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1. Introduction

We know from experiment that deformation of a body is associated with a change
of heat its content. The time varying loading of a body causes in it not only displacements
but also temperature distribution changing in time. Conversely, the heating of a body
produces in it deformation and temperature change. The motion of a body is characterized
by mutual interaction between deformation and temperature fields. The domain of science
dealing with the mutual interaction of these fields is called thermoelasticity.

Owing to the coupling between these fields, the temperature terms appear in the
displacement equations of motion, and the deformation terms — in the equation of thermal
conductivity.

The coupling between deformation and temperature fields was first postulated by
J. M. C. DunAMEL [1], the originator of the theory of thermal stresses who introduced
the dilatation term in the equation of thermal conductivity. However, this equation was
not well grounded in the thermodynamical sense. Next, an attempt at thermodynamical
justification of this equation was undertaken by W. VoiGt [2] and H. JEFFreYs [3]. How-
ever, as recently as in 1956, M. A, Bior [4] gave the full justification of the thermal
conductivity equation on the basis of thermodynamics of irreversible processes [5].
M. A. Bior also presented the fundamental methods for solving the thermoelasticity
equation as well also variational theorem.

Thermoelasticity describes a broad range of phenomena; it is the generalization of
the classical theory of elasticity and of the theory of thermal conductivity. Now, the thermo-
elasticity is a fully formed domain of science. The fundamental relations and differential
equations have been formulated. A number of methods for solving thermoelasticity equa-
tions and the basic energy and variational theorem have been developed. Some problems
concerning the propagation of thermoelastic waves have been solved.

It is known, that research in the field of thermoelasticity was preceded by broad-scale
investigations within the framework of what is called the theory of thermal stresses. By
this term we mean the investigation of strains and stresses produced by heating a body,
with the simplifying assumption that the deformation of an elastic body does not affect
the thermal conductivity.

Progress in Thermoelasticity, VIIIth European Mechanics Colloquium, Warszawa [1967.
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In this theory, originating from the beginnings of the elasticity theory and recently
being intensively developed owing to its growing practical significance, the classical eqa-
tion of thermal conductivity, not containing the term associated with the body deforma-
tion, has been used.

Elastokinetics has been developed simultaneusly with the theory of thermal stresses.
In this case, then has been introduced the simplifying assumption that heat exchange
among body parts, caused by the heat conductivity, is so slow that the motion can be
regarded of as an adiabatic process.

The domains referred to here now constitute a particular case of the more general
theory—namely, of thermoelasticity. The particular theorems and methods of the theory
of thermal conductivity and of the classical theory of elasticity are comprised in the general
theorems and methods of thermoelasticity.

Note that solutions obtained within the framework of the thermoelasticity differ
slightly from solutions of the classical theory of elasticity or the theory of thermal con-
ductivity. The coupling between the deformation and temperature field is weak. But the
qualitative differences are fundamental. This, is seen even if, using the examples of elastic
waves within the framework of elastokinetics, only undamped waves appear. Thermo-
elasticity is of fundamental significance in those cases in which the investigation of elastic
dissipation is a principal aim. The meaning of thermoelasticity consists principally in re-
cognizing and generalizing the value of this theory.

In the present paper, which is of survey character, attention is focused on foundations
of thermodynamical theories, on differential equations of thermoelasticity and more
important methods for solving them, and on general energy and variational theorems.

Less attention is devoted to solving concrete problems, and the reader is referred to
literature listed at the end of the work. In the function relations and equations, we shall
* apply the index tensor notation in the Cartesian system of coordinates.

2. Fundamental Assumptions and Relations of Linear Thermoelasticity

In the present section, we shall consider homogeneous anisotropic elastic bodies. For
these bodies, we shall derive general relations and extended equations of thermal conduct-
ivity, and subsequently, we shall deal with a homogeneous isotropic body which will be
the subject of the further sections of the present paper.

Let a body be in the temperature 7, in an undeformed and unstressed state. This
starting state will be called the natural state, assuming that entropy equals zero for this
body. Owing to the action of external forces—, i.e., body and surface forces—and under
the influence of the heat sources and heating (or cooling) of the body surface, the medium
will be subjected to deformation and temperature change. The displacements u will appear
in the body and the temperature change can be written as 0 = T'—T,, where T is the
absolute temperature of a point x of the body. The temperature change is accompanied
by stresses gy, and strains ¢,,. The quantities u, 0, ¢,;, o, are the functions of position x
and time ¢.

We assume that the temperature change @ = T— T, accompanying deformation is
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small and increase in the temperature does not result in essential variations of material
coefficients either elastic or thermal. These coefficients will regarded as independent of 7.

To the introduced assumption |0/T,| < | let us add others concerning small strains.
Namely, we assume that second powers and products of the components of strains may
be disregarded as quantities small compared with the strains &;;. Thus, we restrict further
considerations to the geometrically linear thermoelasticity. The dependency among strains
and displacements is confined to the linear relation

|
(2.1) 8y = ‘i—(“:.ri‘“j.t)-

It is known that strains cannot be arbitrary functions, they must satisfy six relations,
called the compatibility relations

(2.2) it i —Epik—Cm =0, 1, k,1=1,2,3.

The main task becomes that of obtaining state equations relating the components of
stress tensor g;; with the components of strain tensor &; and of temperature 0.

Let us note that the mechanical and thermal state of the medium is, at a given time
instant, completely described by the distribution of stresses o;; and temperature 0. We
hence conclude that for the isothermal change of state (7' = T}), we encounter a process
which is elastically and thermodynamically reversible. However, in processes in which
temperature changes take place, we observe two interrelated phenomena—namely, the
reversible elastic process and the irreversible thermodynamical process. The latter is
caused by the spontaneous and thereby irreversible process of carrying the heat by means
of thermal conductivity.

Thermoelastic disturbances cannot be described by means of classical thermodynamics,
and we have to use the relations of the thermodynamics of irreversible processes [5, 6].

The constitutive relations,—this is, the relations between the state of stress, state of
strain and temperature, are deduced from thermodynamical considerations, taking into
account the principle of conservation of energy and the entropy balance [4-6]

(2.3) :?t f(U-I— ; ov; v,)dV fX,ujdV+ fp;vjdA fqin;dA
(2.4) —-_dv_ fq‘"’ dA+ f@dV
vV

Here U is the internal energy, S is the entropy, X; the components of the body forces,
pi = o n; the components of the stress vector, ¢; the components of the vector of heat
flux, n; the components of the normal to the surface 4. Further, v, = du,/dt and the
quantity @ represents the source of entropy—a quantity always positive in a thermody-
namically irreversible process.

The terms in the left-hand side of the Eq. (2.3) represent the rate of increase of the
internal and kinetic energies. The first term of the right-hand side is the rate of increase
of the work of the body forces, and the second the rate of increase of the work of the
surface tractions. Finally, the last term of the right-hand side of the Eq. (2.3) is the energy
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acquired by the body by means of the thermal conductions. The left-hand side of Eq. (2.4)
is the rate of increase of the entropy. The first term of the right-hand side of the Eq. (2.4)
represents the exchange of entropy with the surroundings and the second term, the rate
of production of the entropy due to heat conduction.

Making use of the equations of motion

(2.5) O'J;_1+X;= Qif‘l-, .‘,j= 1,2, 3,

and using the divergence theorem to transform the integrals, we arrive at the local relations
- 3 : ; dqii , 4T,

(2.6) U=o,e—411» S=0- ,}, + T2 -

Introducing the Helmholtz free energy F = U— ST and eliminating the quantity ¢, ,
from the Eqs. (2.6), we obtain

. 5 - ’T
(2.7) F: o’jlnjl_TS_T((ﬂ-F ff:fz_.!_).

The dot above the function denotes the derivative of this function with respect to time.
Since the free energy is a function of the independent variables ¢,;, 7, we have:

. oF . oF .
(28) F= _1‘3_67-; SJ;'l‘ 'a? T
Assuming that the functions @, ¢,, o; do not explicitly depend on the time derivatives
of the functions ¢;; and T, we obtains, comparing (2.7) and (2.8):

dF aF a;T;
4 Rl " —— (“) — —1 .
(2.9) ;i %, S T + 0
The postulate of the thermodynamics of irreversible processes will be satisfied if
©® > 0—i.e., when —7; ¢,/T* > 0. This condition is satisfied by the Fourier law of
heat conduction [5]

(2.10) —qi=kyT; or —q;=k;0,, 0=T-T,.

For a homogeneous and isotropic body, the Eq. (2.]0) takes the form
(2.11) —q;=k0,

Finally, it follows from the Egs. (2.6), and (2.9); that
(2.12) TS = —q;; = k0.

Here k is the coefficient of heat conduction. The first two relations (2.9) imply the constitu-
tive relations.

Let us expand the function F(g;, T) into an infinite series in the neighbourhood of
the natural state F(0, 7):

oF (0, T, OF (0,
@213) F(e,T)=FO,Ty)+ L QT | FOT) p_
dg; aT
L[ 8FO0,Ty) . 3F(0,T,) 92F (0, T) ;
5 [—&’ués“_‘ &y +2 - 9e,;0T G (T=To)+ 5 (T—To) ]+



PROBLEMS OF THERMOELASTICITY [3

From the expansion of F(g;;, T'), we retain only the linear and quadratic terms, con-
fining ourselves to linear relations among stresses o,;, strains and temperature change 0.

Taking into account that for ¢;; = 0, T'= T,, we consider the natural state; it can be
assumed that F(0, Ty) = 0. The, term 0F(0, T,,)/0T will also be equated to zero. Since it
results from equating the Egs. (2.7) and (2.8) that (0F/0T), = — S, therefore for the
natural state, we have

L ()

S0 = =5(0,To) = 0.

Let us now take advantage of the first of the expressions (2.9)

2 2
_a_F ) = oF 0, To) o0*F , To) 9°F (0, To) (T~Tp)-
2Ly -

(2.14) o0&, T) z( de;; 0y 08y " Oe;; 0T

Thus we have obtained the linear relation for small strains which agrees with the as-
sumption introduced [0/T,| < 1.
We should put 0F(0, Ty)/de;; = O in Eq. (2.14) since, for the natural state g ; = 0

T = T, we should have o;; = 0. -
Introducing the denotation
PFO,T) _ FFOT) _ o PFOTy) _
;080 U TagaT MW arz

we present the relations (2.13) and (2.14) in the form:

vl n
(2.15) F(g; T)= 2 Cumﬁusm‘ﬁu Eij 0+ > 0%,

1
(2.16) o= 5 (Cijut Cuaiz) ea—Bi; 0.

Let us note additionally that
aO'U b aﬂ'u =
2.17) (m-) . = Cijki» ( é‘f‘)e = ﬁu-

In the relations (2.16), we recognize Hooke's law generalized for thermoelastic problems.
The Egs. (2.16) are called the Duhamel-Neumann relations for an anisotropic body. The
constants ¢y, f;;, concerning the isothermal state play the role of material constants [7]
The quantities ¢y, are components of the tensor of elastic stiffness.

In the elasticity theory of an anisotropic body, the following symmetry properties of
a tensor are proved:

(2.18) Cijkt = Cjires  Cijt = Cijiks  Cijm = Ctij+

These relations lead to reduction of the quantity of constants from 81 to 21 of mutually
independent constants for a body with general anisotropy.
Let us solve the system of Egs. (2.16) for deformations

(2.19) &) = Siju O+ 0.
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The quantities s;;, are called the coefficients of elastic susceptibility, Also for these
-quantities, the following symmetry relations hold

Sijkt = Sjikts  Sijki = Sijiks Sijkt = Suij-
Let us now consider a volume element of the anisotropic body free of stresses on its
surface. Then, according to (2.19), we obtain for this element:

(2.20) Eu =t le 0 .

The relation (2.20) describes a familiar physical phenomenon—namely, the proportionality
of the deformation of elements to the increment of temperature f. The quantities o;
are the coefficients of linear thermal expansion. The «;; is a symmetric tensor, as follows
from the symmetry of the tensor g;;. It should added that the coefficient of volume thermal
expansion «;; is an invariant.

From the relations (2.16) and (2.19), we obtain the following expressions:

0o, ; do ot
(2-21) (_QE:IL)T= Cijkts (5_%), = _ﬂu = =& Cijrrs (T?'L)' =y

In the further considerations concerning derivation of the extended equation of thermal
conductivity, it will be necessary to present the internal energy and entropy as a function
of deformation and temperature. We have as starting point the total differentials

(2.22) . dU = o;;de;;+TdS,
oS oS
(223) dS = (-E‘)T{fﬁu + (FT)ZG'T
Inserting (2.23) into (2.22), we obtain
[ oS oS
(2.24) du = _T(EJ)T +a, ]deu+T(_‘3T)sz.

The necessary and sufficient condition for the quantity dU to be a total differential is’

o [../105y 0 as
51—.;‘ -T(_aa) +U{}]—E[T(ﬁ)c].

T

From this condition, results the relation
as do;\
(‘a:;;),, i (“ai’*"): =%

or taking into account the second term in the group (2.21)

(2.25) (ﬁ—)r =By

(38,- j

On the other hand, we utilize the thermodynamical relation

(2.26) T(Tg,-)' - (%?T) s
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where ¢, is a specific heat related to unit volume at constant deformation. Substituting
(2.25) and (2.26) into (2.23) and (2.24), we obtain:

C,

(2.27) dS = py;dey+

daT,

(2.28) dU = Uijdgij+TﬁfjdEij+ U,dT.

Inserting the relations (2.16) into (2:28) and integrating the expressions (2.27) and (2.28),
with the assumption that for the natural state (T'= T, &,; = 0, 0,; = 0) there is § = 0,
U = 0, we have:

= )
(2’29) S=ﬁusu+c,log(l+ ""),
Ty

1
(2.30) U= 5 Cim it +To Bijeit+c.0.

In the expression for entropy, the first term on the right-hand side arises from the
coupling of the deformation field with the temperature field, while the second term ex-
presses the entropy caused by the heat flow. The purely elastic term does not appear in
this expression. Thus it results that the deformation process is, in the isothermal conditions,
reversible, and does not cause an increament in the entropy. In the expression (2.30) for
the internal energy, threee terms appear. The first of them is of purely elastic character
it representing the strain work, the last-heat content in a unit volume, the second term is
a result of mutual interaction between deformation and temperature fields.

Let us return to the expression (2.29). In virtue of the assumption |0/T,| <€ 1 introduced,
the function In (1+46/T,) can be expanded into an infinite series and only one term of,
the expansion can be taken into account. Thus, we obtain:

(2.31) S = fisy+ —=0.
Ty

For the internal energy F = U— S7, we have:

1 e
(2'32) Fr -'2— CUHEUEH_ﬁUEU 0— —2—,']'_,0—62
In this way, we have determined the n = —¢,/T,, involved in (2.15).

It remains to interrelate the entropy with the thermal conductivity. In a solid body,
the heat transfer is realized through the thermal conductivity meant as a transfer of heat
from points with higher to those with lower temperature. The equation of thermal con-
ductivity is derived from the principle of energy conservation expressed in the form of
entropy flow. This law, constituting the local formulation of the second principle of
thermodynamics, can be written in the form:

(2.33) TS = —divq, S=-— -il_.—q,-.,.
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Combining the relations (2.33) and (2.10), and differentiating (2.31) with respect to
time, we arrive at the equations:

(2.34) TS =A;Ty,
dﬂu Cy di
(2‘35J TS Tﬂ.j ?O‘ T —d—r" .

Comparing these equations yields the cquation of thermal conductivity:
(2.36) 2ij T = Tﬁuau-k St TG 0=T~T,.

Let us note that this is a nonlinear equation on account of its right-hand side. Putting
T = T, in the right-hand side of (2.36), we linearize this equation. Finally, we obtain:
(2.37) 4ij0,,—c,0 =Ty Bijé,;=0.

In this extended equation of thermal conductivity, the term T, f;; &, appears charac-
terizing the coupling of deformation field with temperature field. If sources of heat act
in the body, we should add to (2:34) the quantity which dctcrmmes the amount of heat
produced in a unit of volume and time:

TS = Ay T+ W
to Eq. (2.37), in the case of the appearence of a heat source in the body, is extended to
the form:
(2.38) 2i;0,,—c,0—ToPijéy= —W.

On the basis of the Duhamel-Neumann relations derived for an anisotropic body, we
shall easily proved to isotropic body, applying the following relation;:
Cipa = U [0p 0+ 0,05 ]+ 400k,
(239) S.Uki' = ‘u' [6Ik 6jl+5fl 6]&] +)"5U 5“ ’
' Biy=170i, o;=0,0.
Here, p, A are Lamé’s constants for an isothermal state, and
y =0CBA+2p)a,, ,u'=i, A= - £ .
4u 2u(34+2p)

The quantity o, is the coefficient of linear thermal expansion. In this way, the relations
(2.16) and (2.19) transform in to the Duhamel-Neumann relations for an isotropic body:

(2.40) 01 = 2418+ (A — v0) 3y,
(2.41) 8y =0, 00,;+2u' 0,4+ X004

For an isotropic body we have: ;; = Ao J;;.
Thus, the equation of thermal conductivity (2.42) assumes the form [4]:

or Aog.jj_'c:g—Tﬂ?ékk= “"‘W,

L 5
(2.42) 0= 0= — 2,
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where

) T, W
K= s ""_i; ) Q_T

(1]

Let us give, further, the expressions of U, F for an anisotropic body. We obtain:

U =+ oyt - ey(0+2T5)+6,0,

)
(2.43) Fise iay b el LR
. = MEjj&j 3 e T, s
0
S=?€+Cz?0s e = ey

The equation of state and the equations of thermal conductivity derived in this section
should be joined with the equations of motion of a solid deformable body. In this way,
we shall obtain a full set of thermoelasticity equations.

Note fact the coupling of temperature and deformation fields vanishes when external
forces or heating the body is stationary. In this case, the time derivatives disappear in
the equation of thermal conductivity, and the Eq. (2.42) transforms into Poisson’s equation.

3. Differential Equations of Thermoelasticity and Methods for Solving them

The full set of differential equations of thermoelasticity is composed of the equations
- of motion and the equations of thermal conductivity. The equations of motion:

(3.1) o+ X; = eli(x,t), xeV, >0,
can be transformed, making use of the Duhamel-Neumann ‘equations,
(32) 0'u=2ﬂgu+(k€kk_'yﬂ)6u, er-i—.Z', > 0,

and of the relations among displacements and deformations
1
(33) 8“-= T(ui.j‘f'uj‘;), XEV+Z, t>0,

into the three equations containing displacements #; and temperature 6 as unknown
functions

(3.4) pug i+ A+ @ uy g+ X, = ot +y0,;, xeV, t>0.
The above equations and those of thermal conductivity
1. Q
3.5 -0 =iy, = — =
(3.5) 0, rcﬂ Nty = xeV, t>0,

are coupled. Body forces, heat sources, heating and heat flow through the surface envelop-
ing the region, and initial conditions are the causes of arising both displacements and the
temperature accompanying them in a body.

-Boundary conditions of a mechanical type are given in the form of either given dis-
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placements ; or loadings p; = 0;; n; on the surface 2. Thermal conditions can, in a general
way be, written in the form

(3.6) ot--gg-+ﬁﬁ=f(x,t), xe, >0, af=-const,

determining the heatexchange through the surface X. If f = oo, then the temperature ( on
the boundary is equal to zero; if @ = co, then we have the case of the surface X thermally
isolated. The initial conditions suggest that at an initial time instant—e.g, for t = 0—
displacement w,, the velocity of these displacements, and temperature are the known
functions

(37) H[(X, t):zﬂ =fi(x) ] &I'(x’ t)|=0 == gi(x) ’ H(X, {)1=0 =h (x) L)

The system of Egs. (3.4) and (3.5) is greatly complicated and there is an obvious
tendency to lead this system to a system of simpler equations—viz., wave equations.
The necessary simplification is obtained by decomposition of the displacement vector and
the vector of body forces into a potential part and a solenoidal part. Substituting then,
into the Eq. (3.4) and (3.5) the formulae:

(3.8) =D +€uv, Xi=o0@+Suxns),

where @ and # are the scalar functions, whereas y; and y; are vector functions, we lead
the thermoelasticity equations to the following system of equations [8]:

(3.9) CRD=mlm = —:;a,
1

1
(3.10) D2yi= =5 %>

2

; Q A+42pu\112 w2 7

3.11) DO—pVidh=— =, =( ) , ¢ =(—-) , m=—1_.
( ) n = 1 o 2 g 7 %

The following denotations are introduced here:

1

2
a

The Eqgs. (3.9) and (3.11) are coupled in a direct manner. Elimination of the function 0
leads to the equation of a longitudinal wave:

Ol =V*=

i G
= % 2 e —_—
o, a=12; D=V*-—03, 8=

(3.12) (012D —nmd,V2)® = — -”’K—Q = —:; Do.
1

The Eqgs. (3.10) describes a transverse wave. Let us note that the functions @ and v,
are joined mutually through boundary conditions which will be expressed, in every case,
by displacements u,;, by derivatives of these functions, and by temperature 0.

Eliminating the function @ from the Egs (3.9) and (3.11), we obtain the equation:

(3.13) (012 D—nmd, V) 0 = —_‘:’:_Df ——élﬂa, V29,
1
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We see that the Egs (3.12) and (3.13) have the same form. The structure of these for-
mulae, which will be discussed later, indicates that we are considering a wave damped
and subjected to disperssion. In an infinite thermoelastic space, the longitudinal and
transverse waves propagate independently of each other. Let us assume that heat sources Q
and body forces X; = p9d, are the source of motion. Under the assumption that y;, = 0,
and that initial conditions connected with the Eq. (3.10) are equal to zero, we have y, = 0
in the whole space.

In the infinite thermoelastic space, there will arise only longitudinal waves of dilatation
character.

Taking into account (3.2) and (3.8), we have:

ui=§6‘l- E.;qu’_u, Ekk=vzd),
and
O = 24 (dﬁ.u — ‘su‘p.u) i Qafj(gb._ ?).

If in the infinite space the body forces X; = g€, y,.; act, whereas Q@ = 0, 3 = 0 and
D(x,0) = 0, &(x,0) = 0, then only the functions y, are different from zero, but @ = 0,
0 = 0 in the whole region. Only the transverse waves are propagated and their velocity
is ¢, = (u/0)'/*. These waves are not accompanied by heat production.

Let us observe that for transverse waves we have:

u; = Ef}k”!’k.j’ Yk =0, = 0, Gy = 2}{3” I=,”(u,-.j+lfj_f).
In a bounded body, there appear simultaneously, in principle, two kinds of waves.
The solution for the Egs. (3.10) and (3.12) will be constructed of two parts—viz., of the

particular integrals of these equations ®°, y{ and of the general integrals of the homo-
geneous equations:

(L3 D—qmd, VHP' =0, [D3p;=0,

where the functions @' and | should be so chosen as to satisfy all boundary conditions.

The next method used for solving the differential equations of thermoelasticity is that
of disjoinirig the equations which consists in leading the Eq. (3.4) and (3.5) to a system
of four equations decoupled. Only one unknown function appears in each equation.
Presumably, this method was first used by HiLBerT [9] for the differential equations of
optics. A certain variant of it in the operator form developed by G. MoisiL [10] was
applied for the quasi-static equations of thermoelasticity by V. IoNescu-CAziMIR [12]
S. KaLskr [11] has disjoined the dynamical equations of thermoelasticity in a different
way. This result was repeated, in a different manner, by J. S. PosTrRIGATZ [13] and
D. RuDIGER [14].

We shall present only the final results, of this method omitting details. We introduce
one scalar function ¢ and one vector function ¢;, and by means of them we express dis-
placement and temperature as follows

(3.14) u.‘=(Qaij—ralaj)q7j+yﬂai1}”a
(3.15) 0 =10,0; 03 p;+(1+a) Div,

2%
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where
Q= (14a) 3 D-yond,V*, I'=aD—yono,,
a=@A+Wu, Yo=17lu.

Substituting u; and 0 into the Egs. (3.4) and (3.5) we obtain four already decoupled
equations for the functions ¢; and »

X
(3.16) O3 (0F D-nmd Y g+ — 5 =0,
1
(3.17) (O3 D—nmd, vy + —Qf =0
Kcyo

To these equations, we should add boundary and initial conditions. In the boundary
conditions, there appear, of course, the functions ¢, and y. The simplicity of the differential
Egs. (3.16) and (3.17) is, however, ransomed with the complicated form of boundary
conditions. Therefore, the Eqs. (3.16) and (3.17) will be applied, first of all, in a infinite
space, where boundary conditions in the strict sense do not exist and are replaced by the
requirement of zero values of displacements and temperature in infinity. This postulate
is fulfilled if distribution of body forces and heat sources is restricted to a finite region.

There is an interesting way of solving the differential Egs. (3.4) and (3.5) into a system
of three differential equations for displacements u;. We shall present it briefly in reference
to an infinite space with the assumption of homogeneous initial conditions. We write the
conductivity equation in such a form that the term containing dilatation velocity is on
the right-hand side of the equation

1 .
(3.18) ﬂr.U—‘ ;‘9=-‘]u"-j.

Regarding the function ni; ; as a heat source, we can give the solution of the Eq.
(3.18), using the Green’s function valid for the classical equation of thermal conductivity:

1

G e
i I

G = -~ Sx=-530),
(3.19)

2

1 _9 L
G(x§1)= 8 () 2 exp (ﬂr) .

Inserting the solution of the Eq. (3.18)

0(x,t) = —nK fd‘c f G(E,x,!-—1)%divu(§,t)dlv’(§), p* = (&—x)(€—x).

into the displacement Egs. (3.4), we arrive at the following differential-integral equation:

(3.20) uV2u+(A+ p) grad div u—pu

= —nky grad fa"c fG(E,x,t—t)% divu(g,7)dV) ().
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If the displacement vector is decomposed according to the formula (3.8), then the
Eq. (3.20) disintegrates into the system of equations:

1@

(3.22) 03y =0.

The differential-integral Eq. (3.21) is equivalent to the Egs. (3.9) and (3.11).

In certain cases, especially when boundary conditions are given in terms of stresses,
it is useful to utilize the equations analogous to Beltrami-Michell equations. These equa-
tions for uncoupled problems have been derived by J. IoNAczAk [16], for coupled prob-
lems by E. Soés [17]. Another method of solutions in terms of stresses in reference to
a plane state of deformation was given by W. NowAckr [18].

If the variability of body forces, heat sources, surface loadings and heatings is slow,
then the inertial ferms in the equations of motion can be deleted and the problem can
be regarded as quasi-static. The quasi-static equations of thermoelasticity

: 9
(3.21) 2o+ -};-’—fdz fG(E,x,I—'c)-E;c—V’fﬁ(g,t)dV(E)=0,
0 v

(3.23) pug A+ pu; i+ X =90,
1. y 0
(3.24) G,jj_ K—O—)?UJ‘_J' T 'h__,

continue to be coupled. A solution for this system of equations is particularly simple for
an unbounded thermoelastic medium in which act heat sources Q and body forces of the
potential type X; = o9 ;.

By introducing the thermoelastic potential of displacement @, we obtain, from (3.23)
and (3.24), the disjoined system of equations [15]:

vio-to=-2_ 5 vio=me- 2,
K K} il

(3.25)
Ky =——, &=nmK.

The temperature 0 is determined here from a parabolic differential equation whose structure
is similar to the classical equation of thermal conductivity.

For disjoining the system of Eqs. (3.23) and (3.24) we can also apply the manner
presented previously (Egs. (3.14) to (3.17)) which consists in disregarding the inertial
terms appearing there. The mode given by M. A. Bior [4] is also interesting.

By introducing the expression for entropy
c&

(3.26) S = you+ 3+

0,
into the Eqgs. (3.23) and (3.24) with the assumption Q = 0, X; = 0 we obtain the system
of equations:

(3.27) ‘ sy i+ (A p+8) uy, = YBS
(.28) 8, —— I

I ) 0
vJJ »
Kz c,

A+2pu

§ ., B _ '
S=0, d=yid f= ’Cl+2,u+ﬁz

Ka
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These equations are disjoined and the entropy fulfills the parabolic equations. The
solution of the Eqs. (3.27) can be written in the form of Papkowich-Boussinesq potentials

A4+2u+0d
(3.29) ;= —(Wo.f+xj‘Pj)sz+B% B=2 Am )
with the assumption that the vector function y; is harmonic. To determine the functions ¢,
y, We have at our disposal the following equations:

1
(3.30) V=0, V=0 (Vi--0)w =0,
2

where y, = yo+1o.

After determining the functions y,, %, and taking into account boundary and initial
conditions, we shall obtain the displacements from the formula (3.29).

As was indicated at the outset, the thermoelasticity comprises complete division of
directions hitherto developed so far separately: classical elastokinetics assuming that the
motion operates in adiabatic conditions—i.e., without heat exchange between particular
parts of body. Since, for an adiabatic process, we have § = 0, we obtain from the formula
(3.26) 0 = —nKéy or after integrating and assuming homogeneous initial conditions:

(3.31) 0= —nrKey.

This equation replaces that of heat conduction.
Inserting (3.31) into (3.4), we obtain the displacement equation of classical elasto-
kinetics
(3.32) Bsthy, i+ A+ p) uy i+ X, = oy,
where A, = Ar+yrhr K,  pr = .

The quantities ,, g, are the Lamé constants measured in adiabatic conditions. The
equations of state take after substituting (3.31) into (3.2), the form:

(3.33) ij‘:ztusnij—f“)'séuakk'

LY

4. The Dynamic Problems of the Theory of Thermal Stresses

In the theory of thermal stresses in which the influence of body surface heating and
the action of heat sources on deformation and the stress state of a body is considered
the influence of the term appearing in the thermal conductivity equation on the body
deformation is assumed to be very small and in practice negligible. This simplification
leads to a system of two equations independent one of the other

(4.1) prty i+ Qe+ pr)uj ;= eili+97 0 ;,
1. 0

4.2 st ey ke

( ) G.JJ K 0 K

The temperature 0 is determined from (4.2)—i.e. from the classical equation of thermal
conductivity. Knowing the temperature distribution, we are able to determine the displace-
ments from the Eqgs (4.1).
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Decomposing the displacement vector into its potential and solenoidal parts

(4.3) Uy =@+ € Y.,
we arrive at the system of wave equations:
(4.4 0}2=ml, By,=0, i=123
Eliminating temperature from the Eqs (4.2) and (4.4),, we obtain
4.5) OiDe = - <20, iy =0,
where
S
K

The methods for solving the system of Egs. (4.1) to (4.2) have been elaborated in detail
[19-22].

The first of these equations refers to the longitudinal wave and the second to the
transverse wave. It is evident that in an infinite space under the action of temperature
(heat sources), only longitudinal waves arise. In a finite region, both types of waves occur,
since the functions @ and y,, are connected by means of the boundary conditions.

There exist also other methods of solving the system of Egs. (4.1). Representing the
solution of the Egs. (4.1) in the form

(4.6) u; = uj+uy
where

@) W=0, uy= 32

A+
O3 ¢ 01— _H_p. 0;9;9;,

we have to solve the system of equations:

(4.8) Oi®=m0, Oi03¢=0, i=123.
Here, uj = @, is the particular solution of the non-homogeneous system of equations
(4.1) and ¢ is the solution of the homogencous system:

4.9) #Vzui’ +(A+w u:c'.ki = Q;J't” .
The vector ¢ is the familiar function of M. IAcovACHE [23].

It is also possible to determine the thermal stresses on the basis of the differential
equations in stresses. They can be deduced by means of an appropriate transformation
of the displacement equations [24].

Here we have the system of equations:

2(A+p) 1 1 Aoy ..
2 . v — N —— r—-
) 10t 32+2u a""'”+(c§ cf) 3242u Tt
3A+2u 5A+4p P
+2.uf.!t (9.”‘1' WO.H‘EU) - ma,aﬁnﬁ - 0.,
1,j 6=11,2,3,

which should be completed by the boundary and initial conditions.



24 W. NOWACKI

As in the case of stationary problems, we can use the concept of the nucleus of thermo-
elastic strain in order to determine the dynamic thermal stresses. By this concept, we
understand the displacement field w,(x, €, t) produced by the temperature 0* in the form
of the Dirac delta function 0* = (x—E) §(¢).

Denoting by [S*(x, &, #)] the solution of this problem, the solution [ S(x, )] referring
to the temperature field 0(x, r) is given by the formula:

@.11) [Sax,0]= [ dv [ [S*E,x,t—1)]0(E,1)dV ().
4] v
This method of solution is particularly convenient when the temperature field is dis-
continuous as a function of both position and time, so that it does not satisfy the heat
conduction equation (4.2). J. IcNaczak and W. PiEcHocKI [25, 26] obtained by this
method many interesting results.

5. Stationary and Quasi-static Problems

In the case of steady flow of heat, the production of entropy is compensated by the
exchange of entropy with environment. This exchange is negative and its absolute value
is equal to entropy production in a body. In the equations of thermoelasticity (3.4) and
(3.5) the derivatives with respect to time disappear. The Eq. (3.4) becomes

(51) #“I.JJ"I'(A"":H)uk.M:?e.b ‘.:k = 17213-
The temperature 0 appearing in these equations is a known function, obtained by solving
the heat conduction equation in the case of a stationary flow of heat:

(5.2) Va2
K

completed by the appropriate boundary condition.
Assume that the boundary conditions for the Egs. (5.1) are homogeneous. Set

(5.3) u(x)=0, xelZ,, p=0X)n;x)=0, xeZ+7Z,.
The solution of the system (5.1) can be represented in the form
5.4 u; =uj+uy’,

where u; is the particular solution of the non-homogeneous system of Egs. (5.1), and u}’ is
the general solution of the homogeneous system (5.1). The particular solution can easily
be found by introducing the potential of thermoelastic deformation related to the dis-
placement u; by means of [27, 28]

(5.5) uj=ad,.

Substituting (5.4) and (5.5) into the system of Egs. (5.1) we arrive at the system of
equations,

(5.6) . V2D =mb, m= J_.I){Z;

.7) HV2ul 4+ (Aot ) gl = 0.
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The problem has been reduced to the solution of the Poisson equation and the system
of the displacement equations of the theory of elasticity.
In an infinite elastic space, the solution of the Poisson equation (5.6) is the final solution:
0(0dV (x)

(5.8) o) = — - f il

Here R(x, E) is the distance between the points x and . The displacements, deformations
and stresses are expressed in terms of the functions @ by the relations:

5.9 u=92,, &= Qs.us Gy = 2u (‘p.u*éu D i) -

In a bounded body, the function @ can satisfy at most a part of the conditions, and
therefore an additional solution is always necessary. The solution of the Egs. (5.1) for
abounded body can be represented in various forms. If we apply to the solution of Egs. (5.7)
the Papkovitch-Neuber functions, the displacement is assumed in the form:

(5.10) u=grad ®+grad (p+R-yw)—4(1—-v)y,
where the functions ¢, y, satisfy the harmonic equation and the function @ the Eq. (5.6).
If we introduce the Galerkin functions, then

A+2u d+pu

V2x; 01— u 0;0;%;5

(5.11) =D

where the function @ satisfies the Eq. (5.6) and the functions g, the biharmonic equations:
(5.12) ViV =0, i=1,23.

‘In problems possessing axial symmetry with respect to the z-axis, it is convenient to
use the Love functions. In the system of cylindrical coordinates (r, 9, z), we express the
displacement as follows:

_ 0P 0%y 0P 4 0%y
(5.13) U, = a";-' — ‘a‘;‘é‘;, Hz-—~'—a'£—+2(]."\-')v —87,
here, the function @ satisfies the Eq. (5.6) and the Love function the biharmonic equation:
(5.14) V3V2%x(r,z)=0.

To determine the thermal stresses in bodies of simple shape (elastic space, semi-space,
elastic layer, etc.), the method of integral transforms has been successfully applied to
the Eqgs. (3.1), [29, 30]. One more method of solving problems of the theory of thermal
stresses is worth mentioning here. It consists in determination of the Green function as
the solution of the equation:

(5.15) V2D¥(x,E) = mé (x—E).

Here, 6 (x—E) is the Dirac delta function. The solution @* of the Eq. (5.15) does not
satisly all boundary conditions and therefore, in the case of a bounded body, an addi-
tional solution #"' = U*(x, E) is needed, which satisfies the system of homogeneous equa-
tions:

(5.16) pV2U+(A+p) Ut =0.



26 W. NOWACKI

Knowing the function uf‘ = Q7+ U}"(x, E), we are in a position to determine the displace-
ments u,(x) produced by the action of the temperature field 0(x). They are determined
from the formula

(5.17) € = [ 0 ut(x.E)dV ().

This procedure is of considerable importance in the case of a discontinuous temperature
field, when the function 0 does not satisfy the heat conduction equation. Discontinuous
temperature fields are encountered in certain specific cases,—for instance, when a part
of the body is heated to a constant temperature 0(®) and a part to the temperature 69,
A discontinuous temperature field is also obtained in the case of a body with different
thermal properties and uniform elastic properties, heated to a constant temperature 0.

The functions @*, uf have been determined for bodies of simple shapes, such as
elastic semi-space, sphere, infinite cylinder, layer, etc. [31, 32, 33].

Another method for the determination of the thermal stresses consists in making use
of the Beltrami-Michell equations, in which in accordance with the body forces analogy,
the body forces are replaced by the quantity —y0 ;. Thus, we obtain the system of equa-
tions:

2(A+p) 3442u
(5.18) Vo, + B ESTS O, iy + 21, (G.u+ At 5!10.kk) =0,
L k=1,2,3.
Except for a certain few cases, these equations for spatial problems have not been widely
applied.

On the other hand, the above method has been successfully used in two-dimensional
problems, and in problems of the plane state of stress and strain. Introducing the Airy
stress function related to the stresses by means of the expressions:

(5.19) Oup = —0,05F+0,,ViF, Vi=0{+0;, of=12,
we obtain after the elimination of the temperature, the equation:
(5.20) ViViF=p0Q,

where for the plane state of stress § = Ev,, while for the plane state of strain f = Eux, /(1 —v).
The Eq. (5.20) should be completed by the boundary conditions for a boundary free of
tractions:

(5.21) F=0, O0Fon=0.

It follows from the Eq. (5.20) and the boundary conditions (5.21) that for a simply
connected region and the plane state of stress we have F = 0—i.c., the body deforms
without stresses. In the plane state of strain, besides the stresses o, given by the formulae
(5.19), there appear the stresses:

(5.22) Oay3 = VW2F—2um.

Consequently, if there are no heat sources in a simply connected infinite cylinder (plane
state of strain), then F = 0 and the only non-vanishing stress is 63 = —2um6f (MUSKEL-
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ISHVILI [35]). In the case of the presence of heat sources and a multiply connected body,
the solution of the Eq. (5.20) can be deduced by using the complex variable functions
(MuskEeLisHVILL [36], GATEWoOD [37]). There is an interesting observation by DusaAs [38]
and TREMMEL [39] concerning the analogy between the Eq. (5.20) and the equation of
deflection of a thin plate fixed on the boundary. It is known that this deflection is described
by the equation:

23 12y =L
(5.23) Viviw N
and the boundary conditions
aw
A 4 4 = — =),
(5.24) w=0, n 0

This ,,plate analogy” makes it possible to make use of the numerous solutions in the
theory of plates to determine the thermal stresses in discs.

Every non-stationary problem of the theory of thermal stresses is a dynamic problem,
but in the case of a slow variation of the temperature in time, the influence of the inertia
forces is negligible and the problem may be regarded as quasi-static, the inertia terms in
the equations of motion being disregarded. Thus, in the quasi-static case we are faced
(assuming that # = 0) with the system of equations:

(5.25) 1V Ut (A ) g = 70,

(5.26) (vz 5 % a‘) P o _Q(_:_'E?_ _

From the Eq. (5.26) completed by the appropriate boundary and initial conditions
we, find the temperature 0 as a function of the variables x, f, and as a known function
it is introduced into the Eq. (5.25). The solution of (5.25) yields the displacements u,(x, 1),
the time however, which appears in the displacements is regarded as a parameter. The
method of solving the Egs (5.25) is the same as for the stationary case. The function
@ (x, r), however, can be determined in a different way, found by J. N. Goopier [28]:

t
b= m;cf Odt+Dy+1D,
4]

here @, is a harmonic function and @, = @(x, 0) is the displacement potential correspond-
ing to the initial temperature 0, = 0(x, 0). The function @, should satisfy the equation:

V2D4(x) = mO(x) .

The stationary and quasistatic problems of the theory of thermal stresses have already
been treated in numerous scientific papers. Important methods of solution and important
papers have been removed in various monographs—{for instand E. MELAN and H. PARKUS
Wiirmespannungen infolge stationdire Temperaturfelder [19], H. PARKUS Instationdre Wiir-
mespannungen [20], B. A. BoLEy and J. H. WEINER Theory of thermal stresses [21], W. No-
WACKI Thermoelasticity [22]; we shall therefore not deal here with particular problems.



28 W. NOWACKI

6. Variational Theorems of Thermoelasticity

We know how important a part is played by the variational theorems in the elasticity
theory with variation of deformation state or stress state. They not only make it possible
to derive the differential equations describing the bending of plates, shells, discs, mem-
branes, etc., bul also to construct approximate solutions. In what follows we shall present
the variational theorem with the variation of deformation state for thermoelasticity. This
method was devised by M. A. Biot [4]. The theorem will consist of two parts; the first
utilizes the d’Alambert principle familiar in elasticity theory:

(6.1) [ayy65dv = [ (X, oit)du,dv + [ p du,d=.

V v x
In this equation, du; are the virtual increments of displacements, d¢,;; the virtual increments
of deformations. We assume that du, and dg,; are arbitrary continuous functions independ-
ent of time and complying with the conditions constraining the body motion.

The d’Alambert principle is valid irrespectively of the body material—i.e. for all
forms of dependency of stress state on deformation state. Supplementing (6.1) with the
equation of state, and introducing the quantity

(6.2) W, = J (.us,-j &+ —’;— Exk a,,,,) dv,

where the integrand is a quadratic form positive definite, we obtain from (6.1) the following
equation:

(6.3) oW, = f(Xi—gif])éu,dV + fp;ﬁui dE-I—}ifﬂée av, e=gy.
Vv z v

The second part of the variational theorem should make use advantage of the laws
governing heat flow. Therefore, we shall utilize the expressions interrelating heat flow,
temperature and entropy:

(6.4) qi= —Aol, *qi,i=STo=?ékkTo+csé-

These relations can be written in a form more convenient for further studies by intro-
ducing the vector function H interrelated with entropy and flow in the following way:

(6.5) S=—H,;, qi=TyH,
Combining (6.4) and (6.5) we obtain:
(6.6) To Hf = _"'R.Q G..I, = To H.l.; = Ce{:l"l" TO yékk .

Let us multiply the first of the Eqs (6.6) by the virtual increment §H,, and integrate
over the body region:

(6.7) f (6‘.;+ —I" I;',) 5H,dV =0.
v

Through transforming this integral and taking into account the second of the relations
(6.6), we obtain the equation:

(6.8) faaedv+ fH SH,dV + f@n 6H(d£‘+yf06edV i)}
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in which is involved the term f 0 de dV identical with that appearing in (6.3). Eliminating
V

this term from the Egs. (6.3) and (6.8), we obtain the final form of the variational theorem:

(6.9) §(W,+P+D)= [ (X;—cii)su;dV+ [ p;6u,d=— [ 6On6H,dx.
v x v
We have introduced here the following denotations:
_ S 2 = To T)2
(6.10) P= T fﬂ av, D= 2, f(H;) dv.
v v
The function P is called the thermal potential, D—the dissipation function. Let us consider,
moreover, the particular cases. If we assume 0 = —nq kg, in the Eq. (6.3), which cor-
responds to assuming the adiabatic process, then (6.3) transforms into
(6.11) 5W, = [ (X, qii))su,dV + [ pydudz,
v z
where
As
(6.12) W, = f (use,j B+ 5 e“am) av,
v

and p,, A, are the Lamé adiabatic constants. The Eq. (6.11) constitutes the d’Alambert
principle for classical elastokinetics.

Let us now return to the general variational theorem of thermoelasticity (6.9) and
assume that the virtual increments du;, dg;;, 0H,, etc. coincide with the increments really
occurring when the process passes from a time instant ¢ to 7+dt. Then

oH, .°

(6'13) 5”; = % dt =1 ‘hs 5H; = -;,j;i d( == HI-(“ 3 6"1192 i ("}'l'p,,df,

and so forth.
Putting (6.13) into (6.9), we obtain:

(6.14) %(K+Cliﬁ,+P)+xT=fX¢uidV+ fp{u; dz+11;-,°h foa,,‘dz,
0
| & P &

where K = -%— f v; v, dV is the kinetic energy, yr—dissipation function, where
vV
0 i 2 QI A
Xt =40 To =] dV =124, T, dv.
v TCI v ’10 TO

The Eq. (6.14) is called the basic energy theorem of thermoelasticity. This theorem
can be utilized to determine the uniqueness of solutions for the thermoelasticity Egs.
[21, 40].

Proceeding in a manner similar to the elasticity theory, we assume that the thermo-
elasticity equations are satisfied by two groups of functions u;j, 8" and u;’, 0. Constructing

the difference between these functions i, = uj—u}’, 8 = 0'—0", and inserting it into the
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Egs. (6.4) and (6.5), we see that these equations are homogeneous and satisfy homogeneous
boundery and initial conditions.

To the functions #;, 0 there then corresponds a thermodynamical body the interior
of which is free of heat sources and body forces, which is not loaded on its surface, and
is in conditions of zero temperature §. The formula (6.14) will answer the question as

to whether or not the displacements #, and temperature § will appear in the interior of
the body. Eq. (6.14) takes the form:

d 0 o 2 B e Y A Ao 2 \s

= il : gl o L — e =
(6.15) 7 f(il U U JLEE 5 Exic Eun + o O)dV T, VI(BJ) dv <0.
v

The integral appearing on the left-hand side of the equation is equal to zero at initial
time instant since the functions i, 0, ;, &, satisfy the homogeneous initial conditions.
On the other hand, the inequality derived indicates that the left-hand side of the equation
either decreases assuming negative values, or is equal to zero. Since the expression under
the integral sign is a sum of the second powers, and the integrand is equal to zero for
t = 0, hence only the second of the alternatives referred to is possible. As a result, we
obtain #; = 0, &; = 0, § =0 for ¢ = 0. Since the stresses Gy, are linearly related to the
‘quantities &;, 0, then also 6,; = 0 for ¢ >0,

In consequence, we obtain:
(6.16) ui=uw', 0=0", oy=0] for 1>0.
Then, there exists only one solution for the thermoelasticity equations.

In the theory of thermal stresses, we disregard the mutual interaction of the deforma-

tion and temperature fields which is expressed by deleting the term yé,, T, in the second
of the Egs. (6.4). Disregarding this term leads to a modified Eq. (6.8). We obtain:

(6.17) $(P+D)+ [ 0n,6H,dZ=0.

The Eq. (6.17) expresses the variational theorem for the classical uncoupled problem
of thermal conductivity. In the theory of thermal stress, we have at our disposal two equa-
tions-viz., the Eqgs. (6.17) and (6.3) in which the function 0 is regarded of as the known
function.

The Eq. (6.3) may be written as follows:

¥

(6.18) [ %= eii=70,) 3u; aV + [ (pi+n,70) b, d.E = 6W,.

Comparing this expression with the virtual work performed by the forces X;', pi* on
the displacements du; in the body of the same shape and volume, and assuming that the
process is isothermal, we have (for 0* = 0):

(6.19) J (Xt~ i) bu,av + [ ptou,ds =5W,.

¥ z
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We have assumed here that the external forces X;", p} are chosen in such a way that
the displacement field , is identical with that produced by the action of the forces X;, p;
and the temperature field 6. Comparing the Eqs (6.3) and (6.19) we obtain:

(6.20) Xi=X—v0,;, xeV; pi=p+ny0, xeZ.

This is known as the analogy of body forces [21]. The relations (6.20) make it possible
to reduce the problem of the theory of thermal stresses to the problems of the theory of
elasticity.

Making use of the analogy of the body forces, we are in a position to state certain
variational theorems for the theory of thermal stresses. Thus, the theorem of minimum
of potential energy generalized to the theory of thermal stresses has the form:

(6.21) 01=0, II= Minimum,
where ) )
m=9,— [ X,u,dv— [ pyu;dZ—y [ Oeyav.
v Za Ty

Here Z, is the part of the surface 2’ bounding the body, on which the tractions p, are
known.

The theorem of minimum complementary work in the theory of thermal stresses has
the form:
(6.22) éI'=0 I'= Minimum,
where

r=ap — [ X v~ [ pyu;dA +u, [ boydv.

v Ly v
Here, ;
a9, = J (#’O'fj Tijt 5 Tnk “nn) av, = 4i;£
vV
Pm e
2u(3A4+2p)°

Z, denotes the part of the surface 2' on which the displacements are prescribed.

Let us now return to the variational principle (6.3). If we assume that the virtual in-
crements ou;, dg;; are identical with the real increments occurring in passing from the
instant 7 to the instant 7+df, and bearing in mind that du; = @, dt = v, dt, de;; = &;; dt,
W, = O, dt, we have:

(6.23) -gr-(fm+1<)= f(X,-—yO.,) 0pdV + J.(pl-+ﬂ.,yﬂ)v;d£', v = ;.
v 2

The Eq. (6.22) constitutes the fundamental energy theorem of the theory of thermal
stresses. From this theorem we can deduce the uniqueness of the solution of the differential
equations of the theory of thermal stresses for a simply connected body, and, moreover
the generalization of the Kirchhoff theorem of the elasticity theory [21].
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The principle of virtual work (6.2) makes it possible to derive the Hamilton principle
for the theory of thermal stresses:

1 t
(6.24) 6 [(U-Kydi=[oLat,
0 ol 1
where
v v £

In the case of conservative forces 6L = —6)) = % du, we obtain from (6.24):
i

T

§ [(U=v-K)dt=0.
0

7. The Reciprocity Theorem

One of the most interesting theorems of the thermoelasticity theory is E. BETTI’s
theorem on reciprocity. Not only does the symmetry fundamental solutions (of Green’s
function) follows from this theorem, but it also provides a basis for developing further
methods for integrating the differential equations of the thermoelasticity theory.

The extended theorem on reciprocity concerning the thermoelasticity problems has
been fully formulated by V. IoNescu-CAzIMIR [41]. The elements of this theorem can,
although expressed in a less general form, be found in works by M. Bior [42].

We shall present the reciprocity theorem in its main outlines emphasizing its numerous
applications. '

Let two systems of forces act in an isotropic body. We assume that inside the body ¥,
the heat sources and body forces operate, and on the body surface the loadings p; and
temperature § = 9 are given. We denote these causes in the abbreviation I = {X,, p,, O, 8},
and the consequences ensuning from them—by the symbol C = {u,, 0}. The second
system of causes and consequences is denoted by I' = {X/, p;, 0", 9}, C' = {u;,0}.
The initial conditions are assumed to be homogeneous. Starting from motion equations,
thermal conductivity equations, and Duhamel-Neumann relations written for both sys-
tems, adding those systems in an appropriate manner and integrating over the region V,
we obtain two equations of reciprocity for the transforms of functions involved in the
two systems: '

(7.1) [ K —Xiayav+ [ G, —pi)dZ+y [ (§e —0'e)av =0,
i x v

(7.2) [(@'0-08"av+nip [ (@'e—0Yav+x [96,-56,)dz=0,

where Y & ’

[~ 2]
a(x,p) = [ u(x, e dt,
0

on so forth.
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The first of these equations arises from employing the equations of motion and of
state, with application of the Green’s transformation. Eliminating from these equations
Lhe common terms, we arrive at:

(7.3) mch (X i, — X)) dV + [ (Bt —p:ﬁ‘)dz,‘]
v 5
=xy [ @0, —00 ydz+y [ (00 - Q'B)dV.
&l v

The Eq. (7.3) should be subjested to the Laplace inverse transformation. After utilizing
the theorem on convolution, we have

+ de(x) f[pe(x,t—r)f%l —p:(x,t—r)-q‘i‘g’f)Jdr}
=y [dV(® [ [Q(x,1-1)0'(x, 1)~ Q'(x, t—7) 0 (%, 7)] d

oy [ dZ®) [ [9/(,1=1)0,,(x, ) =B (x, 1 —1) 0/ ,(x, D] d.

The Eq. (7.4) is valid for both dynamical and quasi-static problems. But in both cases,
the functions u,;, 0 and u;, 0" have different meaning. We have assumed in our considera-
tions that on the surface Z, the loading p; and the temperature 0 = 9 are given. It is seen
from the structure of the Eq. (7.4) that we can assume that on X, displacements and heat
flow are proportional to the gradient of temperature 0, = 9 ,.

The Egs. (7.4) are also satisfied for mixed toundary conditions. The Eq. (7.4) assumes
a particularly simple form for an unbounded body, because, in this case, the surface
integrals vanish.

If we encounter vibration harmonically varying in time X,(x, 1) = X; (%) el*t, p(x, t) =
= pi(x) et»t, and so forth, then the equation of reciprocity takes the form:

14 xio| [(Xtupr=Xitutyav+ [ (ot up*—pi* up) d]
v z

=xy [(#* 04 —0* 01 dZ+y [ (Q*0'*—Q*0%)dV.
r v

We shall derive from the Eq. (7.4) a number of interesting conclusions. Let us assume
that at the point § of the region V, the instantaneous force X; = d(x—E) 6() d;; acts,
and is directed along the x; -axis. If we assume that the boundary conditions are homo-
geneous, the relation (7.4) gives:

ouj€, 8,1 _ duyE.E 1)
ot ot '
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For the heat source Q = 8(x—E)d(¢) and the source Q' = §(x—E') 6(1), we have:

0(&!%"» =10 (E’! E.n 1).

If the concentrated and instantaneous force X; = 6(x—§) d(¢) §;; is applied at the
point , and the heat source Q" = d(x—E') 6() at the point E', then the following relation
is obtained from the Eq. (7.4)

0(E 5 1) = — mc au,(Earﬁ o 1)

Let the heat source @ = d(x,) d(x,) 8(x5—vf) move with a constant velocity v in the
direction of the x; -axis. Assuming that in the system of causes with ,,primes” Q" =
=8 (x—E') 6(t), we obtain from (7.4):

01,263, 1) = f 0(0,0,v7; &1, &5, &3t —T)dr.
2]

The above formula enables determination of the temperature caused by the moving
heat source, making use of the expression for temperature caused by the action of an
instantaneous but not moving heat source.

From the Egs. (7.1), (7.2) or (7.3), we can obtain particular forms of the reciprocity
theorem which concern the classical elastokinetics and the thermal stresses theory.

If we assume that deformation takes place in adiabatic conditions, then we should
put 0 = —nq Key, 00 = —ng e in (7.1). Then, the following equation remains:

(7.5) [ Eiai—~Xizyav + [ (i —pia)dE =0.
v . x

The Eq. (7.2) disappears, since in elastokinetics we assume that heat sources do not exist
in a body and the body surface is thermally isolated.
In the theory of thermal stresses, we disregard the dilatation term in the thermal
conductivity equation. This omission is formally equivalent to putting# = 0in the Eq. (7.2).
Thus, we obtain the equations:

(7.6) [ X —Xiw)av+ [ (pit;—piw)dZ+y [ (0 —6'&)av =0,
v

i I

(7.7 f(Qﬁ;—é’@)dV~x‘J-(ﬁﬁ_’,—5’@,,,)(!2?:0.

The Eq. (7.6) has been derived by W. M. MAYseL [43].

The Eq. (7.7) is the equation of reciprocity for the classical equation of thermal con
ductivity.

We shall, moreover, consider the case in which the causes I = {X,, p;, Q, 9} and
Conscquences C = {u, 0} refer to a coupled problem of thermoelasticity, and the causes

= {X{.pi, 0', 9'} and consequences C’ = {u], 0'}—to an uncoupled problem. Taking
into account the difference in the thermal conductivity equations for coupled and un-
coupled problems
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we obtain instead of the Eq. (7.8) the following equation:

(7.9) [(@0-08"Yav+uxp [0 dv+x [ (90 ,—#0,)dE=0.
Vv v £

Eliminating the term f §'e dV from the Egs. (7.1) and (7.9), we obtain the reciprocity
v
theorem in the form:

(110) wnp | [ Kiwi~Ximydv + [ i —pinydz+y [ e av|
v 5 2
=xy [(#0,-80,) dZ+y [(@0 -0 B)av.
x v

Let us now assume that only a‘concentrated and instantaneous heat source acts in
the system with ,,primes” and boundary conditions are homogeneous. Inserting then
into the Eq. (7.10)

Q' =o6(x-¥)d(), Xi=0, p =0, &=0,

we have:

(7.11) 0 p)+nxp [ 0, p)EXE p)dV (x) = M(E,p),
1.4

where

MEp) = [ QxpIXEp)dVx) —x [ F(x,p)0(x,E, p)dZ(x)

v

_ % [ f pd(x, p) i(x, &, p) dZ'(x) + J f,{x, p) ii(x,E, p)dV (x ] .

Since the functions u;, 0" are known as solutions for the differential equations of the
thermal stresses theory, and the functions @, &, p,, X, are given, then the function M (E, p)
is known. The Eq. (7.11) is a Fredholm nonhomogeneous integral equation of the second
kind in which the temperature @ appears as an unknown function. Also, displacements
can be obtained in a similar manner.

The procedure here presented was proposed by V. IoNescu-Cazimir [41] and applied
for determining the Green’s function in an unbounded elastic region [44, 45].

For the stationary and static problem, we have [43]:

(712) [ X@ui) dV @)+ [ peoui)dE@+y [ 000 W) dV (x)
= [ Xiu0dv 0+ [ pi0u)dE@+y [ 0" () eu(x)dV (X).
14 = Vv

a*



36 W. NOWACKI

Let us consider a particular case of this theorem. Consider a bounded body fixed on the
surface X, and free of tractions on the surface X,: ¥ = X,+ Z,. The displacement u(€)
due to the heating of the body is obtained from the formula following from the theorem
(7.12):
(7.13) (&) =7y | 0x) USx,E)dV (x).
14

Here u} = U® (x,E) is the field of displacement occurringin a body of the same shape
and the same boundary conditions, in the isothermal process 0’ = 0. The displacements U
result from the action of a concentrated force located at the point § and directed parallel
to the x, -axis. Formula (7.13) given by W. M. MAYSEL constitutes a method of solution
of the equations of the theory of thermal stresses by means of the Green function. This
method was applied by MAYSEL to the solution of a number of examples concerning
thermal stresses in plates and shells. In these cases, the determination of the Green func-
tion for various shapes and boundary conditions does not encounter any serious dif-
ficulties.

The reciprocity theorem (7.12) yielded an interesting result concerning changes in the
volume of a body. The increment of the volume of a simply connected body, heated and
free of tractions on its surface X' is given by the formula [46]:

AV =34, [0(®)dV (x).

The formula (2.18) yields the statement that the mean values of the stress invariant
vanish [47]:
J“ D‘kde=0‘

Vv

8. Methods for Integrating Thermoelasticity Equations Following
from the Reciprocity Theorem

In elastostatics, an expression is derived which interrelates displacement u,(x, 1), x€ V,
t > 0 inside a body with displacements u; and loadings p; on the body surface. Those
relations are familiar as the Somiglian and Green theorem [48]. We shall present below
such theorems extended for thermoelasticity problems.

Let us assume that causes producing deformations and temperature in the body are
expressed solely by initial conditions. The initial conditions are assumed to be homo-
geneous. The equations describing the body motion are of the form:

(8.1) 0, = eli;, O,H——i—ﬂ'—né=0, xeV, t>0.

We add the equations of state to these equations:
(8.2) O'U = 2;.(6U+(l£kk—‘y9) 6“' .
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We consider the second system of equations with ,,primes” concerning an unbounded
thermoelastic body:

+ il t 1 ! =t h
(8.3) i g = QUi .u—?é =He = ——i-é(x—g)é({), xeV, >0,

and the Duhamel-Neumann equations:

(8.4) i o1y = 2pei;+(Ae—70') 5,

In the Egs. (8.1) to (8.4), we perform the Laplace transformation taking into accoun,
homogeneous initial conditions, and next we add these equations appropriately and effect
integration over the region V.

After a number transformations which are omitted here, we obtain finally [49]:
®5) 00 =~"F [ [p@ P %P~ PiE X 4E P]AZE)
z
—k [[#&xp)0,.E )~ PE p) 01 X, P dZ(E).
z
This formula can also be derived from the reciprocity theorem (7.3), assuming Q' =

=6x-E)o(t), X, =0, X/ =0, Q=0.
Let us consider, in turn, the second system of equations:

(8.6) 0’;;_1 = Qﬁf—a(x_g) 5f56('[)3
5 1 i

(8.7 0 — = g —nef =0,

(8.8) iy = 2uej; +(Ae—70%) ;-

The functions uj, 0¢ are assigred to an unbounded thermoelastic region. They are induced
by action of an instantaneous concentrated force X; = d(x—§) 6(¢) 6, directed towards
the x, -axis. Putting X; = 8(x—E)d(t)d,;, X, =0, Q =0, Q" = 0, in the reciprocity
theorem, we obtain the following expression for displacements w, [50]:

8.9  uxp = [[BE DEE x )~ BiEx, p)uE p)]dZ )

X

L [10.80) &% ~06 P) 0ol %, P)] 42 )).
P
The Eqs (8.5) and (8.9) should be subjected additionally to the Laplace inverse trans-
formation, which leads to convolution expressions which are omitted here.
The Eqs (8.5) and (8.9) constitute the generalization of Somiglian’s equations for the
thermoelasticity problems. Making use of them, we are able to express the functions

ui(x, 1), 0(x, 1), x€ V, t > 0in terms of surface integrals in which the functions u;, 6§ and
their derivatives appear.

If the Green’s functions ), 0’ and %}, 0° are so chosen that they refer to a body oc-
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cuping the region ¥ bounded by the surface X, and if it is assumed that the following
boundary conditions should be satisfied on

=0, #=0, =0, 0°=0 on 2,
then the Egs (8.5) and (8.9) are simplified to the form:
- = = = I’ o .
®10) 000p) =« [ 967 0,6 P dE@+ L [ PiEx ) uEndZ®,
z P

»

8A1)  uy(x,p) = — f B} (& %, p) il(E, p)dZ (E)+ :—p f (8, p) 0,(E, x, p) dZ (E).

These formulae constitute the solution of the first boundary problem in which displace-

ments u, and temperature @ are given on X. If the functions %/, ' and #, 0* are related
to a body accupying the region ¥ free from loadings and temperature on the surface 2,
it should be added to the Eqs. (8.5) and (8.9)

pi=0, #=0, pi=0, 6=0 on X.

In this case, the formulae (8.5) and (8.9) assume the form:

(8.12) O(x,p) = — -T<P j_'mcz,p) (€, X, p)dZ (E) +x f B, p) 0,,(E,x, ) dZ(E),

7

z

G13) axn= [pEAEGERDAZ®+ 0 [ E ) GEXD)IZE,
& xz

and constitute the solution of the second boundary problem in which loadings p; and
temperature 0 are given on the surface 2. However, the application of the formulae (8.10)
to (8.13) is restricated owing to the difficulties associated with obtaining the Green’s
functions uj, 0, u}, 0% satisfying the specified boundary conditions, In a manner analogous
to that for the extended Somiglian’s and Green’s formulae, we can construct the solution
of thermoelasticity equations for mixed boundary conditions. One such manner, which
is the extension of W. M. MAYSEL’S methods from the thermal problems theory to thermo-
elasticity problems, can be found in the previously cited work by V. IoNescUu-CAzIMIR [41]
It consists in using the Green’s functions satisfying at once mixed boundary conditons.
Another manner, devised by W. NowAckr [50] consists in making use of the Green’s
auxiliary functions fulfilling continuous boundary conditions and reducing the problem
to solution of the system of Fredholm’s integral equations of the first kind.

9. Harmonic Waves

Discussion of a wave of the simplest type—i.e. the plane harmonic wave,—immediately
reveals the essential properties of the propagation of elastic waves, their character, ve-
locity of wave propagation, wave dispersion and damping. Also the fundamental dif-
ferences between thermoelastic waves and elastic and thermal waves will be disclosed [51]
and [52].
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Let us consider a harmonic plane wave, moving in the direction of the x-axis, in-
duced by a cause of mechanical or thermal nature. Since displacements u; and tempera-
ture 0 depend solely on the variables x; and ¢, the displacement equations and the
thermal conductivity equations, assume taking into account that

9.1 u; = Re[uf(x;,w)etot], 0= Re[0*(x,,w)ete],

assume the form:

9.2) (B +a*)uf =md 0%, (01+q)0*+nkpd,ui =0,
@1+Hul =0, @ +Hu¥=0,

where ¢* = —(;—:-; , 1= __cg;_ . - Lj':_

Eliminating the temperature 0* from the first two equations, we have:
9.3) [(3+0*) (03 +q)+qedi]ut =0, (@i+t)ut=0, (@i+7H)ui=0.
The first equation refers to a longitudinal wave; the two remaining ones—to transverse
waves.
If we insert
u*{ =y 0% = Opik1
into the two first Eqgs. (7.2), we obtain:
u® mik 0°  ngxik

0T 2—k2 wS -k
After eliminating the quantity u°/0° from these relation, we obtain the following
algebraic equation:
9.4) k*—Ik*o?+q(1+e)+qo*> =0, &=nmxk,
from which, we determine the roots:
k3 1
k% } = {62+ q(1+e)£[(0* +q (L +8)>—dqa>]1/2}.

These roots are the functions of the parameter &: k;, = ky(e), k, = k,(e). For & = 0, we
have k,(0) = Ay = 0, k5(0) = 1, = V/q.
The following functions are the solutions of the first two Eqs. (9.2)

uy = ul exp [—iwt+ikx,] +ulexp[ —iwt—ikyx]

4 ;?% (0% exp [ ~iwt+ik,x,]—02exp [ —iowt—ik; x,]},
el

9.5) \
0 = 0% exp [—ict+ ik, x,]+02exp[—iwt—ik, x, ]

nKgiks

2—q {ul exp[—~iwt+ik, x,] —ulexp[—iwt—ik,x]}.

-+
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The transverse waves are given by the relations

iy By exp[~—m) (z—(—z)] +B_ expl (”2)]
O exp[—fa) (‘_'E{)] +C_expl (:+ :—2’)]

1/2

(9.6)

They move with constant velocity ¢, = (i/o)

These waves do not cause volume change and do not produce a temperature field
accompanying the wave motion.

The set of Egs. (9.5) will be called equations of thermoelastic waves. The first Eq. (9.5)
presents a longitudinal wave, the second—the temperature accompanying to these waves.
Denoting by v (f = 1, 2) the phase velocity, and by §; the damping coefficient and
combining them with the roots of the Eq. (9.4) by means of the relations

w

b= Re(ky) tp=Im(ky), p=12,

we transform the Eq. (9.5) into the form:

u, = ul exp[—-iw (r—%) — & xy ] +ul exp[—ico(t-}— %’—) + 9, x;]
1 1

4 mikzz {04- exp[—t’w (I— icJ‘-) -, X:] “OECXP[—I'&) (!+ i) + 3, x,]},
k3 v,y i U2

.7

0= Gﬂcxp[—fa) (t— ?) — i, .\'1]+Dfexp[—fw (H- E—‘) + 9, x,]

2 2

niqik . Xy . X
+ kf—ql {u.‘,’. exp [—:a) (!— U_l) -1 xl] —ul expl—-fw (t+ —b‘—l-‘—)+1‘}l xl]},

It is seen that both waves are damped and subjected to dispersion because the phase
velocities v, depend on frequencies w. The physical meaning of the waves (9.7) is clear
if we compare them with waves in a hypothetical medium characterized by the zero value

of linear expansion o, . For o, = 0, and then for n = 0, m = 0 the two first of Egs. (9.2)
become

©.8) @t +0»it=0, (B+q)0*=0
The solutions for these equations take the form

af = ulexp [—iw(t-» i—)] +u%exp [-fm(r+ i‘.l_)]
Cy ¢y

6'*—8Fexp[ (t—f-‘-) z?le]+6°exp[ im(!+¥)+§2xl]
1)2 vy

where 5, = Qxw)'?,  B§, = (022, ¢, = o M2(Ap+2up)'?

(9.9)
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~ % . . . . . . "
Here #, represents a purely elastic wave moving in the direction of the x,-axis or — x,-axis

with constant velocity b, = ¢,. These waves are subjected neither to damping nor to
dispersion. The second of the Eqs (9.9) represents a wave purely thermal wave undergoing
damping and dispersion. The damping is characterized by the coefficient 9, = Im(4,) =
= (o[2Kk)' 12,
Dispersion here takes place since the phase velocity #, = w/Re(4,) = (2xkw)'/? is
a function of the frequency w. The Eqgs. (9.7) describe the modified longitudinal wave
and the modified thermal wave. Comparison of (9.7) and (9.9), it results that the root
k,(e) characterizes the quasi-elastic form of a thermoelastic wave, since £,(0) = o = w/c,
refers to the purely elastic wave. Similarly, the root k,(g) characterizes the form of a quasi-
thermal wave, whereas k,(0) = A, = 'y’ g concerns the purely thermal waves in a hy-
pothetic medium. It is of interest that in the modified elastic wave (the first equation of
the group (9.9), there appear close one to one other the quasi-elastic terms:
ul exp [-—im(t— i)—ﬂlxl] ) ufexp[—-fw(t—l— ﬁ) +79, x1] ;i
vy vy
and the quasi-thermal terms:
09 exp [—im(t— i) —ﬂzxz] ; 93exp[—~fm(f+ ﬂ) +9, xl] :
vy U3
A similar situation exists in the modified thermal wave. Moreover, we should discuss
the roots ky, k, or the quantities vy, &, f = 1, 2. Introducing the new denotations

2

c ¢ W

(=—k, o*=—, x=—p
w* K w

we lead the Eq. (9.4) takes takes the simple form:
(9.10) (=2 +ix(L+e)]+ix® = 0.

The roots £, {, of this equation are the functions of the parameters ¢ and ¥ = wfw*.
The quantity & = ymik is a constant depending on the thermal and mechanical properties
of materials (whereas the y changes together with a change in frequency w). The quantity w*
is a characteristic quantity for the given material.

The frequency of forced vibrations w is limited by the quantity

3g: A
w, =27 (e1)s (4—;}1’}_)

resulting from the Debye spectrum for longitudinal waves [53]. In this formula, M denotes
the atomic masse of a material constituting an elastic body, and (¢,), = 0~ */2(A,+2u,)" /%,
where A, p, are the Lamé’s constants for an adiabatic state.

The fundamental values for four metals are set in the Table [52].

| -A]uminium - | ‘ Copper Steel l Lead- i
(c1)s cm/sek 6.32-10° 4.36°10% 5.80-10% 2.14-10°%
£ 3.56-10-2 1.68-10-2 29710+ 7.33-10-2
w* sek-! 4.66- 10" 1.73-101 1.75-10'2 1.91:1011
#¢ cm-! 1.31-10% 3.29-10° 4.48-10% 3.27-10%

w, sek! 9.80-10'3 7.55:1013 9.95-10'2 3.69-10"'3
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3 g & I
In the Table, is also given the damping coefficient 97 for y = oo, where 97 = 5 e0*/(e))r.

Let us note that w, is considerably greater than ™. In the laboratory tests performed

by means of ultrasonic vibration of very high frequency, we have:

w, > o* > o,
so that for mechanical vibration encountered in practice it can be assumed that y =
= o/o* < 1.

The phase velocity v is greater than (¢,); and tends to this value as y — co. The damp-
ing coefficient 9, increases together with ¥, and at small frequencies-it is proportional
to x2, approaching the asymptotic value 97 . In the neighbourhoodof x = 1 (0 = w*),
the quantities v, $; change abruptly. But for the practical application of the theory-
we take into account only a small region of variability of y = w/w*. Therefore, for y < 1,
the roots {,,{, can be expanded into power series in y, and we can employ the relation,

s
Cp =("~'L)r(—:; +f'5£')a B=1,2.

In this way, we can obtain approximate values of phase velocities and damping co-
efficients. We present them according to P. CHADWICK: [54]

=i+ | 1= KD voas).

w* 4
MR (EnIL [2(1+ &) +Olx )]
(911) 2 i 2 2
me (VP ke xe@+e) . x’s(8—20e+e) .
”2“’1(1+e) [ 2(1+e)? | 8(1+e) 16(+ape  TOU )]
L a¥ iy 1/2 XE e?(4—e) *e(8—12e+¢?)
%= (T ) [I”WJ" s(+o° T 16(T-i-_)3~_+0(x4)]'

It seen that for y < 1 the phase velocity v, ~ ¢,(1+¢)"/* can be considered as a constant
value slightly greater than ¢; = (¢,)s, and the quasi elastic longitudinal wave can be
treated as damped but not subjected to dispersion.

We shall present below the solution of a very simple example of a plane wave when
a plane heat source acts with the intensity Q,. This source changes harmonically in time
and operates in the plane x; = 0. We obtain here:

_ mQ, 1 . X4
Uy e Re{ = [exp(-rrm(r—— ?) ﬂlxl)
; Xy
—exp(—xm(t———) ﬁle)]}, x>0,
Ua
_ QO 1 k%‘—'ﬂ'z . X
g= 5 Re EET i exp(ﬂ-rw(t— ;;) —ﬂgxl)

k?—o? %1
—-—I_kl exp(_lfD(t""—tT) ﬂ‘lxl)}}, x1>0.

The phase velocities v, and the damping coefficients 9, are taken from the formulae (9.11).

(9.12)
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If we disregard the coupling of deformation and temperature fields—i.e., if in the

thermal conductivity equation we delete the term né,, , then inserting k,(0) = o, k,(0) = 1/9
instead of k,(e), k,(e), we obtain from (9.12) the approximate solution of the thermal

stresses theory:

Qg E . .\:1 V‘_(F

i = —— Rel——exp|—io|t— ——— __) =X — |1,
2K {I/q £ ( Vkw ) TV 2 )}
= mQ, ___1__ s _ X
g Rc{ ey [cxp( :w(! "-—1))
~exp(—ioft- —22t=)-x =
|~ 1-’55) Vol

The displacement #, is composed of two parts: the undamped elastic wave moving with
velocity ¢;, and of diffusion wave damped and subjected to dispersion.

So far, a number of particular problems concerning the propagation of plane waves
in elastic space and semi-space have been solved, I. N, SNEpDON [55] studied the propaga-
tion of a wave in a semi-infinite and infinite rod with the assumption of various boundary
conditions, and consequently various causes inducing waves. The author considered
forced vibration for a finite rod. W. NowAck1 [56] considered the action of plane body
forces in an unbounded space and the action of plane heat sources causing vibration in
the thermoelastic layer [56]. _

The interesting result is here that the phenomenon of resonance does not arise for
forced vibration. It follows from ‘the character of wave motion which'is damped. For
forced vibration we have amplitudes with finite values. Namely, for the case of a layer
of thickness @, which is free of stresses and temperature in the planes bounding the layer
x; = 0, a subjected to the action of heat sources Q = Q* cos wt, we obtain the following
expression for the stress:

9.13)

mow? < OF {3 (on — %) cos ot —{ [on(1 +8)— o] sin ot} .
(9*14) 011 = = 2 :  Sscsmtantd >

TR - = T S o, X
. 0‘.,,(&,,—*0’ ) +C [‘xu(l"'a)_d :l

where

a

w nm 2 - .

§=-E, O B2 Q§=—&—J'Q*(xl)smoc,,x, dx, .
]

We shall not here obtain resonance, since the denominator under the sum sign is always
positive. In the particular case a? = o corresponding to the resonance for the uncoupled
problem, the r-th term of this series can be written as:

4 OFsina, x,
o

") - pom

9.15) o sin

This term possesses a finite value although the magnitude of stress of? will be considerable

because the & is for metals of the order of several percent.
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10. Spherical and Cylindrical Waves

Let us consider the wave equation characterizing longitudinal thermoelastic waves
which was derived in Sec. 3 (formulae (3.9) and 3.11)):

(10.1) 3P =mo,

(10.2) DO—nV?d =0.

If we assume that the wave motion changes harmonically in time, then if

' D(x, 1) = PHx) elor,  O(x, 1) = O%(x) elor |

then from the Egs (10.1) and (10.2), we obtain the following equations

(10.3) (V2+kD(V2+K3) (@, 0%) =0,

where the quantities k, k, are the roots of the Eq. (9.4) discussed in the preceding section.
Let us consider those solutions for the Eq. (10.3) which are characterized by singularity

at the point E, and which depend on radius r, distance between the points x and E, These
solutions which will be denoted by @2X(r), satisfy the equations:

d*¢¥ | n—1 dgk

(o Tdr? r dr

+R2pa=0, o=1,2.

Here, n = 3 refers to a three-dimensional problem, n = 2 to a two-dimensional problem.
In the Eq. (10.4), the summation with respect to the index « should not be performed.
The general solution of the Eq. (10.4) takes the form

(10.5) 08 0) = [AHD(k, 1)+ BHD(k, 1],

L )
B2,

Here, H) and H'? are the Hankel functions of m-th order and of the first and second kind.
For n = 3 (then for m = 1/2), we have

2 efkar
H(]] k W i
11"2( al ) ! ?Tka r ’
. _2"_ e‘“‘-’x"
}IE?;(‘Q: ,.) =2k = A o= 1:25
wk,

and the function
e—ikar lkar

(10.6) ¢a(r) = A, — t4, = r?=(x;—&)(x;=¢), =123,

becomes the solution of the Eq. (10.4).

In the unbounded thermoelastic space, we take into account only the first term of
the Eq. (10.6), since the solution:

Ikar 9, .
ez e r
Rc[e ot —__| — ——cosw(t—--—),
r r U,
w

u":R—c(ET’ 19,=Im(k,), Cﬂ=1,2,
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represents a divergent wave propagating with the phase adopted from the origin of the
system r = 0 to infinity. Only this solution has physical sense. For a cylindrical wave
for n =2 and m = 0 we obtain:

(10.7) 7)) = AHS (k1) + BH (k, 1),
J-z_—-(xj_gj)(xj_ﬁj)s J=1,2.

Here, we take into account only the first term of (10.7) for an unbounded medium, since
for high values of the argument, we obtain:

(10.8) Re [e~iwtHS (k, r)] — ]/ﬁk— cos (k, r— : - wt) [+ o4y,

representing a divergent wave propagating in the direction of increasing r.
In the expression (10.8) the symbol O(r—=) denote a value x which is such that the

ratio x/re remains bounded as r — co0. The solutions here presented — H“)(k ) should

satisfy at infinity what are called the radiation conditions ([56—58]).

. a elkar . eikar g b
n=3: -37( - )—;ku—’; =% O(r-?), 9,>0,
(10.9)
n=2; %(Hg‘)(ktr))—ikx}lﬁ,“(kz n=e*ror?), #,>0,

= 1.2

These formulae provide information about the behaviour of fundamental solutions in
the neighbourhood of a point infinitely removed.
If we consider for the Eqgs. (10.3) a class of solutions which behave at infinity in a man-

ner similar to the fundamental solutions e™#"[r, H{"(k, r), then we should require that
the functions @* = &} + @} satisfy the following conditions at infinity:

0P

Bi=3; —g,‘"“"k o¥ = 0 (r2), 8,20,
(10.10) ’
t
n=2: a;,, — ik, B = &0 (1-302), 9,0,

a=1,2:
To these solutions we should add the conditions concerning a finite value of the function
P¥=0() for r—-ow,

where the symbol O(1) denotes a value arbitrarily small.

Longitudinal spherical waves are obtained only for a special choice of disturbances.
They arise owing to the action of heat sources and body forces of potential origin, in
both an infinite and a bounded medium with a spherical cavity with the boundary condi-
tions being characterized by symmetry with respect to a point.
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Let us consider one of those cases—namely, the action of the concentrated heat
source Qg e~* 5(r). We assume the following form of the solution for the Eq. (10.3):

(10.11) B = (A €4 A, ),

where the constants 4., A, will be determined from the condition of requirement that
the heat flow through the surface of a sphere r — 0 be equal to the heat source intensity,

and in order that u,” = d®*/dr be equal to zero for r = 0.
In consequence, we obtain for the functions @¥, 0* the followling formulae [59]:

= mQ — i TR G) (I e =] S s, e N
PF = 4?”;_’_(’,(% ) {exp[ iw (t v,) ?y r] expl iw (t vz) 1921]},
(10.12)

0% = m}&——_m =(k§—o‘2) cxp[-— iw (.f— uiz) -9, r]

—(k2—02)exp l— i (r— T’l) =B, :]} .

Here 9, is a damping coefficient, v, a phase velocity of the wave. The functions @*, 0*
are damped, subjected to dispersion, satisfy radiation conditions and exhibit a singularity
at the point r = 0.

Knowing the function @* we are able to determine radial displacement u, = d®/dr.
For Qg = 1, the formulae (10.12) become the Green's functions for the potential &*

and temperature 0*. If the distribution of sources Q(x,?) = Q*(x)e~iet is given in
a bounded region V,, the potential is expressed by the formula:

(10.13) PHx0) = [ o) BH(x,E 0) V().
Vi
Sofar a number of particular cases have been solved referring to spherical waves.
They concern the action of a compression centre in an unbounded region and a space
with a cavity, various boundary conditions characterized by spherical symmetry [59, 56]
being assumed.

A number of theorems have been developed for spherical waves. They can be regarded
as an extension of the Helmholtz theorem for elastokinetics and the analogous theorem

of the thermal conductivity theory for problems of thermoelasticity [49]. The idea of
his theorem is as follows. The system of equations is given

(10.14) (V24 o) u*—mv* =0, (V’+q)u*+-%vzu* =0,
which is regular in the region B considered. Here, u* denotes the potential of thermoelastic

displacement, v*—temperature. The elimination of the functions u* or v* from the Eqs
(10.14) lead to on equation of type (10.3).
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It can be demonstrated that if the functions u®, v*, du*/0n, dv*/dn are given on the
boundary X of the region B, then the function v* at a point x € B can be written as:

(10.18) ) =x [ [0”'(5 ) 206 g ")]dr(a)

+ ML |20 5 D). e E 20z,

z

E e B.

In this case, the functions @*(x, ), 0%(x, §) are the solutions of the equations

(10.15)  (V2+02) @*—m0* =0, (V’+q)9*+%vz¢*=-—%5(x—5), EeB,

where
m r r
T dnc(k2—k3)r (e5=e™,
(10.16) .
= TG =y "2 e,

ne=ks—o?, a=1,2.

For x € (*— B, where (° is a whole space, we have v*(x) = 0. For an uncoupled problem
(e = 0)—i.e. for the theory of thermal stresses, the second integral of the Eq. (10.14)
disappears. In consequence, we obtain the equation:

Ir]/q_ frp/q
(10.17) PR(X) = -‘—:; f[u*(g)ain(" , )— £ - a”*(g)]dz(ﬁ),

1 on

" r=r(x8),

which is a theorem familiar in the thermal conductivity theory. For the function u*(x),
we obtain the following formula

woy=x | [@* (£ *(E)M] iZ()

(10.18) :
L. I[Dk BHE, )au (E) u*@)% 2 gp*(g,x)]dz(g), xeB

£

u*(x) =0, xeC-—B,

The symbol [ = V24 k?+k3 —o? is introduced in this formula. The formula (10.18) is
expressed through the function u*(x) inside the region B by means of the function

w®, L8, agp, L6
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on the surface 2. Proceeding from thermoelasticity to elastokinetics, we obtain from
(10.18), after a number of transformations, the Helmholtz’s familiar theorem [60]:

(10.19) wH(x) = { = f [" o vl (EL_)] dAE), xeB,

u*(x)=0 if xeC-B

Here, ¢ = w/(c,),, where (¢,); = 0~ 1/2(A,+2u)/'/*. Cylindrical waves can arise in the case
of a linear heat source of a linear compression centre, or in an unbounded thermoelastic
medium with a cylindrical cavity, on the boundary of which heating, pressure or deforma-
tion takes place and is distributed in an axial-symmetrical way.

Of numerous solutions [56-61], we consider to a linear heat source 0(r,t) =
= 0y e71ot 5(r)2nr, r = (x}+x3)"/%. For the amplitudes of thermoelastic potential of
displacement and for temperature, we obtain the following formulae [59]:

Qomi  th (k, )= HO(ky 1],

= dic (k3 —k2)
(10.20)
9"‘=a’aﬁ0’f‘—kz)[( P~ k) H (k1) —(0® = k3) He (k3 )]

These functions satisfy the radiation conditions. They are damped and subjected to dis-
persion.

11. Green’s Funchons for an Inflnite Thermoelastic Medium. The Singular Integral Equation
of Thermoelasticity

In the preceding section, we presented Green’s functions for a point linear heat source.
They satisfy the equations:

a'jf.j = —w?oi;,
- . 5 1
b Ot h30+ L ity = — —5(x~B),
_m fw) /2
o= b hmi(2)

By #, 6 we denote here the amplitudes of displacements and temperature, In turn, we should
determine Green’s functions for a concentrated force. At the point & of an unbounded
region, let there act the concentrated force X; = (x—E) §;, e-'»* which is directed towards
the x-axis. The action of this forces produces both longitudinal and transverse waves
We should solve the system of equations:

a_f}]_, ) -5(x—8)8;,

(11.2)
o8 +h0W + Ly} = 0



PROBLEMS OF THERMOELASTICITY 49

in which we have denoted by o'}’, u}"; 0(the amplitudes of stresses, displacements,

and the temperature caused by the action of the concentrated force applied at the point §
and directed towards the x,-axis. The system of Eqs. (11.2) can be replaced by the system
of wave equations:

(11.3) (VZ+ k2) (V24 k3) D = — wélz—(v%qw,
1
(11.4) (V2412 (1) = —. Lias e =108
c-z CZ
These equations follow from the Egs. (11.2) under the assumption that
(11.5) u = grad @+rotd, X =p(gradd+roty).
The amplitudes of body forces are determined from the formulae [62]:

B(X) = — — fX(x) grad, ( & --))dV(x),
(11.6) 1 =

x(x = x(m)dV{X}

For the case here considered of concentrated force directed towards the x-axis, we find:

1 1
19 = - 47{Q 31 (T)a xl _0’

1 1 1 1
o= 4mp 03 (T)’ A== T‘.‘T—Q 0z (_?‘_)

From the solution of the Eqs. (11.4) we obtain:

(11.6") 9, =0, 45 03F(r,0), v3=—

2z 0, Fo(r,m),

Wq =
Va= 4 now? drow

where
Fo(ro)= (@1, r=(-8E-8, i=123.

From the solution of the Eq. (11.3) taking into account the fact that the function &
is characterized by an axial symmetry with respect to the x,-axis, we obtain [62, 63]:

1
e
(11.7) @ —

OLF(r,m),

where

1 em;:r
F(r,w)=A,1,—Ay1,—I,, I°=T’ I;= = B=1,2,

(ki—g)0> _ (k3—g)o?

A =tagasy s T BEE-K)
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The temperature 0¢') is determined from the formula

1 1
(118) g m (Vo) % cim

Employing the formulae (11.5) and (11.8) we arrive at:

1 1 el
(11.9) uf = — P 0, 0; [F(r,w) —F, (r, ®)]+ g7 s s o
(11.10) o= A9 [1(r,0)~Ix(r,0)].

“dnome? (ki —k3)
These functions have a singularity at the point E, and satisfy at infinity the radiation
conditions. If a concentrated force acts in the direction of the x,-axis, we have the follow-
ing expression for Green’s displacement tensor uj, and for temperature 0°:

1

(1111) u}’ o M W

{9;0,[F (r,0)—Fo(r,w)]— r’éj,e'mt 1,

d 5 — qe = o . [ §=
(11.12) 0 = Frama (=1) oI,(r,)—1,(r,w)], Jj,s=1,2,3.

From the solutions found for a concentrated force, we can obtain further singular-

ities—the expressions u;, 0° for a double force, for a concentrated moment and for a centre
of compression. :

For a two-dimensional problem, we obtain for the force concentrated and directed
towards the xj-axis, the following Green’s functions [64]:

i i
UL13) )= — o (0,0, Ay HE (ki 1) = Ay HY (k1) — HP ()] =728, HG ()},

. ige
(11.14) 6= Tame? (2—13) 0y [Hgl)(ki r)—Hg (k2 1)],

f'1=(x1—§j)(xj—€})s Js=1,2.

Knownig the displacement functions and temperature for the section of a concentrated
heat source and a concentrated force, we are able to construct methods for integrating
the thermoelasticity equations for a bounded body [49].

We introduce the thermoelastic surface potentials analogous to the elastokinetics
potentials [57]:
Vi) =2 [ dZ(E) ) u %) +2a [ dZ(E) p(E) 0(E, ),
z z

(11.15) X »
V@ =2 [dZ@r®I®+ [dZOn®LE.

x
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Here, ¢.(€), w(E) are the unknown densities’ of the corresponding regularity. The
functions 7, 0, u}, 0% are the Green’s functions satisfying the Egs. (11.1) and (11.2)—i.e.,

they are the known functions. The following system is called the thermoelastic potential
of a double layer:

W) =2 f 42 (8)9,(8) PiCE 1) + 2 f az@ @ 2D

(11.16)
W) =2 f 1z@v® LED L 2 [ 156 0@ 5 E .

The following denotations are introduced here:

Pk (8, x) = [2uex;+(Au}, ,—v0%) 5&1] nj,

Pi(E,x) = [zﬂgkj‘*‘()*ﬁp.n—?@) Sijlny.

Finally we can utilize the thermoelastic potential, being the combination of the poten-
tial of the single and the double layer:

M(x) = 2 [ dZ(E) pu8) piCE, %)+ 2 [ dZ(E)y (E) 0, ),

(11.17) X 5 o
M =2 [dZ@y®IEN+ - [ dZ@nE hEX .

v

It is clear that the potentials V,(x), ¥V(x) are the continuous functions of the points x € 2

But the potentials of double layer W, (x), W(x) demonstrate the discontinuity of this
surface. For we have

W (Eo) = —uBo) + Wi€o),  WP(Eo) = —w(Bo)+ W (o),

(11.18) © _
W (Bo) = pi(Bo) + Wi(Bo), WO(Ep) = (Bo)+ W (Bo) -

The functions W, (E,), W"(€,) and W) denote correspondingly the limit of the
vector W, () as £ —» E, € X of the surface X, W{P(E) as § —» E, € X' from the interior of

the region ¥ and W) as E — g€ X for Ee C—V. It is clear that the first surface
integral in the formulae (11.16) represents a discontinuous function, the second integral—
a continuous function.

We next introduce the denotations:
(11.19) PO = [20V i,jy +ATVa—1V) 810, ®), 00 = Vim0,
where V,, V are defined by the formulae (11.15). It may be shown that
PO (Bo) = ¢o(B) + o), DP(Eo) = v (B0)+0(Eo)

P (Bo) = — ‘Pk(gu) + bi(Eo) » ﬁ“”(go) = —y(Eo)+ 0 (o) -

The thermoelastic potentials (11.15) to (11.17) and the relations concerning discontin-
uities of these potentials, make it posible to reduce the fundamental boundary problems
to solving a system of singular integral equations.

(11.20)

4%
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Let us consider the case in which the displacements u,(§,) = f.(§;) and temperature
0(8,) = g(§,) are given on the boundary X, then we seck for solutions in the form:

; Ux) = W(x), 0(x)=W(x),
where the functions Uy(x), 0(x) are given by the formulae (10.16). We can easily verify
that inside the region V, the equations:

(11.21) LoU—790,0=0, (V2+4)0+- Z 9, U,=0, xeV,

are satisfied, where
L,ck = (“ap ap + w"@) 5sk ' (‘1 AP JU) as ak &

Taking into account the relations (11.18) for the functions ¢.(E), p(E), we arrive at
the following system of coupled integral equations:

0
P& =2 [ 0@ PiEENdZ® =22 [y(®) 5 PEE)IZE) = ~/E),

(11.22) 5 5
PE-2 [v(® 5 0EE)IZE~ - [m®hlEE)ILE) = ~g &).

These equations have the form of singular integral equations of the second kind, and
the integrals occurring in them should be regarded of in the sense of major values.
If, on the boundary X' the displacements u(o) = fi(§q) and heat flow 20/on|... = S(&)
are given, then we seek solutions in the form:

U(x)=Mx), 0x)=M(x), xeV,

where the functions M, M are given by the formulae (11.17). We can easily verify that
inside the region ¥, the Eqs. (11.21) are satisfied, and the unknown densities fulfill the
system of integral singular equations

Pu(E0) —2 f Pu() P} (€, Bo) dZ(8) — 2 [ 9 (E) 0°(E, Eo) dZ(8) = —1y(Eo) ,

(11.23) "
PE+2 [ O35, 068 A2+ o [ )5 5 ) dZE = 8o,
P i

I-where 6;0 0 (E,€) = iLn% o 0©&®, xer

The quantity 0p(&, §,)/dn, is defined abalogously. Let us note finally, that if loading
P = pi(8g) and heat flow S = S(§,) are given on Z, then the solution should be sought
for using the potentials of a single layer V(x), ¥ (x). The investigation of the existence
and uniqueness of the singular equations obtained is carried out in a manner similar to
that used in elastodynamics. The system of singular integral equations presented here
comprise particular cases related to thermal stresses theory, thermal conductivity theory
and elastodynamics.

When developing the general theory of propagation of thermoelastic waves changing
-harmonically in time, a number of particular problems, ware solved simultaneously ad-
missing them to a form useful for discussion. They are mostly the problems typical for
classical elastokinetics which in fa mework of thermoelasticity were extended and general-
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ized. A great deal of attention has been devoted to surface waves. This problem was first
discussed in the work by F. J. LockEerT [65, 66] and then, in a broader and more thorough
manner, by P. CHADWICK and D. W. WinDLE [67].

When derivind surface waves in a plane state of deformation, we start from the wave
equations (for longitudinal and transverse wave) and from the thermal conductivity
equation. The wave travels parallel to the plane bounding the semi-space and vanishes.
in greater depth. It is assumed that stresses and temperature, or stresses and heat flow
disappear in the plane bounding the space. An algebraic equation of the third order with
complex coefficients is obtained from the determinant of the system of equations ex-
pressing homogeneous boundary conditions. One of roots of this equation satisfying
prescribed inequalities provides a phase velocity of the surface wave. It is found that the

surface wave undergoes damping and dispersion, and its velocity is smaller than the velocity
of longitudinal and transverse waves.

W. Nowack! and M. Sokorowski [69] have investigated, in a similar way, the pro-
pagation of a harmonic wave in a thermoelastic layer. The authors considered there both
symmetric and antisymmetric (elastic wave) forms of wave for two thermal conditions
on the boundary: 0 = 0 and 0, = 0. Owing to the small value of the parameter character-
izing the thermoelastic medium, the approximate solution of the transcedental equation
was presented using the perturbation method. :

The propagation of harmonic waves in an infinite circular cylinder and thick-walled
pipe was studied by F. J. Lockert [68] who gave the transcedental equations relevant
to this problem. J. IGNAczAk and W. Nowacki [70] have considered the forced vibration
of an infinite cylinder with rectangular cross-section. Heating of the cylinder surface and
the action of heat sources were here the cause exciting vibration. The same authors pres-
ented in [71] a method for solving and the actual solution of the problem of forced longi-
tudinal vibration in discs and of flexural vibrations produced by loadings and heating in
plates. The paper by P. CHapwick [72] is devoted to analogous problems.

The propagation of a thermoelastic plane wave in an infinite medium in a spherical
and cylindrical wave [68] is the next problem solved. The idea is as follows. A plane
wave induced by the action of a plane heat source moves in an unbounded space and
encounters a spherical or a cylindrical cavity. Flowing around this cavity the temperature
field undergoes a disturbance, and concentration of temperature and stresses takes place
in the neighbourhood of the cavity. The partial solution obtained here is in a closed form
and the residual solution is expressed as an infinite system of algebraic equations with
complex coefficients,

A considerable group of solutions corresponds to what is known as Lamb’s problem
of classical elastokinetics. The question consists in considering the influence of loadings
and heatings acting on a thermoelastic semi-space. Two typical problems have been solved
here—namely, when loading or heating is axially symmetric and when loading and heat-
ing produce a plane state of deformation [61]. Further problems concerning the action
in source of heat (concentrated or linear) in an elastic semi-space [59] have something
in common with the above subjects. However, the solutions of this group are of formal
character only.
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12. The Aperiodic problems of Thermoelasticity

The domain of investigation discussed here is the branch of thermoelasticity developed
most weakly. This anses from the great mathematic difficultes encountered in obtaining
solutions.

In general, three ways are used for solving the aperiodic problems of thermoelasticity.
The first consists in eliminating the time ¢ from the differential equations of thermoelas-
ticity:

puty i+ (A ug 4 X, = el 490,

(12.1) iy .o 0
0,_”‘— E‘B—IIG— “""-—I;_—-,

by subjecting these equations to Laplace’s transformations or Fourier's transformation
with respect to time. The former transformation is most frequently applied in view of
numerous inverse transformations.

Subjecting, then (12.1) to the Laplace’a transformation defined by the relation

(=a]
L (u,0) = (@,0) = [ w,0)e™dt, p>0,
- 0

and assuming the homogeneity of initial conditions, we obtain from (12.1) the following
transformed solutions:

iy i+ A+ iy i+ X, = op?ii;+40,;,

2

(12.2) P =
B = OBy ==

Here, the unknown functions i, 0 depend on position and the transformation para-
meter p. Solving the Egs. (12.2) is not very onerous for many particular problems; the
difficulties are of the same order as in problems of vibration harmonically changing in
time. The essential difficulty consists in performing Laplace’s inverse transformation for
the solutions obtained ii,(x, p), 0(x, p).

The second manner of solution consists in subjecting the Eqgs. (12.1) to the Fourier
triple integral transformation with respect to the variables x,. Thus, the Egs. (12.1) become
a system of ordinary differential equations in which time appears as an independent
variable. After solving this equation, the Fourier triple inverse transformation is accom-
plished [75].

The third way, used for thermoelastic space and semi-space consists in applying the
Fourier quadruple transformation. The system of Egs. (12.1) leads to a system of four
algebraic equations for the transforms @, i,. The quadruple inverse transformation yields
the final result [76, 77].

Each of these ways is accompanied by considerable mathematical difficulties—so
considerable, in fact that so far no solution has been obtained in a closed form.

We shall consider more exactly the wave Eq. (3.9) and (3.11) to be obtained from the
Egs. (12.1). If we use the first way of investigation and apply the Laplace transformation
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for the wave equations with assuming homogeneous initial conditions, then we arrive
at the system of equations:

2
s TN 2N B e, e L P\G
[(V c%)(v IC) K VZ]@ LKQ ¢} (V K)ﬁ,
TR |
(VI‘—'IT)’P:=__Z::
2 -—

§=L(V2—- _3?.2_) D, e=nmk

C1

(12.3)

The longitudinal wave equation for Q@ = 0, ¢ = 0 can be presented in the form
(12.4) (V2=iH (V=13 D=0,
where A,, 4, are the roots of the bi-quadratic equation:

a_g2p (P 1 » _
X Ap(cf+x(1+s))+xc%—0.

Since the roots of this equation:
AN p’ P pix SpP e
A;}‘?{:? ““”Tc?i[(? (1+0)+ ) - z«:?] }

are expressed in a markebly complicated manner as functions of the parameter e, it i
clear that applying the Laplace inverse transformation for the functions @, 0 encounters
great difficulties. Therefore, we are forced to employ approximate solutions.

In general, two ways of approximate solution are used. The first consists in taking ad
vantage of the fact that the quantity ¢ = nmx is a small parameter [54]. Writing, then
the functions @, @ as a power series in

(125) &T)=®0+E(D1+ezﬁbz+..., D=00+€8|+£202+...
we lead the Eq. (12.3) becomes the system ol equations:
1

¢t

—_ m . -
Dng(ﬁo:——an—- Dzﬂ,

(12.6)

where D, = V2—p?[c?, D, = V*—p|k.
For the temperature 0, we obtain
1
m

(12.7) § = —D(Po+8P;y +&2By+ ...).

When we use the perturbation method, it is adwandageous for practical purposes to
retain only two terms of the series (12.5). Let us note, moreover, that the functions @, 0,
concerns an uncoupled problem.
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Another variant of the perturbation method consists in solving the Eqs (12.3) and
next expanding the functions containing the quantities k,(e, p), k,(e, p) into a power
series in the parameter . This variant was successfully applied by R. B. HETNARSKI [ 78, 79]
for solving a number of problems referred to a thermoelastic space and a semi-space.

The second way for approximate solution consists in determining the function @, ¢
for small times. Solutions of this type are very useful since an essential difference
exists belween the dynamic and the quasi-static problem for small times . This
difference vanishes as time passes.

According the Abel’s theorem

lim /(1) = lim p L[(1)],

t=+0 P
to small times correspond large values of the parameter p in the Laplace transforms
Therefore, in the solutions for the Eqs (12.2) or the Eqs (12.3), the term containing the
quantities /& (g, p), k(g, p) should be expanded in powers of 1/p, and several terms of
this expansion should be retained. Performing the Laplace’s inverse transformation pro-
vides finally an approximate solution of the problem. 5

Works on the propagation of aperiodic waves are not numerous and deal with the
simplest systems, they refer to an elastic space and a semi-space. The problem of the
action of an instantaneous and continuous concentrated source of heat in an unbounded
thermoelastic space was investigated by R. B. HETNARsKI1 [ 78, 797 who applied the method
of perturbation and small times. The problem of the action of instantaneous and concen-
trated force in a space was considered by E. Sods [17]. W. Nowacki studied the influence
of initial conditions on the propagation of thermoelastic waves in an infinite space [64].

The problem of determining the field of deformation and temperature around a spherical
cavity in infinite space is allied with problems presented here.

The problem of sudden loading of the body boundary was the subject of two works.
In the first, M. LesseN [80] applied the perturbation method, in the second P. CHADWICK
[54] presents the application of the asymptotic method for small times.

The problem of sudden heating of the boundary of a body with a spherical cavity by
application of perturbation was investigated by G. A. NAriBoL1 [81]. It results from the
approximate solutions obtained that thermoelastic waves are damped and dispersed. The
influence of coupling deformation and temperature fields is small. The solutions slightly
differ quantatively from the solutions obtained within the framework of the theory of
thermal stresses. '

The second important problem to which several works are devoted in the propagation
of a plane wave in a thermoelastic semi-space caused by sudden heating of the plane
bounding a space. The question consists in the generalization of the ,,Danilovskaya
problem” familiar in the theory of thermal stresses. This subject was undertaken by
R. B. HETNARSKI [79, 82] applying the perturbation method and making use of Abel’s
theorem for small times. The same problem was investigated by B. A. BorLey and
I. S. ToLins [83] as also as by R. Mukr and S. BREUER [84]. The action of the points
heating of a thermoclastic semi-space was the subject of work by G. PARIA [85].

The papers by 1. N. SNEDDON [55] and J. IGNAczAK [75] were devoted to the propa-
gation of a longitudinal wave in an elastic semi-space and in an infinite and semi-infinite
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rod. In this publication, the Fourier’s transformation with respect to the position variable
was first applied, and an ordinary differential equation of the third order with respect
to time was solved. Solving this equation and performing the Fourier’s inverse trans-
formation, led to a final result.

There is an extensive literature concerning dynamic problems of the theory of thermal
stresses. So far, numerous one-dimensional and two-dimensional problems have been
solved. The first of these solutions here given by V. I. DANILOVSKAYA, date to 1950 [73, 74].
They concern the propagation of thermoelastic waves in an elastic semi-space, due to
a sudden heating of the bounding surface. Here, too, we find the two types of waves,
elastic and diffusional. On the front of the elastic wave, there occurs a jump of stress
(change of sign). The problem of propagation of a spherical wave in an infinite space was
discussed by W. NowaAcki [87] while the cylindrical wave was dealt with by H. PARKUS
[88]. A practically important case of a sudden heating of the boundary of a spherical
cavity in an infipite elastic space was investigated by E. STERNBERG and J. C. CHAKRA-
VARTY [89]. J. IGNACZAK examined the action of a concentrated instantaneous heat
source in an infinite elastic space with a spherical cavity [9]. A concentration of stresses
around a spherical and cylindrical cavities was dealt with by J. IGNACzAK and W. No-
WACKI [91]. The problem of heat sources moving with a constant velocity in an infinite
elastic space was the subject of a paper by M. ZOGrRAWsKI [92]. Finally we mention the
paper of B. A. BoLEy and A. D. BARBER [93] concerned the vibrations of a thin plate
produced by a sudden heating or cooling.

To conclude this survey, reference should be made to the further developing directions of
thermoelasticity. It seems that further general theorems will be obtained which will constitute
a generalization of the theorems familiar in elastodynamics. We mean the generalization of
Kirchhoff’s, Weber’s and Volterra’s theorems. Attempts are being made [86] to obtain
further and wider variational theorems. The next efforts will be directed towards eliminating
the restrictions on small deformations, and thereby towards developing nonlinear geo-
metrically thermoelasticity. Other direction intends to removing the restriction |0/T,| < 1—
i.e. to investigate bodies with higher temperature when thermal and mechanical coefficients
are functions of temperature.

Recently, investigations have been initiated in the field of combining the fields of
deformation, temperature and electric fields in piezoelectric materials [94—96]. The
initiated direction of magneto-thermoelasticity now embarked on is also of interest
[71, 101].

The question consists in investigating the deformation field and temperature field in
electrical conductors in the presence of a strong primery magnetic field.

References

1. J. M., C: DUHAMEL, Second mémoire sur les phénomenes thermomécaniques, J. de 1'Ecole Polytechn.,
15 (1837), 1-15.

2. W. Yoigr, Lehrbuch der Kristallphysik, Teubner, 1910.

3. H. Jerereys, The thermodynamics of an elastic solid, Proc. Camb, Phil. Soc., 26 (1930).



58

S oo oy Lk

1.

12.

13.

14.

17.
18.
19.
20.
21.
22.
23,
24,
25.
26.
27.

28.
29,

30.

31.

32.
33.

34,

W, NOWACKI

M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27 (1956).

S. R. pE Groor, Thermodynamics of irreversible processes, Amsterdam, 1952,

B. A. Borey, J. H. WEINER, Theory of thermal stresses, John Wiley, New York, 1960.

J. F. NvE, Physical properties of erystals, Oxford, Clarendon Press, 1957.

W. Nowacki, Some dynamic problems in thermoelasticity, Arch. Mech, Stos., 1, 11 (1959),

R. CouranT, D. HiLpirT, Methoden der mathematischen Physik, Berlin, 1931.

Gr. C. Moisi, Sisteme diferentiale adjuncte si formula de reciprocitate, Bul. st. Acad. RPR,
3 (1951), 189.

S. KALSKI, Some boundary value problems of the dynamical theory of elasticity (in Polish), Biul.
WAT, Warszawa, 1957.

V. ToNEscU-CAzZIMIR, 1). Asupra ecuafiilor echilibrului termoelastie (1), Relafiile intre tensiuni si
temperatura, Com. Acad. RPR, 2, 1(1951).

2). Asupra ecuatiilor echilibrului termoelastic. (II1). Relafiile intre tensiuni, Com. Acad. RPR,
5, 1(1951).

J. S. PopsTRIGATZ, Fundamental solutions of non sieady thermoelastic problem, (in Ukrainian)
Priktadna Mechanika, Kijow, 2, 6 (1960).

D. RUDIGER, Bemerkung zur Integration der thermo-elastischen Grundgleichungen, Osterr. Ing.
Archiv, 18 (1964), 1-2.

H. Zorski, 1). Singular solutions for thermoelastic media, Bull. Acad. Polon., Sci. Sér, Sci. Techn.,
6, 6 (1958), 2). On certain property of thermoelastic media, Bull. Acad. Polon., Sci. Sér. Sci,
Techn., 6, 6 (1958).

. J. IcNACZAK, Direct determination of stress from the stress equations of motion in elasticity, Arch,

Mech. Stos., 5, 11 (1959).

E. So6s, Galerkin’s representation, Beltrami-Michell’s conditions and Green's functions (for short
time) in the linear theory of coupled thermoelasticity, Arch. Mech. Stos., 17 (1965).

W. NOWACKI, On the treatement of the two-dimensional coupled thermoelastic problems in terms
of stresses, Bull, Acad. Polon. Sci., Sér. Sci. Techn., 3, 9 (1961).

E. MeLaN, H. Parkus, Wiérmespannungen infolge stationdrer Temperaturfelder, Wien, 1953,

H. Parkus, Instationdre Wiéirmespannungen, Wien, 1959,

A. BoLey, J. H. WEINER, Theory of thermal stresses, New York, 1960,

W. NowaAcki, Thermoelasticity, Pergamon Press, Oxford, 1962,

M. IACOVACHE, O extindere e metodoi lui Galerkin pentru sistemul ecuatiilor elastocitatii, Bull,
Stint, Acad. Rep. Pop. Romine, Ser. A, 1(1949).

J. IGNACZAK, Dijrect determination of stress from the stress equations of motion in elasticity, Arch.
Mech. Stos., 5, 11 (1959). '

W. PiecHock! and J. IeNaczak, Thermal stresses due to thermal inclusion in a circular ring and
a spherical shell, Bull. Acad. Polon. Sci., Sér. Sci. Techn., 7 (1959).

W. PiecHockr and J. IeNaczak, Some problems of dynamic distorsion in thermoelasticity, Arch.
Mech. Stos., 2, 12 (1960).

C. W, BorCHARDT, Untersuchungen iiber die Elastizitét fester isotroper Kérper unter Beriick-
sichtigung der Wiirme, M. Ber. Akad. d. Wiss., Berlin, 9 (1873).

J. N. Goonier, On the integration of the thermoelastic equations, Phil. Mag. VII, 23 (1937).

I. N. Sneppon and F, J. LOCKETT, On the steady-state thermoelastic problem for the half space
and the thick plate, Quart. Appl. Math., 1960.

I. N. SNepDON, Boundary value problems in thermoelasticity, Proc. of the 2nd Symposium on
Differential Equations, Madison, Wisc. 1960.

R. D. MmpLin and D. H, CHENG, Thermoelastic stresses in the semi-infinite solid, J. Appl. Phys.
1950.

B. D. SHARMA, Stresses in an infinite slab due to a nucleus of thermoelastic strain in it, ZAMM, 1956,
B. D. SHARMA, Stresses due to a nucleus of thermoelastic strain in an infinite solid with spherical
cavity and in a solid elastic sphere, ZAMP, 1957.

J. IgNACZAK, Plane dynamic distorsion problem in thermoelasticity, Arch. Mech, Stos., 4, 12 (1960).



35.
36.
37
38.
39.

40.

4],

42,

43,
44,

45,

46.
47.

48,
49.

50,

5l
52.

53.
54,
55.

36.
37,

58.

59.

60.
61.

62.

63.

PROBLEMS OF THERMOELASTICITY 59

N. I. MUSKHELISHVILI, On thermal stresses in the plane problems of the theory of elasticity, Tzv
Elektrotekhn, Instituta, 13 (1916).

N. I. MUSKHELISHVILI, Sur I'équilibre des corps élastiques soumis a l'action de la chaleur, Bull. de
I’Université, Tiflis, 3 (1923).

B. E. GATEWOOD, Thermal stresses in long cylindrical bodies, Phil. Mag. VII, 32 (1941).

P. Dusas, Caleul numérique des plaques et des parois minces, Ziirich, 1955.

E. TReMMEL, Uber die Anwendung der Plattentheorie zur Bestimmung von Wirmespannungsfelder,
Osterr. Ing. Arch., 11 (1957).

V. Ionescu- CAZIMIR, Problem of linear thermaelasticity. Uniqueness theorems (1), (II), Bull. Acad.
Polon. Sci., Série Sci. Techn., 12, 12 (1964).

V. Tonescu-CAzIMIR, 1), Problem of linear coupled thermoelasticity (1), Bull, Acad. Polon. Sci.
Série. Sci. Techn., 9, 12 (1964).

2). Problem of linear coupled thermoelasticity. Some applications of the theorems of reciprocity
Sor the dynamic problem of coupled thermoelasticity (11), Bull. Polon. Sci., Série Sci. Techn., 9,
12 (1964).

M. A. Biot, New thermoelastical reciprocity relations with apllication to thermal stresses, J. Aero
Space Sciences, 7, 26 (1957).

V. M. MAvseL, Temperature problems of the theory of elasticity (in Russian), Kiev, 1951.

A. GALKA, Green's functions for the coupled problem of thermoelasticity obtained from the solution
of the theory of thermal stresses, Bull. Acad. Polon. Sci., Série Sci. Techn., 7, 13 (1965).

A. GALKA, Singular solutions of thermoelasticity, Bull. Acad. Polon. Sci., Série Sci. Techn., 7,
13 (1965).

W. Nowacki, Thermal stresses in anisotropic bodies (1), (in Polish), Arch, Mech. Stos., 3, 6 (1964).
M. Hieckg, Eine indirekte Bestimmung der Airyschen Fléiche bei unstetigen Wiérmespannungen,
Z. ang. Math. Mech. 35 (1955).

E. TreFFTZ, Mathematische Elastizitiitstheorie, Encykl. der Physik, 6, Berlin, 1926.

J. Ianaczak, W. NowAckl, Singular integral equations of thermoelasticity, Int. J. of Engineering
Science, 1, 5 (1966).

W. NowAckr, Mixed boundary value problems of thermoelasticity, Bull. Acad. Polon. Sci., Série
Sci. Techn., 11, 12 (1964).

H. DEeresiewicz, Plane wave in a thermoelastic solid, J. Acoust, Soc. Amer., 29 (1957).

P. CHADWICK, I. N. SNEDDON, Plane waves in an elastic solid conducting heat, J. Mech. Phys. of
Solids, 6 (1958).

L. BroOUILLON, Tenseur en mécanique et en élasticité, Paris, 1938.

P. Cuapwick, Progress in solid mechanics. The dynamical theory, Amsterdam, 1960.

I. N. SneppoN, The propagation of thermal stresses in thin metallic rods, Proc. Roy. Soc. Edin.,,
Sec. A. 9, 65(1959).

W. NowAckt, Dynamical problems of thermoelasticity, (in Polish), PWN, Warszawa, 1966.

V. KUPRADZE, Progress in solid mechanics, vol. 3, Dynamical Problems in Elasticity, Amsterdam,
1963.

J. IoNAczAk, W. NowAckl, The Sommerfeld conditions for coupled problems of thermoelasticity.
Examples of coupled stresses and temperature concentration at cylindrical and spherical cavities,
Arch. Mech. Stos., 1, 14 (1962).

W. NowAckl, Some dynamic problems of thermoelasticity, Arch., Mech. Stos., 2, 11 (1959).

B. B. Baker, E, T. Corson, The mathematical theory of Huygens principle, Oxford, 1953.

W. Nowackl, Sur certain problémes dynamiques de la thermo-élasticité, Acad. Polon. Sci. Centre -
Scient. & Paris, Fasc. 37, Paris, 1962.

W. NowAcki, Green functions for an thermoelastic medium (1), Bull. Acad. Polon. Sci., Série Sci,
Techn., 6, 12 (1964).

W. Nowacki, Green functions for the thermoelastic medium (11), Bull. Acad. Polon. Sci., Série Sci.
Techn., 9, 12 (1964).

. W. NowAckl1, Some dynamic problems of thermoelasticity, (II), Proc. Vibr. Probl., 5, 4 (1965).



60

635.

66,

67.

68,

69.

70.

7|8

72,

73,

74.

75.

76.

77.

78,

79.

80.
81.

82,

83.

84,

85.
86.

87.
88.
89.

90.
91.

W, NOWACKI

F. J. LockeTT, Effect of thermal properties of a solid on the velocity of Rayleigh waves, J. Mech.
Phys. Solids, 7 (1958).

F. J. LockerT, Propagation of thermal stresses in a semi-infinite medium, AFOSR TN 59-448
(Duke Univ. ASTIA AD 215923) Apr. 1959,

P. CHADWICK, D. W. WINDLE, Propagation of Rayleigh waves along i sothermal insulated boundaries,
Proc. Roy. Soc. 280, No 1380, Ser. A, 1964.

F. J. LockerT, Longitudinal elastic waves in eylinders and rtubes including thermoelastic effects,
Proc. Edinbourgh Math. Soc. part. 3, 2 (1959).

W. Nowacki, M, Sokorawskl, Propagation of thermoelastic waves in plates, Arch. Mech. Stos,, 6,
11 (1959).

1. IenaczAK, W, Nowackl, The plane dynamic problem of thermoelasticity, Proc. Vibr, Probl., 4,
2 (1961).

J. Ianaczak, W, Nowacki, Transversal vibrations of a plate produced by heating, Arch, Mech.
Stos., 5, 13 (1961).

P. CHADWICK, On the propagation of thermoelastic disturbance in thin plates and shells, J. of Phys.
Mech. Solids, 10, 5(1962),

V. 1. DANILOVSKAYA, Thermal stresses in an elastic semi-space due to a sudden heating of its
boundaries (in Russian), Prikl. Mat. Mekh., 3 (1950).

V. 1. DaniLovsKAaYA, Thermal stresses in an elastic semi-space under an instantaneous heating of
the surface, (in Russian), Prikl. Mat. Mekh., 14 (1952).

J. laNnACZAK, Note on the propagation of thermal stresses in a long metallic rod., Bull, Acad, Polon,
Sci., Série Sci. Techn., 5, 7 (1959).

[. N. SneppoN, G. Eason, The dynamic stresses produced in elastic bodies, by uneven heating,
Proc. Roy. Soc. Edinbourgh, ser. A, 65 (1959). )

F. J. LockEerT, 1. N. SNEDDON, Propagation of thermal stresses in an infinite medium, Proc, Edin-
bourgh Math. Soc. part. 4, 11 (1959).

R. B, HETNARSKI, Solution of the coupled thermoelastic problem in the form of series of functions,
Arch, Mech, Stos., 4, 16 (1964),

R. B. HETNARSKI, Coupled thermoelastic problem for the half-space, Bull. Acad. Polon, Sci., Série
Sci. Techn., 1, 12 (1964).

H. LisseN, The maotion of a thermoelastic solid, Quart. Appl. Mach., 15 (1957).

G. A. NariBoLl, Spherically symmetric thermal shock in a medium with thermal and elastic de-
Jormations coupled, Quart, J, Mech. Appl. Math., 1, 14 (1961).

R. B. HETNARSKI, Coupled one-dimensional thermal shock problem for small times, Arch, Mech.
Stos., 13 (1961).

B. A. BoLrey, I S, ToLins, Transient coupled thermoelastic boundary value problems in the half-
space, J. Appl. Mech., 29 (1962),

R. Muki, S. Breuer, Cowupling effects in transient thermoelastic problem, Osterr, Ing. Archiv.,
16, (1962).

G. PaARriA, Coupling of elastic and thermal deformations, Appl. Sci. Res. (A), 7 (1958).

G. HERRMANN, 1) On a complementary energy principle in linear thermoelasticity, J. Aero/Space
Sciences, 25 (1958),

2) On variational principles in thermoelasticity and heat conduction, Quart. Appl. Mech., 2,
21 (1963).

W. Nowack1, A dynamical problem of thermoelasticity, Arch. Mech. Stos., 3, 9 (1957).

H. PARKUS, Stress in a centrally heated dise, Proc. Second U.S., Nat. Congr. Appl. Mech., 1954,
E. SternpERG and J. G. CHAKRAVORTY, Thermal shock in an elastic body with a spherical cavity,
Quart. Appl. Math., 2, 17 (1959).

J. IeNAczAk, Dynamic thermoelastic problem of a spherical cavity, Arch. Mech, Stos., 11 (1959).
J. Ienaczak and W. Nowacki, The problem of conceniration of periodic thermal stresses at
eylindrical holes and spherical cavities on uniform plane heat flow, Arch. Mech. Stos., 6, 12 (1960).



PROBLEMS OF THERMOELASTICITY 61

92,

93:

94,

a5,

96.

97.

98.

99.

100.

101.

M. Zo6rAawsKl, Moving dynamiec heat sources in a viscoelastic space and corresponding basis solu-
tions for moving sources, Arch. Mech. Stos., 2, 12 (1961).

B. A. BoLey, A. D. BARBeR, Dynamic response of beams and plates to rapid heating, J. Appl.
Mech., 24 (1957).

W. P. Mason, Piezoelectric crystals and their application to ultrasonics, D. van Nostrand, New
York, 1950.

R. D. MINDLIN, On the equation of motion of piezo-electric crystals, Problem of Continuum
Mechanics, Philadelphia, 1961,

W. Nowackrl, A reciprocity theorem for coupled mechanical and thermoelastic fields in piezo-
electric crystals, Proc. Vibr. Probl., 1, 6 (1965).

S. Kavuisky, J. Petykiewicz, Dynamical equations of motion coupled with the field of temperatures
and resolving functions for elastic and inelastic anisotropic bodies in the magnetic fieid, Proc. Vibr.
Probl., 3, 1(1960).

G. PARIA, 1) On magneto-thermo-elastic waves, Proc. Camb. Phil. Soc., Part II, 58 (1962).

2) Magneto-therma-elastic interactions in an infinite solid due to instantaneous heat sources, Proc.
Vibr. Probl.,, 1, 5(1964).

A. J. WiLLsoN, The propagation of magneto-thermo-elastic magnetic waves, Proc, Camb, Phil, Soc,,
59 (1963).

S. Kauskr, W. Nowackl, Excitation of mechanical-electro-magnetic waves induced by a thermal
shock, Bull. Acad. Polon. Sci., Série Sci. Techn., 1, 10 (1962).

S. Kauski, W. Nowackl, Combined elastic and electromagnetic waves produced by thermal shock
in the case of a medium of finite elastic conductivity, Bull. Acad. Polon. Série Sci. Techn., 4,
10 (1962).

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA
INSTITUTE OF FUNDAMENTAL TECHNICAL RESEARCH

POLISH ACADEMY OF SCIENCES





