BULLETIN DE L'ACADEMIE
POLONAISE DES SCIENCES
Série des sciences techniques
Volume IX, No. 8 — 1961

AUTOMATIC COMPUTERS

Realization of Memory of Partial Results
in Certain Parenthesis-free Formalisms

by
Z. PAWLAK

Presented by P. SZULKIN on February 25, 1961

The aim of this paper is to compare certain two parenthesis-free formalisms
from the standpoint of their particular usefulness for mathematical machines.
As criterion the way of localization of partial results in the memory was assumed.
Obviously, this criterion does not exhaust all characteristics of formalisms, which
decide of the usefuiness of the latter to realization in mathematical machines. The
assumed characterization seems, however, to have some practical advantages and
the investigation of formal systems from this point of view may be justified.

1. Definition of languages Z; and L,

As arithmetical functions we will consider in this paper functions defined by
two-argument initial functions, namely addition, subtraction, multiplication,
division and, moreover the rule of substitution.

We shall call the tree T set (7)), of symbols of dyadic operations d1, 62, ..., d» and
the set a (T) of letters ay, ay, ..., agnyq Of a fixed alphabet 4, such that:

i. For each d;€d0(T) there exist such as,, as,, a;€a(T) called left argument of
operation &;, right argument of operation 0; and result or output of operation,
and denoted by a;, = L(d;), a;, = R(d:), a;, = O(d;) respectively.

ii. To each letter aze a(T) corresponds at least one symbol of operation 6;€d(T),
such that a; = L(§;) or a; = R(J;) or a; = O(9;).

iii. There exists exactly one such d;€(7T), that for none ajea(7T) does not hold:
a; = L(0;) and a; = R(d;). a; will be called either final result or output of the tree
T, d; being called final operation of the tree 7.

If a0; = O(d;), then we call a; a distinguished symbol of alphabet 4, and will
be denoted by asterisk.

If a=0(d;) and a = L(J), then we write d;— 0;.

If a=0(5;) and a = R(J;), then we write d; = 0;.

[487]

488 Z. Pawlak

The tree 7" will be called “subtree” of the tree 7

i. if 8; € 8(T), then d;€6(T),

ii. if agea(T’), then ae a(T),

iii. if oz, oy,, @, are the left and right arguments and the results of operat-
ion &; in the tree T, then s, ai,, a;, are also the left and right arguments and
the result of operation d; in the tree T.

If T is the subtree of the tree T, then 7—T" is also a tree.

If T’ is a subtree of the tree 7, and §; — a final operation of the tree T, then
we denote 7" by T (1)

Let us define two systems of numerations Ny and Ny, of operations of the tree,

Numeration N;. To each symbol of operatlon 8; we associate number Ny(8s),.
according to the following rule:

i. if & is a final operation of the tree T, then Ny(d:) = 1:

i. if 8; = &;, then Ny(8:) = 2N1(6y),

iii. if 8; — dy, then Ny(6) = 2N1(8p)-+1.

*

\ / \
TRER /S h >\

2 £ e ﬂ
deef — b x - gh--as/en - kxx v ghtef —d#[xx —botan wxx
Fig. 1. Language L, Fig. 2. Language L,

Numeration N,. This numeration will be also called the L ukasiewicz numeration:

i. if 8;is a final operation of the tree 7, then Np(ds) = 1.

i, if §; - [3]', then Nz(éz) = Nz(aj)-{—l,

itl. if §; = &, then N (8;) = Max (T(65) — T(:N+1*).

If Ny(8)) > Ni(8), then we shall write §; & d;.

If N(d;) > Na(8;), then we shall write &; > > 8;. Sequence On azn+i @20 0n—1
Gpn—1 Qan_s ... 1 a3 az ¢y will be called a formula in Ly, if for eachi < #, §;41 & d¢and

*) Max (T) denotes the greatest number N(d;) of operation d; in the tree 7.

Realization of Memory of Partiq; Résu

Certain P“Tenthesia‘—]‘w@ Formalisms 489

- R

“2i+1> @i are appropriately the lef o, rightyargument of operation d;. Sequence
Sn (12?L+1 257 611*1 ayn—1 %2n—2 ... 51 a3 a, i W 1be called formula in L, if for
cach 1 <<n, diyy oo §; and @2i41s i are left and Tight arguments of §,.

The language I, may be considered as 5 cortain modification of the known
parenthesis-free Eukasiewicz’s symbolism. Simple examples of trees and formulae
in both these languages are given in Figs. 1 and 2, .

It can be shown that for computation of an arbitrary arithmetic formula, contain-
ing n dyadic operations, written down in the language I, , at least E(n+1/2) locations
in the memory for partial results are required, whereas computation of the same
formula written down in the langugae L, needs at least Iny(n+-1) of memory locations.
E denotes the whole part.

2. Realization of the memory of partial results by means of languages L;, L,

The memory of partial results may be considered as a generalization of an ac-
cumulator in a one-address machine. In both these languages, partial results may
be automatically located into the memory of partial results and also taken up in
the same way in the course of computing of the formula by means of the machine —
setting of addresses, by a programmer is not needed here.

We may quote here several possibilities at design of the memory of partial
results in both aforesaid languages.

In this paper we will discuss only these possibilities which seem to have certain
practical applications. The choice of a proper organization of the memory depends,
-of course, not only upon the formalism used but also is determined by the kind
-of the memory (e.g. ferrite, drum or delay-line-memory).

In the language L; partial results can be placed into consecutive positions in
the memory in the course of computing, and they are taken up in the same sequence,
in order to perform computing. This property enables numerous, different solutions
of the memory of partial results. Some of them are discussed in [1}—[3]. The solu-
tions given require » locations in the memory of partial results, provided there are
not more than F (n-+1/2) partial results. Thus half of the memory has not been
utilized.

If the machine contains a great, and quick memory, ferrite memory for instance,
where the whole formula is located in the course of computing, the utilization of
the entire memory is not so important and a certain insignificant loss associated
with it may well be disregarded.

Similarly, if the machine has only a drum memory, usually with high capacity,
then a certain disregard of the memory for partial results is of no importance.

In a case when we deal with a machine having a drum memory and a small
quick memory of partial results the proper capacity of the quick memory is of prima-
ry importance; in a case when the language L, is used it may amount to E(n-+1/2).
The memory of partial results may then be built similarly to the shifting register
of numbers under the condition that now the delay-lines will store not only one
bit, as is done in the register, but the whole number (partial result).

490 Z.Pawlak

In the language L, the least possible number of locations for partial results
amounts to Inp (n--1). Then, the algorithm of localization of partial results is
as follows:

i. Insert the first partial resuit in the location No.i.

ii. If not one of the arguments of operation executed is a partial resulit, then
the result of operation should be put in the successive location.

iii. If one of the arguments of operation is a partial result, then take as its value
the last number written in the partial results memory, and write the result of opera-
tion in the place of the number just taken.

iv. If both the arguments of operation are partial results as their values, then
take two last numbers written in the partial results memory and write the result
in the place of the last but one number in the memory of partial results; erase the
last number.

The algorithm under consideration may be used in any memory. It is particularly
advantageous for small machines with drum memory and with small quick memory
for partial results. Realization of the memory of partial results by the algorithm
given is not difficult.

Broadly speaking, the Lukasiewicz symbolism modified is more convenient
in practical application for mathematical machines than the symbolism L, for
it requires a smaller memory of partial results than does the latter, and it is also
easier in use than the symbolism L;. On the contrary, in less complex machines,
namely, these similar in construction to B—100 (see [3]) the language L, is simpler
in technical realization than the previous one.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES
(INSTYTUT MATEMATYCZNY, PAN)

REFERENCES

[1] Z. Pawlak, Organization of the address-free digital computer for calculating simple arithme-
tical expressions, Bull. Acad. Polon. Sci., Sér. sci. techn., 8 (1960), 193.

2] — , Organization of address-free computer with separate memory of partial results,
ibid., 9 (1961), 123. ’
3] — , Organization of address-free computer B-100, ibid., 9 (1961), 229.

