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1. Introduction

In the papers [1] (1955) and [2] (1962), a general method was presented of solving
problems of elastostatics with mixed boundary conditions. In the period from
1955 to 1962, a number of dynamic problems were solved concerning, mainly,
stationary vibrations of plates [3, 4, 5], and also stationary vibrations of elastic
parallelepipeds and finite cylinders [6, 7, 8], the methods used basing as presented
n [1] and [2].

In this paper will be presented the application of the method suggested for solving
static problems to problems of dynamics-that is, of stationary and non-stationary
vibrations of elastic bodies.

Let us consider a simply connected elastic body B bounded by the surface S,
and let this surface consists of two smooth surfaces intersecting along the curve

Fig. 1

a (Fig. 1). Inside the body, there act body forces X, on the surface S, external forces
q, and on the surface S, the displacements u are given.

We assume that the external and body forces, which are functions of the time
variable ¢, start acting at the instant ¢ = 0+4. By x we denote a point inside of the
body with the coordinates x;, x;, Xg, while & is a point of the surface S, with the
coordinates &, &,, &,

The functions u,(x, 1), representing the components of the displacement vector,
have to satisfy the motion equations, in terms of displacements,

(1.1) pu,'j—}-(l—{-p)uj'”-{-)(;: Qﬁ;, l,j= 1,2,3
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the boundary conditions

wé, =11 on the surface S,
2 {O':J(E ,Omy= q(&,7)  on the surface S,,

and the initial conditions
(1.3) u(x,00=0, #x,00=0, xeB.

In the above equations p and A are the Lame constants, o;; the components of
the stress tensor, while n; denotes the components of the unit normal vector of the
surface S. By a dot over a function we denote its derivative with respect to the
time-variable.

The stresses o;; are connected with the deformations &; by Hooke’s law

(1.4) C"”= 2#8U+)'auskk5 i,j,k= ]., 2, 3,

while the deformations are given, in terms of the displacements %;, by the relations
1
(1.5) &y = 5 (1,0

Thus, after solving Eq. (1.1) with the prescribed boundary conditions (1.2) and
the initial conditions (1.3), and having determined the displacements »;, we obtain
the deformations ¢; and stresses o;; from (1.5) and (1.4).

Let us observe that on the surface S; the displacements are known, while the
support reactions-that is, the surface forces o;;m;,= ¢; are on this surface unknown.
Similarly, on the surface S; we know the loading ¢; = on;, while the function
u; is here unknown. Hence, in solving problems with mixed boundary conditions,
we can assume as the unknown function either ¢; on S; or #; on S;.

These two possibilities of choosing the unknown function lead to two variants
of solving the problems. We shall discuss them successively in the further sections
of this paper. We shall, however, first introduce the operator notation for the equa-
tion (1.1) and the boundary conditions (1.2). Equation (1.1) will then assume the
form:

(1.1) Dy [u(x, D)+X(x,)=0 xeB,
where
Dy = p oy L3+@+wp)d; 9;,

D= v—pit, d=L;
while the boundary conditions will take the form:
(1.2) {u;('g', N=f&, 1 on the surface S,
g, 0) = L{w(&, 0] = p(u; +u;, )ny+An,diva  on the surface S,

2. The First Variant of Solution

Let us try to reduce the problem with mixed boundary conditions, as formulated
in Sec. 1, to a matter of solving simpler problems, where the type of boundary condi-
tions occurring on the two adjacent surfaces S; and S, is the same.
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To this end we introduce what is called the “fundamental system” which is re-
presented by an elastic body of the same shape as in Fig. 1, but free from loading
on the surfaces S; and S,. Since, however, this body will be subject to forces, it
should be prevented from suffering displacements and rotations. We achieve this
by assuming that at any arbitrary point O of this body the displacements and ro-
tations vanisch. In the “fundamental system”, chosen in this way, we now deter-
mine the Green tensor-field of displacements G(x, x', 1) = [G;(x, X', 1)].

This field will be constructed as follows. We apply at the point x’ € B of our
“fundamental system” an instantaneous concentrated force, parallel to the axis x,.

Owing to this loading in the “fundamental system”, there occurs the displace-
ment vector G®, with the components Gy (i = 1, 2, 3). Directing the instantaneous
concentrated force, successively, parallel to the axes xy, X,, and x;, and then assu-
ming for k, successively, the indices kK = 1, 2, 3, we obtain nine quantities G (i, k =
= 1,2, 3) which form the symmetric (Gy = Gy;) Green tensor of displacements.

The Green functions G, must satisfy the equations of motion, in terms of displa-
cements,

(2.1) DylGulx, x', OlH+6(x—x)6(H)d;, =0, i,j,k=1,2,3, x,x'eB
with the initial conditions

(2.2) Gu(x, ¥ 0) =0, Gulx,x’,0) =0,

and the homogeneous boundary conditions

(2.3) LGy(§,x", )] = 0 on the surfaces S; and S,,£€S.

The relations (2.1) represent three sets of equations (for £k =1,2,3). In (2.1)
O(x—x")0(f) = 6(x;—&;) 0(x,—&,) 6(x3—E&5) 6(f) denotes the Dirac function ex-
pressing the instantaneous concentrated force applied at the point x’ € B, while
by d; we understand the Kronecker symbol. The quantity 6(x—x")d(f)d; indi-
cates that the concentrated force is directed parallel to the axis x;. In the boundary
conditions, the expression L(Gy) denotes the operation off’n;, where off’ is the
stress produced by the instantaneous concentrated force acting at the point x" and
directed parallel to the axis x;. The condition (2.3) shows that the surface of the
body is free from loadings. In what follows, we assume that the Green functions
Gy, are known—that is, they have been determined in the chosen “fundamental
system™.

Now we proceed to solving the second auxiliary problem in our fundamental
system. Let the loading g;(x, ) act on the surface S, of the “fundamental system”,
and, inside of the body, the body forces X;(x, 7), applied at the instant 7 = 0F. All
these forces will produce, in the elastic body, the displacements 2] and stresses o).

The displacements have to satisfy the motion equations:

(2'4) DU[“E(xs I)]+Xi(xs 't) =0
the homogeneous initial conditions

Cl(x, 00 =0, #(x,0)=0,
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and the boundary conditions
(2.5) L[u{(&, 1)) = ofin; = ¢4, 1) on the surface S,,

L&, )] =0 on the surface Sj.
We assume that the displacements #? have been determined in the chosen “funda-
mental system”, and, in what follows, we shall consider these quantities as known
functions.

In our further considerations, we shall use the reciprocal Betti theorem.
This theorem has, with respect to dynamic problems, the forms:

@6 [ [[@ui—xiuyav+ [ [ui—pim)dS—e| [ [Giui—iiu)av=o0,
(B) (s) (B)
or

@n  [[ D) —uDyw)) av+ [ [Lu)—uLw)ds
(B) (5)
—o [ [ [Gigi—iitw) av= o,

(B)

In the above equations, X}, p; denote body and surface forces, respectively, which
produce in the body the displacements #;, while X; and p; belong to the other system
of forces producing the displacements #. '

Let us apply to the equation (2.6) the one-side Laplace transformation given
by the formulae

@8) e, p) = [uCx, Dertdt,  plx,p)= [px, e " dt,
0 (1}

where p is the parameter of transformation — that is, a number with the real part
so chosen as to make the integral (2.8) convergent. After carrying out the Laplace
transformation on the expression (2.6), we have

9 [ [fFig—Ziayav+ [ [ (pii—pii) ds

(B) (s)
— [ [ [ {lp*—puy(oe, O —itCx, Ot~ [t —pui x, 0)—it{(x, O)]di;} dV = 0.
(B

However, according to our above assumptions concerning the application of loa-
dings at the instant ¢t = 0%, and to the consequent initial conditions, we have to
substitute in the expression (2.9) u(x,0)= i (x, 0) = ui(x, 0) = % (x, 0)= 0.
Then Eq. (2.9) undergoes considerable simplification, and takes the forms.:

@10 [ [[a—Xw) av+ [ [(pia—piiyds =0,
(n) s)
or

@.11) f( | J 1Dyt —i4y Dy av+- [ [ 1 LGt —iw LG dS = 0.
B) (8

Let us now apply the formula (2.11) to the displacements u; as given by Eq. (1.1),
and to the displacements G;; satisfying the relations (2.1). Substituting into (2.11)
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y(x,p) = él'k(xa x',p), Dij[ajk(x' x', p)] = — 6(x—x")dy

and denoting by L(x;) = ¢; the known loading acting on the surface §,, and by
L(u;) = R; the unknown function of the support reactions on the surface S;, we
obtain:

@12) [ [[1GuGx, ¥, pYEiGx, P)—Ce—)bydis(x, )] dV (%)
(B

+ £ )j R(E, PYCult ¥, P) dSO + f )j 4E, )Gulé, x', p) dS(E).
Bearing in mind the r::lation '
f( .J; [ 0Ge—x)8ufu(x, p) AV(x) = #(x', p),
we represent (2.12) in the form

@13) W, p) = [[[ X, p)Gulx, x',p) V()
(B)

+ [ [ d@, DG, »', p)dS©+ [ [ R, p)Gin(&, %', p) dSE).

(S2) (s1)
Let us now employ the Betti theorem (2.11) to the functions #§ and Gj,.. Introducing
into (2.11) the relations
=), Dy)=—X, #=0Cu, DyGw)=—0(x—x)

and L(#?) = §, on the surface Sy, L(i#) = 0 on Sy, and L(Gy) = 0 on S; and S,
we arrive at the following equation

@14) @, p) = [ [ [ Zix, DGl ¥, p) V) + [ [ 46, P)GuE, x', p) dSE).

(3 (s
From comparison of (2.13) and (2.14) it follows the relation
@.15) iy(x', p) = B, D)+ [ [ ReE, PGk, ¥, p) dSE).
(Sy)
We have obtained functional equations connecting the unknown functions of the

displacements i, (x’, p) with the unknown support reactions R(&, p) on the surface S;.
Having applied to (2.15) the inverse Laplace transformation, we have

T
(2.16) w(x', ) = u(x’, D+ [ dv [ [ R(E, DGul&, x', 1—7)dS(&).
o (sn
Now we can determine the unknown functions R,(&, p) using the boundary condition
(1.2) on the surface S;. On this surface S; we know the displacements w,(&, t) = fi(§, 1)
thus we can find the Laplace transform fi(£, p). Passing in Eq. (2.15) with the point
x'€ B to the point & on the surface S;, we obtain the relation:

@17) ji& p= ¢, n)+ [ | RiE, p) G, £,p) dSE®, i,k=1,2,3.

(51)
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In this equation, all quantities, except }?;(E , P), are known. We have arrived at
a system of integral equations of the first kind. After solving these equations for
Ry, p), we are able to determine the functions #(x’, p). The inverse Laplace trans-
formation then yields the required functions #z,(x’, t). Finally, we determine from
(1.4) and (1.5) the stresses o;; and deformations ¢; in the elastic body with mixed
boundary conditions.

The formulae (2.15)-(2.17) can be reduced to anothér form which is very conve-
nient in application.

Let us introduce a new displacement tensor Uy(x, &, t). This tensor will be descri-
bed in our “fundamental system” by the set of homogeneous differential equations:

(2.18) D[Up(x,&,0]=0 xeB, &eS,, i,j,k=1,2,3,
with the initial conditions
(2.19) Up(x, €,/ 0)=0, Up(x,&,0=0,

and non-homogeneous boundary conditions

(2.20) LU, 8, 0] = 0(E—£)0,6(1), &£,& €S, on the surface S,
LIUE, ¥, 0]=0, E,EeS,  on the surface S,.

It follows from (2.20) that at the point & of the surface S, there acts an instantaneous

concentrated force parallel to the axes x (k= 1,2, 3).

After solving Eq. (2.18) with the initial conditions (2.19) and boundary conditions
(2.20), we obtain nine functions Uy,. However, owing to the symmetry of the displace-
ment tensor (U = U;), the number of independent functions reduces to six.
Let us now connect the functions Gy, with Uy, using, to this end, the reciprocal theo=
rem (2.11). Then we arrive at the relation

f{ Bf) [ O, &, p) 6Gc—x) 8y, aV)— [ [ Gru(e, %', p) 56— 8, dSE) = 0,

(51)
whence it follows that
(2.21) Uulx', €, p) = Gu(&, ¥, p), Un(x',&,7) = Gu(¥, ', 1).
Inserting the above relation into (2.15), we have

2.22) (', p) = @', p)+ [ [ Rile, p)Uu(x', €, p) dSE).
(81)

The inverse Laplace transformation yields:

(2.23) w(x', 1) = u(x', O+ [dv [ [ RiE, 7) Un(, &, t—7) dS(E).

0 (51)

Passing with the point x’e B to the point &'eS;, and using the boundary condition
(1.2) on S;, we obtain the following integral equation

(2.24) KE D =& D+ [dr [ [ R(E, DURE, E, t—7) dSE).

0 (51)
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The functional relation (2.23) can be interpreted as follows. The displacement
u; at the point x'e B can be composed of two parts—of the displacement #{ produced
in the “fundamental system” by the body forces X; and the loadings ¢; applied on
the surface S, (thus, in the system free from forces on the bounding surface
Sy—that is for R; = 0), and of the displacement produced by the unknown support
reactions R;, acting on S;. The integral

Jde [ [R(&, DUE, & t—7) dS(E),

0 (51)

expresses the superposition of the effects of this support reactions; the displacements
produced by the reactions are integrated both over the surface S, and over the time,
from the instant =0 to 7=1{.

Let us now consider the case of stationary vibrations, where the external loadings
and the body forces are harmonic functions of the time variable:

(2.25) X(x, 1) = Re[XF() €],  qi(x, 1) = Re[g*(x) €.

The quantities X;* and ¢* are independent of the time, and let the frequency be
different from the frequency of free vibrations. The displacements will also be periodic
functions of the time variable, with the frequency o

(2.26) u(x, 1) = Re[uf(x) €], Gulx, x', f) = Re[Gi(x, x) e].
According to the assumptions (2.25), the motion equations take the form:
Diffuf(x, w)]+X¥(x) =0, xeB,

2
(2.27) DY =pu (V2+ -—2—;—-) i+ (A+-p) 9, ;.
2

The appropriate boundary conditions will be written as follows -

w@)=rre@, &esy,
Lu@] = q¥¢), £esi.

For the case of periodic vibrations, we write the reciprocal theorem (2.6) in the
forms:

(2.28)

(2.29) [ [ [ rur—xi*upyav [ [ (pruge—piruzyds = o,
(B) (5) .
or
@29 [ [ [ twr D) —upDy@dv [ [ * L) —ur L(#)]ds = 0.
(B) ()

Applying Eq. (2.29') first to the function ; and Gy, and next to »; and Gy, we obtain
the following functional equation:

(2.30) wt (', o) = l(x', )+ [ [REE)GHE, x', 0)dS ().

(8y)
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Here u*° denotes the amplitude of the displacements produced in the fundamental
system by the body forces X#e'®!, and the surface loadings g*e™* acting on S,.
Introducing the Green functions U, we can represent (2.30) in the form:

@2.31) wr(, ) = upr(x', )+ [ [ RE@UAR, £, 0)dS(®).

' (S1)
Passing now with the point x’ to the point & on S, we arrive at the required system
of integral equations:

(232) FEE) = uwE, )+ [ [ REOUEE, &, )dS(®),

(Sy)
k=123

whence we are able to determine the unknown functions R}().
Let us return to our fundamental functional Eq. (2.23). after passing with the
point x’ € B to the point &' on the surface S

T
(2.33) w(& )= ud(€, 0+ [ av [ [ R(E DGLE &, 1—7)dS(E).
] (sy)
If the surface S; is fixed elastically—that is, rests on a Winklerian foundation, then
we have:

@3 wlE', )= — R, 0.

Here #;, (k= 1,2,3) are the moduli of the elastic foundation, and thus constant
coeflicients.

Inserting (2.34) into (2.33), we obtain a system of integral equations of the second
kind

235 Ry, 0+w [ di [ [ R(E DGE, &, t—1) S+l , )= 0

0 (81)
ike="1,203:

In this case, applying to Eqs. (2.35) the Laplace transformation, we arrive at a system
of Fredholm equations of the second kind. This system can be solved by the itera-
tion method, owing to the weak singularity of the kernel Gy;. For %, — co0, we obtain
a body which is rigidly fixed on its surface S,, while for #, — 0, this surface is free
from loading, and R, = 0.

Let us observe that the surface S; may be constructed so as to carry over only
reactions normal to this surface. Then the additional linear relations, connecting
the components R;, enable us to reduce the system of three integral ‘Eq. (2.24)
to one integral equation, since, in this case, only one support reaction, normal
to the surface, is unknown.

Let us, finally, observe that our considerations include also such cases in which
the surfaces S; reduce to curves.
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We can generalize our method in order to solve the problem of an elastic body
having more then one support surface. Such a body is represented in Fig. 2. The
bounding surface S consists of three smooth surfaces intersecting along the curves
« and f. Let there act, inside of this body, body forces X,and on its surface the external

7,

Fig. 2

loadings q. We shall assume, for the sake of simplicity, that the elastic body
considered is rigidly fixed on its surfaces S; and S The displacements u; must
satisfy the differential equation

(2.36) Dyj(u))+X, =0

with the boundary conditions

(2.37) =0 on S and S5, L(y)=gq; on S,
and the initial conditions

(2.38) =0, #4=0, for =0,

As the “fundamental system” we assume, in this case, the elastic body which is rigidly
fixed on the surface Sy only, and free from loadings on the surfaces S, and S,. In
this fundamental system, we determine the Green functions Gj. These last are
described by the equations:

(2.39) Dy(Gj) 40 (x—x") (1) 6. = O

with the conditions

(2.40)  Gu=0onS;, L(G)=0on 5 and S,
Gr=0, Gy=0 for t=0.

In a similar way, we determine in the “fundamental system™ the displacements
uf, by solving the differential equations

(2.4].) Du(uﬂ)"i“X[ — 0
with the conditions
2.42) W=0onS, L@)=0onS, L)=gq onsS,

=0, =0, forr=0.
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Applying to the functions i; and G, and to the functions # and Gy, the reciprocal
theorem (2.11), we obtain the following functional equation:

(2.43) i, p) = i, p)+ [ [ Ri€, ) GulE, ¥, p)aS(@),

(S1)
where we have denoted by R, (&, ) the unknown support reactions on the surface S .

Passing from the point x’ € B to the point £’ €5}, we arrive at a system of integral
equations of the first kind

@44) 0=, p)+ £ [ Ri(,0)Gue, €, p)dS®, i,k=1,2.3,
(51
whence we can already determine the unknown functions R,(&, p). In the
example presented above, we assumed a new fundamental system in the form of
a body fixed at S;, and free from loadings on S; and S,. However, we can also
assume as a fundamental system the elastic body which is prevented from motion
at an arbitrary point 0 (we assume that at this point the displacements and rotations
vanish) and free from loadings on the surfaces S;, S, and Sj.
Then the Green functions G, should satisfy the equation

(2.45) Dy (G40 (x—x") 8, 6(H) = 0,
with the boundary conditions
(2.46) L(Gy) =0 on S, S, and S,

and the initial conditions

(2.47) Gy=0, Gp=0, fort=0.

The function u{ has to satisfy the differential equation

(2.48) ' D;(up)+X;= 0,

with the boundary conditions

(2.49) L(uf) =0 on S, and Sy, L(u)) = g, on S,,
and initial conditions

(2.50) =0, #=0 fort=0,

If we now apply the reciprocal theorem (2.11) to the function %, which is described
by Eq. (2.39) and the conditions (2.40), and to the function G, and, finally, to the
functions #{ and G, we obtain the following functional equation:

@51)  dx, p) = #(x', p)+ [ [ Raltr, p)Gi(r, ¥, PYAS(ED
(S1)

+ [ [ Ry, p) Guals, %', ) dS(ES),

(53)

where Ry(&;, 1) and Ry(&s, 1) are the unknown surface forces acting on S, and Sj.
We shall find these last unknown functions from the condition of vanishing displace-
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ments on S; and S;. Now, passing with the point x" € B to the point £; € S;, and
with the point x’ € Bto the point &; € S,, we obtain a system of two integral equations:

0= B¢ 2+ [ [ R, p)CulEr, . D) ASE)F [ [ RolEs 1) Gala, &1, 0)dS(ES,

(S1) : (S3)
(2.52)
0= &}, )+ [ [ Ra(Er, p) GulEr, &, )AS(ED

(51)

+ [ [ Ry(Esr 1) G s, 63, )ASEE) 1K= 1,23,

(Sa)
E;,E;ESL, ESsE:;ESB-
After solving the system of Egs. (2.52), and determining the functions R; and Rs,
we find the displacement u, (x", f) from the functional Eq. (2.51). It is clear that we
can extend our considerations to the case in which on the surfaces S,, Sy, and S, ...
are prescribed the loadings, while on the surfaces S;, Sy, and Sj, ... are given the
displacements.

3. The Second Variant of the Solution

Let us return to the solution of the problem as presented in Fig. 1. The displace-
ments are given on the surface S;, while the external forces are prescribed on S,.
The displacements, produced by the loading qe S, and body forces X € B, are
determined by the equations (1.1), the boundary conditions (1.2) and the initial
conditions (1.3).

Let us assume as the unknown functions of the problem the displacements u
of the surface S,. Having thus chosen the unknown functions, we have to assume
a different fundamental system. We choose as the fundamental system the elastic
body entirely fixed on S; and §,. In this fundamental system, we define the Green
function as follows. The functions Gy should satisfy the differential equation

(3.1) D;j[G(x, X', )] +6(x—x)6(t)0,, = 0, x,x" €B,
the boundary conditions

(3.2 Gy (&, %', ©) = 0 on the surfaces S; and Ss,
and the initial conditions

(3.3) Gu(x,x,0)=0, Gulx, x’,0).

We also determine in our fundamental system the displacement u?(x,f) as the
solution of the differential equation

(3.4) Dyl (x, D)]+X;(x, 1) = 0
with the boundary conditions
(3.5 1) (£,7) = 0 on the surfaces Sy and S,,

and initial conditions
3.6) W(x,0)=0, (x,0)=0.
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Assuming that the functions Gy, and # have been determined in our fundamental
system, we shall, in what follows, consider these quantities as known functions.
Let us now apply to the functions ; (satisfying Eq. (1.1) and the conditions (1.2)
and (1.3)), and to the functions G, the Betti reciprocal theorem (2.11).
Thus we obtain

37 [[[1Gulx, ¥, p)Xilx, p)—d(x—x)uile, PIAV(¥)

(B)

— [ [ &, P LIGE, %', pAS(E) =0,
(Sg)
or

@B7)  ax,p) = [ [ [ 1GuCx, ¥, ) Xi(x, paV(x)

(B)
— [[ G, p)LIGAE, x', pdS(E),
(89)
where we have denoted by ff; (£, ¢) the unknown displacement function on the sur-
face S,.
Let us again apply the Betti theorem to the function Gy and %{. This leads to
the relation:

(3.8) W, p) = [ [ [ Gulx, x', )y Xix, p)dV ().
(B)
Hence we can represent Eq. (3.7’) in the form:
(3.9 w(x', p) = B, p)— [ [ Ui&, p)LIG(E, ', P1dS(E).
(Sa)

We have obtained a functional equation with the unknown functions of displacements
u;(x', 1) of the interior points of the body, and the unknown displacements U(&, 1)
of the surface S,.

In order to determine the unknown functions U; (¢, p), we perform on the expres-
sion (3.9) the operation L'(...). In this way we obtain:

(G9) LW, pl= L, pl— [ [ UE, pLLGWE, x', pldSE).
(S2)
The dash at the operator L denotes that the operation refers to the point x’.

Now, we pass with the point x’ € B to the point &' € S,, and we use the boundary
condition which states that on S, there is given the loading q. From (3.9), after
passing with the point x’ to the point & on the boundary S,, we arrive at the fol-
lowing system of integral equations of the first kind:

(3.10) (& = @& p)— [ [ U DL LIGKE, &, p)dS().
(s9)
~In this equations, we know the transforms g, g¢ = L(#) and the functions Gy.
Having determined the'unknown functions U, (&, p), we return to Eq. (3.9), whence

we are able to obtain the transform of the displacement #, at the point x” of the
elastic body.
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Instead of the functions G, we can here introduce a new Green tensor—namely,
the functions Kj, which satisfy the homogeneous differential equations

(3.11) D[ K(x, €', )] = 0
the boundary conditions

Krl'k(f! E's lr) = 0 . on S.T.:
(3.12)

K6, €, )= 0(E—E)0(t)0, on Sy,

and the initial conditions
(3.13) Ky(x,&,00=0, Ky(x,&,0)=0.

Now, applying the Betti reciprocal theorem to the functions G;; and K;, we obtain
the following equation

[[ ] 8Ge—x) 0Ky x, &, pavi+ [ [ 8(—&)8uLIGE, X', P1dSE = 0,

(B) (8a)
whence follows the relation

(3.14) Ku(x', €, p) = —LIGy (&, ', )

It is readily seen that Eq. (3.9) can be represented in the form:

(3.15) i, (s p) = W, p)+ [ [ GiE, PR (¥, £, p)dS(E),
(S3)

and the integral Eqs. (3.10) will take the form of the system:

(3.16) a0 = 4 p+ [ [ O P LKLE, &, p1dSE).
(59)
Let us also examine the case in which the surface S, leans on an elastic Winklerian
foundation—that is, the case in which the relation holds

(3.17) al,)=— U0, k=123
k

In this last case, we obtain a system of integral equations of the second kind

G18) G p+x [ [ OE, DLIKWE, € PIdSE+nak(E ) =0,
(S2)
' k=1,2,3. .
The method presented above can be extended to the case in which on the surfaces
S, 83, Ss, ... are given the displacements, while on the surfaces S,, Sy, Sg, ... are
prescribed the loadings.

The second variant of the solution is obviously less important for practical ap-
plication than the first. This results, first of all, from the difficulties connected with
determining the Green functions Gy, and the displacements #{ in the chosen fun-
damental system, which is represented by an elastic body rigidly fixed on the entire
bounding surface. Moreover, the kernels of the integral equations L'(Kj) exhibit
strong singularities.
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4. Solution for an Elastic Body with a Crack

Let us consider a simply connected body with a crack (Fig. 3). We denote the region
of the body by B, and the bounding surface by S. The upper and lower surfaces
of the crack we denote by S, and S;’ and the remaining part of the surface by S,.
Let the body be subject to body forces and to external loadings q acting on the

Fig. 3

surface S;. These forces produce in the body the displacements n, which are described
by the differential equation:

(4.1) Dy[w(x,0)]+X;(x,)=0, i,j=1,2,3, xeB.

On the surface Sy, let there be prescribed the boundary conditions:

4.2) Liu(é,0l=q(, 0, £feS

and on the surfaces S; and S;’ the conditions:

“4.3) LiwE, 0l=0, &8, 58 .

Moreover, we assume that the initial conditions are of homogeneous type:
4.9 %(x,00=0, i(x,00=0.

As the fundamental system, we choose a body without a crack, and free from loadings
on the surface S;. Having prevented an arbitrary point O of the body from being
displaced, we shall determine in our fundamental system the Green displacement
functions. These last functions, Gy, should satisfy the differential equation:
4.5) Dy [Gu(x, X', D]+0(x—x)8(£) 6y = O,
and the homogeneous boundary and initial conditions:
“ LGy(§, %', 0]=0 on &8,

9 Gul, %, 0 =0, Gy(&,,0)=0.
Finally, we determine in the fundamental system the displacements »{(x, f) which
are obtained from solving the differential equations:

4.7 -Dij[u?(x: H+X(x,7) =0,
with the boundary conditions
(4.8) LI4E, D)= g, 1, &Sy,

and initial conditions
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Let us now use with respect to the functions #; and Gy, the Betti reciprocal theorem
in the form (2.11). Then we obtain:

@10 | h[ )f [GCx, ¥, PX(x, P)—B(x—x") dydi (x5 P V()

— [ [ 4, p)Gutt, %', D)aS©+ [[ Uie, LG, x', pldS(E) =0,
(51) {S;.;_s;)
or
(41 l) ﬁk(x’ 3 P) = ﬁg(l;& p) + J‘_J [f’rf(‘f’ p)‘l" E}l_(‘f’ p)]L[GH( ('Es x'a P)] dS(E)
(Sg2)
Here, we denote by 5’? and U; the transforms of the displacements on the surfaces
Ss and S3', respectively. If we apply the Betti theorem to the functions Gy, and !,
we arrive at the relation:

B, p) = [ [ [ X, p) G, x', pYAVE)+ [ [ @€, p) G, ¥ p) dS(E).
(B (51)
In the functional Eq. (4.11), the unknown quantities are represented by the transforms

Ui = U#+ U7 and the displacements #,. The unknown function U, will be obtained
by performing on the equation (4.11) the operation L'(...), and passing with the point
x’ to the point & on S,. Using the condition (4.3), we arrive at the following system
of integral equations:

@4.12) L&, p) = 0= LEE pI+ [ [ U, p) L'LG(E, &, p)dSE).

(S2)

In the case in which within the crack there are prescribed the loadings g, (¢, p) =
= L'(#(&, p)), the Eq. (4.12) assumes the form:

(4.13) W, p) = BE, P+ {fs { UE, p)L'LIGw(E, &, p)dS(E).

Having solved Egs. (4.12) or (4.13), we can already determine the displacement u,
from (4.11).

Fig. 4

Another way of obtaining the solution can also be demonstrated. Let us, thus,
imagine the elastic body to be divided by a cut «—«, passing through the crack,
into two parts I and II (Fig. 4), and let us choose the interaction between the parts

2 Problemy drgafi
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I and II as the unknown function. Here we denote the unknown interaction forces
by R,(&, 1) and by ] (x;, #) the displacement of the point x; € B, which is produced
by the external loading g acting on the external surface S, by the body forces
X}, and by the forces R; acting on the surface S, . Similarly, we denote by uf* (x;;, £)
the displacement of the point x;; € By, which is produced by the external forces
gt* and reactions R;. According to the formula (2.20), we have:

(4.14) #(xt, p) = Gy p)+ [ [ RiEos p) U3, 0o p)AS(ES).
(Sa)
xre By, &,€8,,
(4.15) 8, p) = 0 )+ | [ R p)ORx, £as D)AS(ED,
(Sa)

¥ €By, £x€8%, 4Lk=1,2,3.

In the two last-quoted formulae, U}, and U]} are the Green functions for the regions
B; and B,;, which have been discussed in Sec. 2 in a detailed form.

Now, we pass with the point x}eB;, and with the point x{; € B, to the point £,&S,
on the surface of the cut a—a. Owing to the continuity of the elastic body on the
surface S,, the following condition should be satisfied:

(4.16) (s p) = B, p)s
or

@17) [ [ R, pUOAE, & p)— TH(E, &, PIASE)
(Sa)
O, P—FOE, ) =0, ik=1,2,3.

We have obtained a system of integral equations of the first kind, and its solution

yields the functions Ry(&,, p), which being substituted into the relations (4.14) and
(4.15), enable us to find the required functions #; and .

The above presented procedure can be extended to cases in which there exist
more than one crack in the elastic body considered. For r cracks we obtain a system
of 3r integral equations.
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Streszczenie
ZAGADNIENIA ELASTODYNAMIKI Z MIESZANYMI WARUNKAMI BRZEGOWYMI

W poprzednich pracach [1, 2] autor przedstawil metode rozwigzania zagadnien elasto-
statyki z mieszanymi warunkami brzegowymi. W niniejszej pracy przedstawiono analogiczna
metode¢ dla dynamicznych zagadnien teorii sprezystoéci. Korzystajac z funkcji przemieszeze-
niowych Greena oraz z twierdzenia Bettiego o wzajemnosci sprowadzono zagadnienie do roz-
wigzania uktadu réwnan catkowych pierwszego rodzaju.

W zalezno§ci od wyboru t.zw. ukladu podstawowego podano dwa warianty rozwiazania.
Podano wreszcie droge postepowania dla zagadnienia szczelin w cialach jednospéjnych.

Pesome

VYIIPYTOOWMHAMWYECKHWE 3ATAYM CO CMEINTAHHBIMIM
KPAEBBIMH YCIIOBHSIMH

B mpemeroyimmx paborax [1] u [2] aBrop nmpeficTaBHII METO[ PelIeHHA 3ajau yIpyrocTaTHKi
CO CMEIIaHHBIMH KPaeBbIMM YCIOBHAMM. B Hacrosimeid ke pafoTe MpUBOJUTCA AHANOTHYHEIL
METO[ A AMHAMHYECKHX 3ajau Teopum ynpyrocts. Mcnonssys dymxium I'prna B mepemeite-
HHMAX M Teopemy BeTTn 0 B3aMMHOCTH, 3a/laYa CBOJMTCS K DPEHICHHIO CHCTEMbI MHTErDANBHBIX
YPaBHEHHIT IIEPBOTO pofa. :

B saBHCHEMOCTH 0T BEIOOpa TaK HA3LIBAEMOIT OCHOBHOH CHCTEMbl [AOTCA [Ba BapHaHTa perie-
Hus. B sarmouenne mpejnaraercsa MeToj PeLIeHHsA £ajar, KacaloliuXcA Ielieill B OJHOCBASHBIX
TEeNax.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA
IBTP POLISH ACADEMY OF SCIENCES

Received March 9, 1964.



