some properties of these relations are investigated. 

Further, the strength of an object is introduced. The set of the three relations 
mentioned above, together with the strength of all objects, is called the situation. Some 
rules of transformation of situations are introduced and investigated. 

Finally, the notion of a capture is defined and the rules of sharing of the capture 
among objects in a given situation are formulated. Some theorems concerning capture 
sharing are given. 

The approach presented can be used as a starting point for an easy computer 
simulation of conflict situations. 

1. Introduction 

This paper  is a modified version of ideas introduced in Pawlak (1981). 
A formal model of conflict situations, somewhat different from that considered in 

game thory, is proposed. 
Three binary relations: alliance, conflict and neutrality of some set of objects X, are 

the starting point of our approach. The union of these relations is called the configur- 
ation of X. Some axioms for alliance and conflict relations are given, and configurations 
satisfying these axioms are investigated. 

Further,  with each object from X a non-negative real number  is associated. This is 
called the strength of the object. The configuration of X together  with the strength of 
all objects in X is called the situation of X. Some rules of transformation of situations 
are then formulated and studied. 

Finally, the non-negative real number  called the capture is introduced, and rules of 
sharing the capture among the objects in the situation are given. Some theorems 
concerning capture sharing are formulated. 

The approach presented can be considered as an extension of ideas presented in 
Roberts  (1976). 

2. Configurations 

Let X be a finite set. Elements of X will be called objects, which can be interpreted 
as human beings, trading organizations, political groups, governments,  etc. 

Let ~b be a function which to each (x, y) ~ D~b associates the number  +1, 0 or - 1 ,  
that is ~ b : X x X - * { + l , 0 , - 1 } .  
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We assume that the function ~b satisfies the following conditions: 
(1) 4,(x, x) = +1, 
(2) ~b(x, y) = 4~(y, x), 

for every x, y ~ X. 
If 4~(x, y) --- +1 we say that x and y are allied and if 4~(x, y) = -1 ,  we say that x and 

y are in conflict. If 4~(x, y) = 0  we say that x and y are neutral. 
The pair C = (X, ~b) will be called the configuration. 
If C = (X, ~b), then we shall also write Xc, 4~c to denote that X and 4, form the 

configuration C. 
Each configuration C = (X, 4~) defines three disjoint binary relations on X, denoted 

RE, R ~ Rc, defined as follows: 

RE(x, y)**~b(x, y) = +1, 

Rc(x, y),~-~Cb(x, y) = - 1 ,  

R~ y)4*Cb(x, y) = 0. 

We shall call RE, Rc and R ~ the alliance, conflict and neutrality relations, respec- 
tively. 

If Rc  = ~ we shall say that C is a conflictless configuration, otherwise C is a conflict 
configuration. 

From (1) and (2), it follows that the relation RE satisfies the following conditions: 
A1. + Rc(x, x), 
A2. RE(x, y)- ,RE(y,  x). 

Moreover, if the condition 
A3. RE(x, y) & RE(y, z)-~ RE(x, z) 

is valid, we shall say that RE is regular; otherwise RE is nonregular. 
Thus, the regular relation RE is an equvalence relation on X, and we shall call 

equivalence classes of RE blocks of the configuration C, or coalitions in C. 
Obviously, the relation Rc satisfies the conditions: 

B1. - R c ( x ,  x), 
B2. Rc(x, y) -~ Rc(y, x). 

If, moreover, the property 
B3. Rc(x, y) & Rc(y, z)--, RE(x, z) 

is valid, we say that Rc is regular, otherwise Rc is nonregular. 
From B3, it follows that: 

B4. Rc(x, y) & RE(y, z)--,Rc(x, z), 
B5. R~(x, y )&Rc(y , z )~Rc(x , z ) .  

If RE and Rc are both regular, then so is the configuration C, otherwise C is 
nonregular. 

Each configuration C = (X, ~b) can be depicted by a graph; objects of C are interpreted 
as vertices of the graph. If RE(x, y), we shall connect vertices x and y by a double 
line, called a positive edge. If Rc(x, y), then we shall connect vertices x and y by a 
single line, called a negative edge. 

If C - (X, r is a configuration, then the associated graph will be denoted by G o  
In what follows we shall identify configurations and their graphs, and consequently we 
shall use graph theoretical terminology for configurations (connected configuration, 
subconfiguration, loop in the configuration, etc.). 
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FIG. 1. Examples of (a) regular and (b) nonregular configurations. 

Examples of regular and nonregular configurations are shown in Fig. 1. 
Let C --- (X, 4~) and C'(X', 4~') be configurations. We say that C' is an extension of 

C (or C is a subconfiguration of C') if 4~ = ~b~x• 
Suppose C = (X, 4~) is a nonregular configuration. If C' = (X', 4~') is the last regular 

extension of C, then C' will be called a forced extension of C. 
It is obvious that 

for every nonregular configuration there exist at most 
one forced extension of it. 

If C --- (X, d~) is a regular configuration, then every extension of C will be called a 
free extension of C 

Examples of forced and free extensions are shown in Fig. 2. 

A 

X , /  
( o )  (b )  

FIG. 2. Examples of (a) forced and (b) free extensions of configurations. 
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If the loop in the graph Gc contains an odd number of negative edges we shall call 
the loop improper; otherwise the loop is proper. 

One can prove the following property. 

If the graph Gc of the configuration C = (X, ~b) contains an improper loop, then 
C = (X, ~b) is nonregular and there is no regular extension for C. If the graph Gc  
does not contain an improper loop, then C has a regular forced extension. 

Let  B # B' be two blocks of the configuration C = (X, 4)). If there are x e B and 
y ~ B' such that Rc(x, y), then we shall say that blocks B and B' are in weak conflict; 
if for every x ~ B and y r B', Rc(x,  y), we say that blocks B and B' are in a strong 
conflict: if block B is not in a conflict with any other block in C = (X, qb) we say that 
B is neutral in C. 

The following theorem is true. 

If C = (X, $)  is a regular configuration, then every maximal connected subconfigur- 
ation of C, i.e. maximal connected subgraph of the graph Gc,  is a neutral block in 
C or a pair of blocks in strong conflict. 

That is to say that with every regular configuration we can associate besides the 
graph Gc  another graph (3c, whose vertices are blocks in C, and two blocks B and B' 
are connected by an edge in (~c if and only if B and B' are in strong conflict in C. 

Examples of graphs Gc and t3c for some configurations are shown in Fig. 3. 
The above properties of configurations show that ff the initial conflict configuration 

is changed by adding some new alliances and conflicts to it, i.e. by adding some new 
positive and negative edges to the graph Go, and if the initial configuration contains 
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FIG. 3. Examples of graphs G c and Gc for some configurations. 
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an improper loop, it is impossible to keep the rules A1-A3 and B1-B3, and sooner 
or later we arrive at contradiction. If the initial configuration does not contain an 
improper loop and the configuration changes according to the rules A1-A3  and B1-B3, 
eventually the process ends with the configuration in which there are conflicts only 
between pairs of blocks, and some neutral blocks may exist in that configuration. 

3. The strength of objects 

Let C = ( X ,  ~b) be a configuration and let / z : X ~ R  be a function which assigns a 
non-negative real number, called the strength of x, to each object x �9 X. 

The strength of Y c X is defined as 

/ i ( Y ) =  ~ /z(x). 
xEY 

In part icular , / i (X) denotes the strength of the whole conlguration C = (X, 4)). 
The ordered triples S = (X, ~b, g)  will be called the situation of X. If S = (X, 4~,/~) 

is a situation, we shall write Xs, ~bs and/~s- 
The function ;I:X x X-~ R (R is the set of all non-negative reals) will be called the 

strategy in S = (X, ~b, g).  The strategy says how the strength of each object in S is 
distributed against its enemies. We assume that the strategy a satisfies the following 
conditions: 

(1) if y = x  or R+(x, y) or R~ y), then A(x,y) =0 ,  
(2) if ;t (x, y) ~ 0 then R-(x, y), 
(3) X(x)-</z(x) for every x � 9  

where 

~(x)= E , l ( x , y ) =  Y~ X(x,y) 
y~X y~Ex 

and Ex denotes the set of all objects being in conflict with x (enemies of x) in 
C = (X, 4~,/z), i.e. Ex = {y �9 X: Rc(x, y)}. 

The strategy A in S is balanced if A(x, y ) =  ;l(y, x) for every (x, y ) � 9  
If for some x �9 X, ~(x)=/z(x) ,  we say that the strategy A for x is total in S. Let 

X - =  {y �9 X: Vz Rc(y, z)}, i.e. X- is the set of all objects being involved in conflicts in 
S. If ~(x) = ~(x)  for every x �9 X- we say that it is a total strategy in S. 

If A(x, y ) = 0  for all x, y � 9  we say that A is a null strategy in S. 
Let S = ( X ,  qS,/z) be a situation such t h a t / ~ ( x ) > 0  for every x e X ,  and let A be a 

strategy in S. We assume that A transforms the situation S into a new situation 
S~ = (X~, ~bx,/zA) such that 

(1) ~(x)=~(x)=~x, 
(2) XA = {x �9 X: ~^ (x) > 0}, 
(3) 4,, = ~ , / x ,  x x~.  

Of course, if S is a conflictless situation, then every strategy a in S is a null strategy 
and S = S~. 

Realization of the strategy A in the situation S reduces the strength of each object 
being involved in conflict by the strength engaged against its enemies and eliminates 
all those objects whose strength is reduced to zero. 

Let S = ( X ,  ~b,/~) be a situation. We shall say that the situation S=(X,  ~b,/z) is 
balanced if there exists a strategy ;t in S, such that Xx = X - X - ,  i.e. all objects being 
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involved in conflicts in the situation S are "dest royed",  by the realization of the 
strategy A. 

This balance may be called balance of fear, and the corresponding strategy the 
strategy of intimidation. 

One can show the following property. 

The situation S = (X, ~b, tz) is balanced if and only if following set of linear equations 
has a solution (with respect to A): 

~ (x )= / z (x )  for every x E X ,  

A ( x , y ) = A ( y , x ) ,  for eve ryx ,  yEX.  

Thus, the situation S = (X, ~b,/~) is balanced if and only if there exists a total strategy 
in S. 

/J. ( y )  = I 

x /.~ ( x )  = 1.5 

y /  ~ z  i ~ (z) = 2 
FIG. 4. An example of a balanced situation. 

For  example, the situation shown in Fig. 4 is balanced because the set of equations 

A(x,y)+A(x,z)=l.5, A(z, y) = a(y,  z), 

a(z,y)+a(z,x)=2, A(x, y) = A(y, x), 

A(y, x )+A(y ,  z) = 1, A(x,z)=A(z,x) 
has the solution 

A(x, y) =0 .25 ,  A(y, z) =0 .75 ,  ;t(x, z) = 1.25. 

On the other  hand, the situation shown in Fig. 5 is not balanced because the correspond- 
ing set of equations has no solution. 

# ( y )  ,,, i o  

x _ ~  #(x)=5 

)' z #(z)= 20 
FIG. 5. An example of a situation which is not balanced. 

It is obvious that for every situation S there exist a strategy A in S such that S~ is 
conflictless. 

The strategy ;t such that SA is conflictless will be called a maximal strategy in S. 
We say that object x E X is strong in the situation S itt for every strategy ;t in S 

~ ( x ) >  0; otherwise the object x E X is weak in S. 
The following properties are valid. 

(1) Object  x E X  is strong in S if[ /z(x) > tZ(Ex). 
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(2) If x and y are strong in S, then x and y must not be in a conflict in S, i.e. ~R- (x ,  y). 
(3) The strategy of intimidation exists in S iff all objects in S are weak. 

Let us remark that if S is conflictless situation, then every object in S is strong. 

4. How do conflicts arise? 

Let S = (X, ~b,/z) be a situation and let q be a certain non-negative real number, called 
the capture. 

We assume that in each situation S = (X, r  the capture q is shared among the 
objects of X, i.e. increases the strength of each object (possibly by zero), according 
to some rules. 

Thus, if S = (X, r  is a situation, a is a strategy in S and q is a capture, we assume 
that the strategy A and the capture q transforms the situation S = (X, r into a new 
situation S q = (X q, ~b q, gq). 

If S = (X, ~b,/z) is a conflictless situation, A is a strategy (let us note that in conflictless 
situation every strategy in S is a null strategy) and q is a capture, we assume that 

(1) X ~ = X  
(2) 4~ = r 
(3) gqa(x) =/x(x)  +[gx/tZ(X)]q, 

i.e. we assume that the capture in conflictless situation is shared in proportion to tile 
strength of each object. 

If S = (X, ~b,/~) is a conflict situation, then we assume that the capture is shared only 
among winners according to some prefixed rules (for example, in proportion to the 
strength of each winner) to the strength of all winners. (Other  principles are possible, 
but we shall not discuss them here.) 

Let S = (X, ~b,/z) be a conflict situation, A a maximal strategy in S and q the capture. 
Then 

(4) x q = x ,  
(5) cq =~,/x~ xx~ 

f / . t ( x ) ,  if x ~ X - X - ,  
(6) / ~ ] ( x ) = ~  , , +  /za(x) ., 

[ ~tx)  ~ q  11xcX'~, 

where 

X~ =X~ n X -  

is the set of winners in the situation S = (X, ~b, tt) and the strategy A. 
We say that the situation S = (X, 4~, tz), is better for x ~ X with respect to the capture 

q than the situation S ' =  (X, r  g)  if for every maximal strategy A' in S' there exists 
a maximal strategy ;t in S such that 

M(x) > M,(x). 

Let S = (X, r  be a situation. We shall say that the situation S is stable if for  
every situation S' = (X, ~b', g )  and every capture q the situation S' is not better than 
the situation S for every x ~ X; otherwise the situation S is unstable. 



134 z. PAWLAK 

The following theorem is true. 

A situation S = (X, ~b,/~) is stable if and only if card ( X ) = 2 ,  g (x l )= /~(x2)  and 
(xl, x2) e R + where X = {xl, x2}. 

One can show by simple computation the following (sad) theorem. 

For  every unstable conflictless situation S = (X, ~b,/~) there exists a conflict situation 
S' = (X, ~b', ~)  such that S' is better  than S for every x e X~, with respect to every 
q > ~(x) .  

Proof is by simple computation. 

EXAMPLE 

Let S = (X, ~b,/~) be a conflictless situation with X = {x~, x2, x3} and ~(x~) = 1,/~ (x2) = 1 
and ~ ( x 3 ) =  1, and let the capture q =6.  

If the capture is shared among objects without "war"  the new strength of objects 
will be ~' (Xl)=  3, ~ ' (x2)= 3,/~'(x3) = 3. 

If two objects, say xl and x2 make a coalition against object x3, then I~"(x~)= 3.5 
and / , 1 , " (X2)  = 3"5. 

Thanks are due to Professor J. Log and Dr A. Wieczorek for valuable comments and discussions. 
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