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THERMAL EXCITATIONS IN COUPLED FIELDS

S. KAL1SKT and W. N O W A C K I (WARSZAWA)

1. Introduction

The problems of thermal excitations in the theory of coupled fields fall within the
subject called briefly thermo-electro-magnetoelasticity and constitute an extension of the
classical thermoelasticity to the phenomena of coupling with the electromagnetic field.
Obviously, we may also speak more generally about thermoelectro-magnetoplasticity; at
present, however, we lack serious papers in this field and consequently we confine ourselves
to thermo-electro-magnetoelasticity. The richness of the equations, and hence the variety
of solutions and physical phenomena, create a wide field of practical applications for
various particular forms of the theory which is now in the initial stage of development
and has so far comparatively few effective solutions of the fundamental problems; the
same concerns to an even greater degree the practical problems.

Around the early sixties we observed a rather rapid and intensive development of the
theory of coupled fields embracing problems of magnetoelasticity of media without and
with spin. We witnessed also the emergence of electroelasticity (piezoelectricity) in con-
nection on the one hand with the development of the nonlinear mechanics of continuous
media, and on the other with the discovery of new practical possibilities in the theory
of ultrasonics and hypersonics for the application of semi-conductors.

At the same time, there began a rather slower development of thermo-electro-magneto-
elasticity, in the fields of both thermo-magnetoelasticity and thermo-electroelasticity.

The contribution of the Polish school to the development of the theory of coupled
fields in particular to the thermo-electro-magnetoelasticity is considerable and sometimes
pioneering. The purpose of the present paper is a brief outline of the existing achievements
and an indication of the possible trends and new problems.

The thermoelectric, magnetoelectric effects and the fundamental physical relations of
these effects on the elastic field have been known in physics for a long time (see e. g. [1])-
we shall not, therefore, deal with them here. On the other hand, from the point of view
of the field theory of thermal, elastic electromagnetic fields, the problem was elaborated
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as already indicated, early in the sixties. A systematic account of the equations of thermo-
magneto'elasticity was presented in papers [2, 3].

The thermodynamic foundations of the thermo-electromagnetic processes on the basis
of the thermodynamics of irreversible processes were systematized in the monograph [4],
while the complete system of equations of thermo-electro-magnetoelasticity based on
a thermodynamic analysis was given in [5],

In [5] we also deduced new equations of the so-called "wave" theory of thermo-
electro-magnetoelasticity, in which, on the basis of a modification of the Fourier law,
we constructed approximate phenomenological equations of thermo-electro-magneto-
elasticity characterized by a finite velocity of propagation of thermal electromagnetic
and elastic excitations.

The equations of thermo-piezoelectricity including a thermodynamic analysis were
presented systematically in paper [6]. Further, in [7] C. ERTNGEN deduced the equations
on the nonlinear theory of the thermo-electro-magnetoelastic field with finite deformations.

»
In parallel with the fundamental papers concerning the construction of the equation

of the coupled thermo-electro-magnetoelastic fields, there began to appear particular
papers concerning either certain definite solutions or some more general theorems.

Thus, the fundamental one-dimensional problem for the elastic semispace subject to
a thermal shock on its surface, in the case of a perfect and real conductor in the magnetic
field, was solved in papers [8, 9], In [10, 11, 12] particular problems were solved for the
one-dimensional periodic plane waves in thermo-magnetoelasticity for perfect and real
conductors, whereas in [19] the same problems were examined for thermo-piezoelectri-
city. In papers [13, 14, 15] solutions have been given for some two-dimensional stationary
problems of thermo-magnetoelasticity for perfect and real conductors in magnetic field.
In papers [16, 17, 18] were formulated reciprocity theorems. In papers [20, 21], varia-
tional theorems were deduced for perfect and real elastic conductors, while in [22, 23]
the reciprocity theorems for the wave equations of thermo-magnetoelasticity and thermo-
piezoelectricity were investigated. In paper [24] the problem of acceleration waves in
nonlinear thermo-magnetoelasticity was examined.

Besides papers of a field-mathematical nature, a number of papers of a practical
character appeared—e.g. [25], where the problem of conversion of the energy of laser
radiation into heat and elastic energies was considered, and other papers of this type.
Further, some papers were published of a physical nature concerning the character of
the physical relations between the fields—for instance, [26, 27] where the construction
of the equations of thermo-magneto-microelasticity was presented, for media without and
with spin, and further papers [28, 29] in which it was proved that under the influence of the
temperature gradient at sufficiently low temperatures there may exist new types of thermo-
magnetic waves with specific stability properties. These problems are included into the
scope of plasma dynamic; (also in solids).

. For obvious reasons, it is difficult in this paper to embrace this wide field of problems.
Thus, we confine ourselves primarily to the papers on thermo-electro-magnetoelasticity
developed on the basis of the mechanics of continuous media, in its specific language and
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methods. In the final section we refer qualitatively certain wider aspects of the problem
and further trends.

The structure of the present paper is as follows.
After a general introduction section 2, we present the general linear system of equations

of thermo-electro-magnetoelasticity including the thermodynamic foundations—i.e., the
system of equations of thermo-magnetoelasticity, thermo-piezoelectricity, thermo-magneto-
microelasticity and the wave equation of thermo-electro-magnetoelasticity.

In section 3, we deal with the generalization to the nonlinear case of the equations of
thermo-magnetoelasticity.

In section 4, we review the fundamental solutions of the thermo-electro-magneto-
elasticity and finally in section 5, we briefly consider further problems in thermo-electro-
magnetoelasticity.

2. General Systems of Equations of Thermo-electro-magnetoelasticity. Thermodynamic foundations

In this section, we briefly present the equations and the relevant thermodynamic dis-
cussion of the linear theories of thermo-magnetoelasticity, thermo-piezoelectricity, exten-
sions of these equations to wave phenomena, and the equations of thermo-magneto-mic-
roelasticity. We do not examine the assumptions, referring the reader to the papers £5, 26].

2.1.The equations of thermo-magnetoelasticity of conductors. According to [2, 3, 5], the equa-
tions of thermo-magnetoelasticity of real anisotropic conductors in a magnetic field have
in RMKS units the form:

roth = j + D, r o t E = - b , divb = O,

(2.1) ei»t-*»,fc+(JxB0) l+fl i£» :l-P|,

Here,

t

(2.2) aik = Eikmne,m-ccikT- j Rlkmn(t-T)[emn{x)-aOikT(T.)]dx,
0

Ji = ritk Ek Klk Tik + t]ik(u x BoX+Qe M;,

where aik = EikimaOim, elk = 1/2 («,,*+«*,,).

The system of Eqs. (2.1) constitutes a system of Maxwell equations, elasticity equations
and the heat conduction, respectively, with the appropriate couplings, while the Eqs. (2.2)
are equations" of state and the relations between the generalized forces and fluxes, respect-
ively. The expressions Qe Et, Qe wfmay be disregarded in accordance with the linearization.
The notations for the temperature, displacements and the field components are the usual
ones. The tensors have the following meaning:
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Otk stress tensor,
Eiitmm Rumn tensors of elastic and relaxation moduli,

,M;s, Eik tensors of magnetic and electric permeabilities,
rjlk tensor of electric conductivity,

«ik> aoi)c tensors of thermal expansion,
k,k tensors of thermal conduction,
Xik tensor describing the influence of the strain on the temperature field,
nik tensor describing the influence of the current intensity of the heat flux,
Klk tensor connecting the temperature gradient with the electric current,
p, vector of body forces,
/ density of thermal sources,

Ho, B0 vectors of the initial magnetic field and the magnetic induction.

In the isotropic case, the system of Eqs. (2.1) and (2.2), after certain transformations,
take 'the form:

roth = j + eE+ — a — (iixH0),

(2.3) r o t E - -/,/h,

(jQU =GV ( 0 )g ee
c

where K — Ao + 2/3 G.
• In the coordinate system connected with the medium, the constitutive Eqs. (2.2) take

the form:

b°t = /.i,k hi, D? = % El, ft = tjtk El - nik T°k.

To derive the symmetry and energy relations, we briefly discuss the first and second
laws of thermodynamics.

The energy equation for the thermo-magnetoelastic field is:

(2.4) - / qt dAtr- JNtdAt- / Qwil.dA. + j ^ a dA.
A A A A

- ~ -

where Ht = HOi + ht, Bt = BOi + bt, w = lj2u?

w0 is internal, mechanical energy per unit mass, iVj-Umov-Pointing vector,g,-heat flux.
Making use of the Gauss formula, the expression for the Lorentz force and the Fourier

law, we have:

j

Bearing in mind that the energy equation of the electromagnetic field, independently
of the contribution of the mechanical and thermal fields, has the form:

±-~ C(HiBt + ElDddV+ CE,jtdV**0
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and taking into account the complete linearization we can represent the first law of thermo-
dynamics for the thermo-magnetoelasticity in the form:

(2.7) QW0 = EtJt + <ru eu - (JF, + Pt) ft, + (fey TtJ)it- (nikjk)A,

where Ft = Qe Et + (j x B),.

We now proceed to the second law:

(2.8) - | < ~ f QS dV+ J Qsut dA,.
V A

Here s is the entropy per unit mass, Q quantity of heat entering V. Introducing the density
of entropy production a, we can write:

(2.9) j a dV- f -^ dAi - ~ f QS dV+ C QSU, dA,,
V A V A

where 0 = To + T, TIT0 ^ 1.

Hence we obtain:

(2.10)

and independently:

(2.11) QWO = Qds+atJeu.

After appropriate transformations, (2.7) can be written in the form:

(2.12) QW0 =
(for P, = f = 0), where

(2.13) E 0 = E + ( u x B 0 ) , jo = J

Thus, from (2.11) and (2.12), we obtain:

0 ~ 0 [ O j ,

and hence, making use of (2.10):

(2.15) o-= ^ Q~,

where Eotjoi is the term describing the Joule heat.
If in (2.15) we choose in an appropriate manner the forces and the fluxes, making use

of the Onsager principle we arrive at the symmetry relations.
We set

(2.16)

7
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Then the symmetry relations take the form:

(2.17) %(B)=»?W(-B), v«(B)=vH(-B), yjt(B) - y

For the rate of entropy we have the expression

(2.18) a = r\ik JoiJok + ~Q4 (vik-f,i Ksk n~i) T,t Tk,

which implies the conditions of its positiveness.
In the isotropic case, we have:

(2.19) a = ^ + 4-(v-— )TJ,

where v — 6K2/t] — k, which requires the positiveness of k and r\.

2.2. Thermo-piezoelectricity. In the case of dielectrics, the coupling of which with
the elastic and electric fields occurs by means of the piezo-effect the equations of the
coupled fields of thermo-piezoelectricity in the linearized form take the form [5, 6]

(2.20)

where

^

The upper indices denote the thermodynamic constancy of the quantities for which
the tensor is defined. In the above equations, the notations are analogous to those in the
proceding section and, moreover, the following have been introduced:

r™ tensor of piezoelectric constants at a constant temperature and magnetic field,
Pi vector connecting the electric induction with the temperature.

Substituting from (2.21), we write in full the system (2.20):

Eiklmum,ni~riklEl,i~aik ^,i = Q^k •>

ttjk Hkj = - j riu(Uk.i + Kk) + «y Ej

rotH = D,

e

a,

L

1

rotE = - B

,k = EfkZemn-

)i = rfk
Hekl + e

. ,,TeH rr
i — "•ik -"fc •

divB

(feyT,,),<

TeH p ,

'I Ei + Po

= 0,

= To i ,

rTH E

et"T,

XIJKJ-PA+PO T-TJikijTjli = 0,
where 6=T0 + T, TjT0<il.

The principle of conservation of energy yields:

(2-23) - jN,dAt- JqidAi+ J <xuiijdA^ f (K+ U)dV,
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where
Nf = BUk Ej Hk Umov-Pointing vector,

X = -— Qiif density of kinetic energy,

U density of internal energy.
Applying the Gauss formula to (2.23), after transformations we obtain:

(2.24) U = frw«y+GB,A+H|*i)-««.».

According to the definition of entropy

«,.,= - 0 s w -T0s,

and the Fourier law

(2-25) <li=-ktJe,j=-ktjTj,

we obtain, introducing the free energy:

(2.26) Uo = U-Tos

(2.27) Uo = ary eu + (£, Dt+H, B;) +ts= U0(eu, Dt, Bus).

Hence,

(2.28)

If we choose

(2.29) U0 = j J }

- Kl Dk etJ - g? sDt - yff setJ+ ~ Qi^1 Bt Bk,

where

£ DsB T-.J5SB jpDsB j-,DsB
Ikmn ~ Eklmn t-'lknm — ^mniki

Pu = Pji > "MJ = nkji > 7ij = 7M > VikWik) - l J

we arrive at the expressions for at], P, Elt H}.

Transforming these expressions by means of the coefficients used in (2.21), [5], we
arrive exactly at the relations (2.21). In general in the equations of thermo-piezoelectricity,
the influence of the magnetic induction may be disregarded, which results in a simplifica-
tion of the equations and makes it possible to introduce the potential of electric field.

A discussion of the second law of thermodynamics implies

dU0 dU0

(2.31)

which, making use of the Fourier law leads to the condition:

02 02 02
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this, in turn, requires the symmetry ku = kn and \ku\ > 0;

fen ki2

k2t k22

2.3. The wave equations of thermo-electro-magnetoelasticity. It was proved in [5] that gene-
ralizing in an appropriate manner the Fourier law, we can extend the systems of
equations of thermo-magnetoelasticity and thermo-piezoelectricity to wave equations—
i.e., equations in which the disturbances of all fields, including the thermal field, are pro-
pagated with a finite velocity.

This effect cannot be obtained (see [5]) by taking into account relativistic effects in
the systems of equations. In view of exigencies of space, we do not quote here the consider-
ations and modifications of the thermodynamics of irreversible processes, referring the
reader to* [5], but we write down the final wave equations. These equations therefore
contain strongly non-stationary processes by contrast with the above considered parabolic-
hyperbolic equations which are true for stationary or weakly nonstationary processes.
The wave equations#of thermo-magnetoelasticity have, according to [5], the form:

roth = j + D , ro tE=— b, divb = 0,

(2-33)

= fiikhk, Dt = sik\_Ek + (u xBo)*] - -^(uXHo)(,

«T(fc = Eikmtmn—«ikT (the relaxation has been disregarded)

Ji = »7i*£fc+Kj*[fciu €j - fcjy nJa jJ + jj,k(n x B0) t + ee u{,

where the constant T has the character of the relaxation constant and follows from the
generalized Fourier law:

(2-34 *Qut+<li.i=-(k,jT,j),iHnjkJkh>

since T -+ 0, the Eqs. (2.33) are transformed into the equations of (2.1).
In the case of an isotropic medium, the Eqs. (2.33) take the form:

roth = j + e[E + (iixB0)]5 r o t E = - b , divb = 0, divD = O (ee = 0),

eii = GV2u + (A+G)graddivu-agradr+(jxB0) ,

P ' f p f X d i \ i 2 = 0 ,

whereA=T o a , p = p0T0, (p

The corresponding equations of thermo-piezoelectricity have the form:

Eikmnum,m-riklEiti — OCikTA = QUk,

(2
 ewH*J = ~2 riki(."u + iii,k) + eijEj + pt f,

8ijkEj,k = /ljkHk,
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).«-o.
Since % = 0, they are transformed into (2.22).

It can readily be verified that both (2.33) and (2.36) constitute hyperbolic systems of
equations (see [5]). The idea of an experimental verification of the wave phenomenon
on the basis of the Cerenkov effect in coupled fields was presented in [30].

In our considerations, we have not dealt with the boundary conditions. In general,
they follow directly from the physical nature of the relations on the boundary and can
be expressed in terms of the field components and the constitutive relations. It has been
necessary to confine our review mainly to the equations and the physical effects of
field couplings.

2.4 Thermo-magneto-microelasticity. In the case of medium, without spin, we can easily
generalize the equations of thermo-microelasticity (with 6 local degrees of freedom) to the
equations of thermo-magneto-microelasticity [26]. In view of exigencies of space, we omit
here also the thermodynamic considerations, quoting only the final system of equations.
In the particular case of a centrosymmetric body (more general look [26]) we find:

roth = i + eE ——̂  (iixH0), rotE = — uh,

Gii = (ji + a) V2u + (X + pi - a) grad div u + 2a rot cp + Qe E

+ (j xB0) — 3a0 KgvadT+J*,

(2.37) mip = (y + e) V2<p + (/? + y — e) grad div tp + 2a rot u

fit + Adivu+7rdivj-/cV2T = / ,

(the terms gcE, eeu drop out in view of the linearization; we have written them to in-
dicate the structure of the equations).

The equations of thermo-magneto-microelasticity for a medium with a spin are far
more complicated. In fact, in this case the equation of inicromoments and the Landau
spin equation require a deeper physical analysis in order to determine the nature of the
couplings [27]. Similarly, the equations of micro-piezoelectricity are more complicated;
here the basic problem is the connection between the polarization and the micromoments.

We have omitted here the boundary conditions, referring the reader for the details
to [26]. However, these conditions follow either from the variational equations or from
the fundamental physical considerations if we make use of the appropriate state relations
for the stresses, moments, inductions, etc. and the components of the displacement, micro-
rotations, field vectors, etc.

3. Nonlinear Equations of Thermo-magnetoelasticity

In view of exigencies of space, we do not intend to discuss the nonlinear (finite deforma-
tions) equations of thermo-piezoelectricity, or more generally, the thermo-electroelasticity
of dielectrics. These equations can easily be derived on the basis of the nonlinear equa-
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tions [31] for the general dynamics of dielectrics, by completing them by the equations
of heat transport and thermal couplings.

Consider now briefly the nonlinear equations of thermo-magnetoelasticity [24], the
investigation of which has begun only recently. Here, similarly to the linear theory we
can consider jointly the problems of thermo-electroelasticity and thermo-magnetoelasticity,
but in view of the physical nature of the problem and different ranges of applications of
dielectrics and conductors, a separate consideration is simpler and more expedient. Similarly
to the linear case, we do not deal here with the media with spin. These problems will be
examined in the final section.

Denote the natural, initial and current coordinates by xa,Xk,yit respectively. The
deformations at an arbitrary instant of time are described by the relations:

(3.1) y = y(x,0

We follow here the notations of TRUESDELL and his collaborators.
Disregarding the mechanical body forces, the system of nonlinear equations of thermo-

magnetoelasticity takes the following form:
1. The Maxwell equations:

. ^«-D*-i 8Di-a

where

ei = £j + eirs vr Bs, Hi = H, - 8irs vr Ds, 2), - e£ ; + ae / rs vr H,,

the vectors have the same meaning as before, and e, n, eQ, fi0 denote the electric and mag-
netic permeabilities in the medium and in vacuum; siJk is the unit pseudotensor. We have
also denoted:

2. The equations of motion:

3. The equations of energy balance:

(3-6) gS^tu-
8yt>

where tu is the Cauchy tensor and E is the internal energy. The above equations have
to be completed by the equations of state and transport:

C3-7) hi = «UCPI« 0), 9t - q0,j, PM 0),
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where 0 is the temperature

11 Sy- ' Pt* dx. '

The functions tu, q have to be chosen in such a way that the symmetry conditions are
satisfied, and, moreover, that the Clausius-Duhem inequality

(3-8) QS-^-4

holds true.
A shortcoming of the above equations consists in the fact that some derivatives are

with respect to x while some are with respect to y.
The equations considered can be simplified by referring them to the natural configura-

tion by means of the transformation:

cix[x,i) — jxaiUi\x,i), e^Xji) — pi^tj^Xji),

£ » = J~1V' Va Vh C- t V (x t) = X iV'(x t)

•laivx>t^ — Jxa,j Hjy.*-'1) ' !?0 — JQ< utx\x->1) — Jxa,i Hivx>'I

where

dX« T-
XxA~ly^' Pi°

Then the equations take the form:

(7Xfl Q^a

(3-10)

oily •, da,
p ' ' /7 ft

= 0,

dxx

Here we have

7 T — 1 / — I T - — 1 1 \

where

.-i -. dx«

and
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(3.12)

^-^t-i~-^>°-
The equations are considerably simplified if we assume e = e0, \x = yuo, and disregard

the effects connected with the velocity of light. A further simplification is obtained for
perfect conductors. For details, the reader is referred to [24], The latter paper contains
also a consideration of the problem of propagation of the acceleration waves for the
equations derived in this section.

4. Review of the Fundamental Solutions of Magneto-thermoelasticity

4.1. One-dimensional problem of magneto-thermoelasticity. In this field, there have ap

peared papers concerning the propagation of plane magneto-thermoelastic waves. They
deal mainly with real conductors. The problem of propagation of a plane wave in an
infinite medium was first considered in a paper by G. PARIA [10] and then, under wider
assumptions, by A. J. WILLSON [11]. PARIA assumed orthogonality of the initial vector
of the magnetic field to the direction of propagation of the plane wave; A. J. WILLSON,

on the other hand, assumed that the initial magnetic field has also a component in the
direction of propagation of the longitudinal wave. The initial field is described by the
vector H = (H^ H2, 0), and all quantities changing with the deformation, temperature
and electromagnetic field depend on the variables xi and /.

If we assume that Hl = 0, H2 ^ 0, we find that the transverse wave is not coupled
with the temperature and electromagnetic fields; the coupling appears only in the longitud-
inal wave. If H1 # 0, H2 = 0 there exists a coupling of the displacement and temperature
fields in the longitudinal wave and a coupling of the deformation and electromagnetic
fields in the transverse wave. Clearly, in the case Hx =£ 0, H2 ¥" 0, we have coupling of
the deformation, temperature and electromagnetic fields in both the longitudinal and
transverse waves.

Two particular cases of propagation of a plane wave were examined by W. NoWACKl
[12]. They are produced by the action of either a plane heat source of the type Q(x, t) =
Qo Six}) e~"ot or body forces P(x, t) = Po 5(xt) e~imt. The equation for the longitudinal
wave in the case of a perfect conductor has the form:

(4.1)

This equation differs from the equation of propagation of the thermoelastic plane wave
by the terms c0 and m0 = mjcl, where c0 = c?(l+oc), a = a%\c\. Here a% =.HIHQ\\TIQ,

and aQ is the Alfven velocity. The electromagnetic excitation is described by the quantity a.
It follows from the structure of the Eq. (4.1) that the plane wave undergoes dispersion

and damping.
Another one-dimensional problem soluble in a closed form is the propagation of

a plane wave in the elastic semi-space xt ^ 0, due to a sudden application of temperature
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of the plane xx = 0 bounding the semi-space. At the instant t = 0, the temperature was
applied and held at this value. Under the action of the thermal shock 0(0, t) = 60 H(t)
a magneto-thermoelastic wave is propagated in the medium, depending on two variables x t

and t. The problem under consideration was discussed in two papers by S. KALISKI and
W. NOWACKI [8, 9]—in the former for a perfect conductor and in the latter for a real
conductor. To derive results sufficiently simple to be examined analytically, the coupling
between -the deformation and temperature fields was disregarded. Finally, it was assumed
that the boundary x± = 0 is free of tractions. The closed expression for the displacement
ut{xu t), the stress ffit(xi> t), and the field component h3(xt, t) were deduced. It turns out
that the stress a11(xl, t) consists of two parts, first having the nature of an elastic wave
moving with a phase velocity c0 = c1(l+a)1/2, and the second of a diffusional nature.
When the elastic wave passes through the plane x% = const at the instant t = xjco,
there appears a jump in the stress of constant value yQoj&(l + P), where y = (3A+2^) a,;
here, A, n are the Lamd constants in the adiabatic case and a, is the coefficient of linear
thermal expansion 9 = c§/Ci and /? = «^0/a, where

The modified electromagnetic wave is propagated with the same velocity as the modified
elastic wave, and in the plane xx = const at the instant t = Xj/c0 has a discontinuity.
There is a wave h0 moving with the light velocity c radiated out into the vacuum. If we
assume that the initial magnetic field H = (0, 0, H3) vanishes, then the results become
those obtained by J. V. DANILOVSKAYA in the theory of thermal stresses.

4.2. Two-dimensional problem of magneto-thermoelasticity. In this field, only particular
cases were considered, concerning the propagation of a cylindrical wave in a perfect and
real conductor (W. NOWACKI), [13, 14, 15]. If the plane in which the excitation is pro-
pagated is the plane xu x2, then the production of cylindrical waves is possible only when
the initial magnetic field has the direction of the x3—axis. Assuming that H = (0, 0, H3),
we arrive at the following system of equations of magneto-thermoelasticity for a perfect
conductor:

(4.2) ^Vitt«+(A+/t+a§e)ttw,+.XB«e««+O'0.«. ««* 1,2

(4.3) (V2-— dt)e-ndtdivi= - — ,
\ K J K

where a2
0 = H\ ^ATZQ , V? = d\ + d\ .

The Eqs. (4,2) are the displacement equations in which the influence of the electromagnetic
field is expressed by the term al e. The Eq. (4.3) is the heat conduction equation. When
a0 = 0, the Eqs. (4.2) and (4.3) become the equations of thermoelasticity.

Decomposing the displacement field and the body forces into the potential and soleno-
id al parts



96 S. KALISKI AND W. NOWACKI

and eliminating the temperature 9, we obtain the following wave equations:

(4.5) (n?ni-^mod Iv?)0 = - ^ - - ! F n § # ,
K. VQ

(4.6) DIW=-^X.
c2

We have introduced here the notations:

•
2 — v2 ?>2 n 2 —v2— D2 n2 — v2— ;}i — v i — ^ 2 ~ o f > 'LJ2 — V i — T 2 " ° t , U 3 — v x —-On

The Eq. (4.5) represents the longitudinal wave undergoing a dispersion and damping.
In the infinite space, the factors producing the longitudinal wave are the heat sources
and body forces of the form Xa = p$iCC) a = 1,2.

The transverse waves are produced in the infinite space by the body forces Xt = — qd2 x,
X2 = e^i X- They are not dispersed or damped and are propagated with acoustic valocity c2.
These waves in the infinite space are not accompanied by temperature field. However,
there exists an electromagnetic field, for

E = i?£^?- (_ 3 ^ , 3 ^ , 0 ) h = 0, j = 0.

The system of Eqs. (4.2), (4.3) can also be uncoupled by using three functions: the vector
V — ((Pi>cP2, 0) and the scalar <!;.

This method constitutes a generalization of the method applied by Mv IACOVACHE to
the problems of dynamic elasticity and the B. G. GALERKIN method in static elasticity.
This paper contains two particular problems: the action of a linear heat source Q (r, /) =
Q05(r)l2nre~'°", and a linear center of pressure 9-0 = &0 8 (r) J2nre~iat.

There also a two-dimensional problem was examined for a medium with finite con-
ductivity. The system of displacement equations

(4.7)

and the heat conduction equation

(4.8)

are completed by the field equation:

(4.9) Vlh3-Bd.h3 =
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The above representations reduce the system (4.7)-(4.9) to the following wave equations:

(4.10)

/ 1 , \ 1
6d.111! / V 2 — rl \ W — v

\ C2 / C2

, 1

(4.12)

Here, the Eq. (4.10) represents the longitudinal wave, the Eq. (4.11)—the transverse
wave. The Eq. (4.12) is the heat conduction equation and (4.13) the field equation. It is
evident that in an elastic space, the equation of the longitudinal wave is independent of
the other equations. Eliminating h3 and & from the above system, we arrive at a complex
equation for the longitudinal wave:

(4.14) C D i D i d(V?(Z>6T + £ H n3)0 = DQ g - D Q i ^ ,

a2

where D = V? — fid,, eT = r\Kin, eH — a,fiic, a = —£-.

In this equation, the coefficient e r describes the coupling between the deformation and
temperature fields, while the coefficient eH couples the deformation and electromagnetic
fields. The longitudinal waves undergo dispersion and damping.

Well known simplifications are obtained by assuming an adiabatic process (for Q = 0),
which leads to the wave equation:

1
(4.15) (Drji-a/?9«V?)0= =-D&,

the structure of which resembles that of the wave equation in the coupled thermoelasticity.
The Eq. (4.14) is considerably simplified if a = a\\c\ 4. 1—i-e., when the initial magnetic
field H = (0, 0, H3) is small. In this case, the perturbation method may be of considera-
ble use.

4.3. General theorems of magneto-thermoelasticity. One of the most interesting theo-
rems of the theory of elasticity is the Betti recipirocty theorem. This is a very general
theorem, and offers the possibility of introducing methods of solving the equations of
the elasticity theory by means of the Green function.

The reciprocity theorem was extended by V. CASIMIR-JONESCU to the problems of
coupled thermoelasticity. The generalization of the reciprocity theorem to the problems
of magneto thermoelasticity was given by S. KALISKI and W. NOWACKI in the three papers
[16, 17,18]. In the first of these the theorem was examined for a perfect isotropic conductor,
in the second for a real isotropic conductor, and in the third for a real anisotropic con-
ductor. Assuming that the motion of the body begins at the instant t = 0, and that the
initial conditions are homogeneous, we obtain from the constitutive relations the identity:

(4.16) aijBlj-a'u8u + y(0e'-—6'e) = 0.
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Here cu, eu, etc. denote the Laplace transforms of the functions cu> su, etc., Integrating
(4.16) over the volume of the body, and applying the Gauss transformations we have:

(4.17) f(Xtu'i-X'iut)dV + JiPiUl-pJlJdA + y f(de'-6'e)dV
V

Here, Tu = no[4n(ht Hj + Ht hs — 5u{hk Hk)) are the components of the Maxwell tensor
and Pi = OijVj, is the traction on the surface A. From the heat conduction equation
written down for the two states, we obtain:

(4.18) f (eO'-e'6)dV = - 1 - f (Qff-Q'0)dV+ — f 0'Otn-d9[,,)dV,
J Ktip J yp J
v v A

where p is the Laplace transform parameter.
Eliminating the common terms from (4.17) and (4.18), we obtain for anisotropic body

the following form of the reciprocity theorem:

(4.19) Knp [ / M -X[ ut)dV+ f (p; u[ - p't ut) dA]
V A

+ 7 J (Qe'-Q'0)dV + yK f (e'8,n-Wn)dA = tiKP f (fiJe'u-f'ijeiJ)dV.

For an unbounded body V, the Eq. (4.19) is considerably simplified. The integrals drop
out also in a bounded body, in the case of homogeneous boundary conditions. It can
easily be proved that then the Eq. (4.19) is decomposed into two parts:

r\Kp j (XiU't-X'tUJdV+y j (Qd'~Q6')dV = 0,
V V

(4.20)

p J (Tu8lj-Tljlt})dV=Q.
v

The validity of this decomposition follows from the symmetry of the system of the dis-
placement equations and, hence, the symmetry of the Green function.

Inverting the Laplace transform in the Eqs. (4.20), we arrive at the final form of the
reciprocity theorem for a'perfect isotropic conductor:

J dx j [Q(x,T)9\x,t-r)-e'(x,t)Q'(x,t-x)]dV\=0,
o v >

(4.22) j \dr
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On the basis of the above theorem, a number of practical formulae can be deduced,
possessing many applications. In particular, we can obtain an extension of the Somigliana
theorem of the problems of magneto-thermoelasticity; this theorem can be used to con-
struct integral equations for certain boundary value problems.

We shall not dwell here on reciprocity theorems for a medium with a finite electric
conductivity, isotropic and anisotropic. Of course, the formulae here will be much more
complicated. Finally, variational theorems were deduced for perfect and real conductors,
in which the displacement, entropy and field underwent a variation [20, 21].

These theorems make it possible to deduce the fundamental energy theorems, which
can be used to prove the uniqueness of the solution of the differential equations of thermo-
magnetoelasticity.

4.4. Thermo-electroelasticity in piezoelectrics. In conclusion, a few words about the
general theorems of thermo-electroelasticity in piezoelectrics.

The general constitutive equation and the fundamental energy theorems .were given
by R. D. MINDLIN [6]. The variational principle and the reciprocity theorem was presented
by W. NOWACKI in [19]. The reciprocity theorem for the wave equations of piezoelectricity
is contained in the paper by S. KALISKI [22]. Similar theorems for the wave equations of
thermo-magnetoelasticity were given by S. KALISKI in [23].

5. Remarks on the Problems of Thermo -electro -magnetoelasticity of More Complicated Media

The problems considered in the preceding four sections concerned only problems of
thermo-magnetoelasticity and thermo-electroelasticity for the simplest cases—i.e., in the
first case for simple media without spin in which the coupling with the electromagnetic
field appears only through the Lorentz force in the equations of motion, and the coupling
due to the internal mechanisms is present only for the temperature field. This excludes-
all ferromedia—i.e., media is a spin. Omitting discussion of the transport phenomena of
heat, for media with the spin the equations were derived in [32]. The heat problems are
here very complicated not only as a result of the conductivity and the couplings but also
in view of the production of heat in the field processes due to the effects of nonlinear
irreversibility (the hysteresis loop); this fact, similarly to the thermo-magnetoplasticity,
introduces a very serious difficulty. Not only are there no present solutions to these prob-
lems, but we lack sufficiently precise formulations (in the media with a spin the boundary
conditions question is a problem in itself)(1). A similar, though somewhat simpler situation
occurs in the case of the second group of problems (ferrodielectrics, etc.).

Another group of problems omitted in this paper are the problems of semiconductors
and semimetals in which, in view of their present importance and engineering applicability,
a phenomenological construction of the theory of coupled thermo-electro-magnetoelastic
fields is of fundamental engineering importance, while the complexity of the equations
and couplings contains a variety of physical phenomena. In order to realize the importance
of these investigations for measurement technique in electronics, ultrasonics and in the

(') A general paper about the equations of electro-magneto-elastic-spin field theory with correct
boundary conditions is in preparation to print by S. Kaliski. .
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methods of investigation of physics of solids, suffice it to mention by way of example
the possibility of amplification of thermal, acoustic and electric impulses in piezosemi-
conductors and semimetals, and couplings of these fields with the spin waves in ferro-
bodies, and further a number of phenomena connected with thermo-electromagnetic
waves in low temperatures [28, 29] or a number of magnetocaloric phenomena. Recent
applications of laser radiation to the investigation of the propagation of shock and heat
waves, propagation of microcracks, problems of conversion of heat, mechanical and
electromagnetic energies in these processes (see e.g. [25]) constitute further examples
of and suggest perspectives in the theory of coupled thermo-electro-magnetoelastic fields.
A separate problem is comprised of the microquantum solutions for lattice dynamics,
taking into account the effects of coupled fields, problems of dynamics of dislocations in
piezoferromedia, etc.

The scope of this paprer permits mention of only the most impotant problems.
Bearing in mind further scientific possibilities, it seems that the following several

trends should be mentioned.
. 1. Mathematical solutions in the field theory of linear equations of thermo-magneto

and thermo-electroelasticity, and practical applications.
2. Investigations of nonlinear equations (including plastic effects).
3. Constructions of the theory of thermo-electro-magnetoelasticity for media with

spin (in general, ferrobodies).
4. Investigations of thermo-electro-magnetoelastic fields in semiconductors and semi-

metals.
5. Microscopic invetsigations (lattice dynamics, dislocations, etc. of the above pheno-

mena in coupled fields).
6. All engineering problems, making use of the possibilities created by the application

of laser radiation to the investigation of physical media.
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