
WYDAWNICTWO MINISTERSTWA BUDOWNICTWA
Nr 37

NAUKOWE OSIĄGNIĘCIA MECHANIKI
W WALCE 0 POSTĘP W BUDOWNICTWIE

CZĘŚĆ III, ZESZYT I

z materiałów nadesłanych na Zjazd Naukowy PZITB
w Gdańsku 1 — 4 grudnia 1949 r.

WYDANO POD REDAKCJĄ BIURA ZJAZDOWEGO W GDAŃSKU
PAŃSTWOWYCH ZAKŁADACH REPRODUKCYJNYCH »P L A N«

WE WROCŁAWIU



Prof.Dr.Inż.Witold Howacki,Gdańsk.

Zakład Mechaniki Budowli Politechniki Gdańskiej

P r z y c z y n e k d o t e o r i i

p ł y t c i ą g ł y c h .

A ) . Zginanie płyt ciągłych nieskończenie długich.

Rozważmy płytę nieskończenie długą w kierunku osi
opierającą się na niepodatnych, równoległych podporach li-
niowych (rys. l). Załóżmy różne rozpiętości a i różne sztyw-
ności N poszczególnych przęseł. Grubość płyty przyjmujemy
małą w stosunku do rozpiętości a , ugięcie zaś płyty bardzo
małe w stosunku do jej grubości. Ograniczymy się do zakresu

odkształceń sprężystych.
Niech na płytę działa

obciążenie liniowe P(y) rów-
noległe do osi y i symetry-
czne względem osi x 1)

Jako wielkości "nadliczbo-
we" płyty ciągłej przyjmujemy
momenty podporowe My (0,y)
Oznaczymy je przez Mr (r- 1,2,...)
Zarówno obciążenie P(y) jak i no-

Rys. 1.

... (1)

menty podporowe wyrazimy przez całki Fouriera

P(y) ~-ś-(p(a).cosa.y da \ p Cc() - P(A).cosa.A dA ,

Mr (y)*» — I mr (a), cos a.y da ; mr (a) - j Mr CA), cos a.A dA .

Zakładamy tu jednocześnie, że P(A)dA posiada wartość
skończoną.

Wielkości momentów podporowych Mr wyznaczymy z odpo-
wiedniej ilości równań warunkowych, równań ciągłości płyty
na podporach poprzecznych:

1) Szczególny wypadek postawionego zagadnienia, mianowicie
zginanie płyty obustronnie utwierdzonej zupełnie w krawędziach
r i r*i i obciążonej siłą skupioną w osi x (wypadek szczególny
obciążenia liniowego P(x) ) znalazł rozwiązanie w pracy
A.Nadai « "tJber die -3iegung der rechteckigen Platten durch
Einzellasten", Der Bauingenieur,1921,H.ll.str.3Ol.
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... (2)
fmO-

W równaniu powyższym w oznacza rzędne powierzchni ugięcia

płyty.

Ustawienie równań trójez łonowych poprzedzimy opracowa-

niem układu podstawowego płyty w kierunku y nieskończenie

długiej, spoczywającej w sposób swobodny na dwóch sąsiednich

równoległych podporach, obciążonych momentami podporowymi My)

i obciążeniem P(y).

"a). O b c i ą ż e n i e u k ł a d u p o d s t a w o w e -

g o s y m e t r y c z n y m m o m e n t e m p o d -

p o r o w y m :

Jako rozwiązanie równania różniczko-

wego powierzchni ugięcia

A&H-O ; * - JL + J2L ... (3)
dxz dyz

przyjmiemy całkę Fouriera:

2 /*°*/iv ="j= I -~i.(A.cosh<x.x + B.a.x.sinha.x + C.sinh<x.x +

+ D.a.x. cos/7 a.x). cosa.y dar ... (4)Rys. 2

Wielkości A,B,C,D funkcje parametryczne a wyliczymy

z następującch warunków brzegowych:

cosay d a

...(5)

Wielkość N jest tzw. sztywnością zginania płyty!

12(1- M*)

W ostatnim'wyrażeniu £ jest modułem sprężystości, ju. licztą
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Poissona, a h grubością płyty.

Z warunków brzegowych (5) otrzymamy:

A~O, C =• jjf(1-ctghzv).m(or) y - a.a

v •

Powierzchnię ugięcia wyrazi zatem równaniet

w - -^- . ff a.x. sinh v. cosh er. (a-x) - v. sinh a.xl .
N.JT Jn

L J

v'.sinhsv,

Z ostatniego związku wyliczymy ••

1 a ' i (a). 4>(v).co$a.y dor

# A 7 )

,y dar

gdzie

c o s h ystnhy -v V (v) ~ v-coshv- sinh v ...ca)V (v) ~
v. slnfi2 v v. sinh* v

b ) . O b c i ą ż e n i e u k ł a d u p o d s t a w o w e -

g o m o m e n t e m M(y) m A (m(a).cosot.y da

o k r a w ę d z i x °=o .

Postępując podobnie jak w wypadku omówionym w poprzed-

nim ustępie uzyskamy:

W- -r~- I\oc.(a~x).sinh v.coshcr.x - y.sinh a.(q~x)\
N.jtJo

l J

. w W . cos a.y. dor ^gj
v*.sinh*v

Nachylenie stycznej do powierzchni ugięcia wyrażą równania:

dn
dx\

W / — — — . I mCoc). WCy). cos a.y. da; ... (10)

/// -
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«• — i m(oc). $(v). cos a.y. doc.
,a N * J

O

c ) . U k ł a d p o d s t a w o w y p r z y o b c i ą ż e -

n i u P ( y ) - —- . / p r a j . c o s a . y doc c y m e t r y c z -

n y m w z g l ę d e m p r o s t e j y = O .
! ' Płytę traktujemy jako dwie pły-

ty podzielone przekrojem x - C. Przy
takim "ujęciu równania różniczkowe
płyty I 1 I' są równaniami jednorod-
nymi.

Otrzymujemy
d l a p ł y t y I .- &aw =o ; ...(Ho)
d l a p ł y t y I ' : aa w'-O . ...(11b)

Jako rozwiązanie równania róż-
ysJ' niczkowego (lla) przyjmujemy całkę

tv a. — . / - t , .(A. sinh ax •*• B. a.x. cosh a.x) .costt.y doc, ... (12a)
31Ja*2

a jako rozwiązanie równania (llb) całkę

^-. / - j . (A', sinh <xx' * B'.or.x'. cosh cr.x'J. cos a.y cfoc. ... (I2b)

I

X -

— 4

I

- I
- a

f

K ł' -

w'

Punkcje parametru a: A«x), A'fcr), B(a),B'(cx) wyznaczymy z dwóch
warunków geometrycznych w przekroju x •» £ i

i z dwóch warunków statycznych, mianowicie warunku równości
mpmentów zginających M4 w tym przekroju :

oraz warunku równości obciążenia P(y) różnicy sił tnących na
lewo i prawo od przekroju x - £ •

Podstawienie do powyższych warunków brzegowych, wielkości
w,W z równań (I2a,b) $£^e cztery niejednorodne równania,
z których obliczymy :
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2N.v.sinhv . (a. .C' - v

ZN.v.sinhv
* sinhorĄ - v j ;

.v.smhv

, sinhaĄ .

...(13)

ZN. v. sinh v

Nachylenie stycznej do powierzchni odkształcenia płyty
określają następujące związki:

O©

§7/ " J T x f p C o f ) ' & l f o r ' Ą ) ' c o s c r y dcc '
dw

gdzie
I?/

- r<5r.̂ . sinhv.cosha.ź' - v. sinh
vi.sinh*v

1
U5)

vz.sinhzv
Po tak opracowanym układzie podstawowym przystąpić mo-

żemy do ustawienia równarf trójczłonowych.
Niech więc w przęśle (r-i)-t działa obciążenie Pr(y)

w przęśle r-(r + 1) obciążenie Pt+i (y) w sposób symetry-
czny względem osi x. Oznaczmy momenty podporowe Mx(y) ?xa
podpor a c h r-1, r, r*i p r z e z Mr-i ,

M r , Mf>n>
Warunek ciągłości (2) powierzchni odkształcenia na pod-

porze r daje!

r. f (or). fr«x).cr * mca).[*r(a).cr

at.cr.pr«x). - O. ... (16)

r - 1,2,3...

/// -
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W powyższym równaniu cr oznacza stosunek -? ",

gdzie A/0 jest dowolną porównawczą sztywnością na zginanie

płyty, a a,, dowolną porównawczą rozpiętością płyty.

Ilość równań odpowiada ilości nadliczbowych mca). Momen-

ty podporowe otrzymamy ze związku :

Mr(y) — —. / m(a). cos or.y da .
X Ja

Zauważmy wreszcie, że bez trudu rozszerzyć możemy równanie

trzech momentów,w wypadku momentu zewnętrznego nad podporą, '

na równanie czterech momentów.

Niech kilka prostych przykładów objaśni tok postępo-

wania.

l). Płyta dwuprzęsłowa o jednakowych wielkościach geometry-

cznych i sprężystych. Na zewnętrznej linii podporowej działa

moment Mo jednostajnie rozłożo-

ny na odcinku 2c (rys.4).

Tutaj

Mo - ~rj mo(c().cos a.y dat ,

l«
i

r
2c

A/
a

N

mo(a). rc-
= / Me. cos a.
Je

sm a.c

Rys. 4.

Ustawiając równanie (16) d l a
podpory 1 i zważywszy, że M2 . o
otrzymamy

mo ca). 9r(Of) + 2m, (oD.4>Ca) « O.

Otrayfliamy stąd, korzystając ze związków (8)
#

m rai - - Z ' cos/t v. sinh v - v v
a dalej.

- ^ rv.coshv-sinhv sfnfl.y c 0 5 Z P d v p

* Je cosh v. sinh v - v v
gdzie /3~5S v <-ot.a , 2 - •§-.

Każdej wartości y odpowiada wsćrtość Mi(y) uzyskąaa
z rozwiązania całki niewłaściwej.

2). Płyta obustronnie utwierdzona zupełnie. Obciążenie Biła
skupioną Q w środku płyty na osi y**0. (rys.5)

/// -
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ay , p- -j-.

Równanie (16) ustawione dla
podpory 1 ( przy założeniu /V—- <*»
w przęsłach sąsiednich ) daje:

Korzystając ze wzorów (8) i (15)
otrzymamy po prostych przekształcę-

O.o- sinh

Stąd

Rys. 5.

4 ' slnhv*v '

Momenty podporowe wywołają w przekroju x«y następują
cą wartość ugięcia płyty:

—. sinh v. cosh -r- - v. sinh -?-

* sin/t2 v
— . cos v.z dv ;

' - * •

punkcie zaczepienia siły O znajdziemy:

j) =» QL£. I ——2L__— dv.
&n J v.(v*sinhv)

Całkowite ugięcie w punkcie zaczepienia siły składa
z ugięcia wo w układzie podstawowym oraz z ugięcia spowodo-
wanego momentami podporowymi.

0,079g.a* f^ i O.o* f t§h

*) wynik ten uzyskał na innej drodze A.Nadei w wymienionej
pod l) pracy.

/// -
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B). Płyta ciągła, nieskończenie długa, obciążona układem

sił P działających w jednakowych odległościach 2b (rys.6)

©

0

o

y

—-m

A
f\

•Pr

°Pr

f •

y

A

1
i

•P„

°Prn

'r+1

oPr.1

Or.r~

o

o

o

•

I f
2b
—i

I

Z omówionym w ustępie

(A) zagadnieniem wiąże się

wypadek zginania płyt ciągłych,

nieskończenie długich, obcią-

żonych układem sił P działa-

jących w jednakowych odstępach.

Wyrażając momenty podpo-

rowe i siły skupione P przy

pomocy szeregu Fouriera*.

n COS

~L-

n~1,2,..

Rys. 6. P(y)~Y(J +

a powierzchnię ugięcia szeregiem Fouriera .-

).cos <p.y

s p e ł n i m y w a r u n k i b r z e g o w e z a g a d n i e n i a V p ' r o s t y c ł h y=-b
a m i a n o w i c i e :

dw 0 ; 0.
dy dy3

Zanim przystąpimy do właściwego zagadnienia, opracować

winniśmy dwa zadania pomocnicze.

a ) . P a s m o p ł y t o w e , n i e s k o ń c z e n i e
o

M
d ł u g i e , o b c i ą ż o n e m o m e n t e m ;

l_mn.cos<p.y >.*-*£,

Równanie różniczkowe Aa w* O, przy założeniu, że w pro-

stej y= tb zachodzi
dw Q t d*w ̂  Q
dy óy^

spełnia następująca funkcja.

w - / "55 . (A.cosh <p.x + B.ę.x. sinh <p.A + C. sinh <px +/ 55
n-1,2,..

0.q>.x.cQSh<p.x).cos <p.y. (.17)

l/l - id
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1

Stałe całkowania A ... D

określimy z warunków brzegowych:

* - O ; w = O i

V -N — — *= / mn .ax2 L .

-i
4-?

Rys. 8

•Wyliczymy kolejno:

- O • B

powierzchni ugięcia (l?) przyjmuje'zatem postać:

h*. sinffA L2fil

- A. sin<p.xj. cos <p.y. ... (W)

Machylenie powierzchni odkształcenia w proetych x-o

i x~a wyznaczą następujące równania:

I* ^/ - ̂  P m 0(A) cosq>.y-
*mO „ ...(19)

b 6w

gdzie

IJL
I
I

. sinb A - A

ftys. 7.

A.coshA- sinhA
' A. $lnh*Ą

Jeśli moment działa w krawędzi

x-a to:
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w — r<p.(a-x).sinhA.cosh<p.x -A.sin<pXa-x)j.cos<p.y. ,, (fSa)
n

b)> P a s m o p ł y t o w e n i e s k o ń c z e n i e
d ł u g i e , o b c i ą ż o n e s i ł a m i P
w p r o s t e j x**£ . S i ł y P w jednakowych o d l e -
g ł o ś c i a c h 2b. ( r y s . 8)

Pasmo traktujemy jako dwie płyty (I i II) oddzielone
przekrojem x»Ą. Jako rozwiązanie równań różniczkowych
odkształcenia płyty I i II przyjmiemy

dla płyty I: w . / -ł- .( A.sinh <p.x * B.<p.x.cosh<p.x).cos<p.y ; (I9a)
/_ ,<p
n

dla płyty II: ^'= y-±• (A'.sinh ę.x'-8:<p.x'.coshctx).cos<p.y. (19b)
L-JP
n

Stałe całkowania A,B,A\B' wyliczymy z warunków brzegowych
w przekroju x- Ą •.

.... dw
dx' '

dx3 dx'3) b
-1-Ycos

b Z
n

Stąd

sinhę.f -A.ZN.n.sinhn ^ ^ sinhA.

^ ł - , A / / - , %. <<??• cosh cpĄ * sinhq>Ą -Ą. $n*f
2N.A. sinhA słpbA

B M
 P

 t .sinhcp.f i 8 ' P

2N.A. sinhA

Nachylenie stycznej do powierzchni odkształcenia w pro-
stych X"O i x-a określą następujące równania-

dw

n

IH - 20
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gdzie

• cosh <p.$'-A.sinh &.$.), (20o)9» - 2 • L > . ( <p. K-A . smh ~Ą

9n - > f\3 • (<P-$'• sinh*• cosb<p.£ - A. sin/) $.£'). (20b)
A . smh A.

Po tak opracowanym w punktach a) i b) układzie pod-
stawowym przystąpimy do ustawienia równań trójczłonowych
płyty ciągłej, nieskończenie długiej* obciążonej układem
sił P w jednakowych odstępach 2b (rys.6).

Z warunku ciągłości płyty na podporze r tj. z warunku
dwri _ ó> wrt1.

dxlx-ar " d* L
otrzymamy, wyrażając kąty nachylenia stycznej odkształco-
nej przez momenty podporowe mr_f , mr , mr+1 i obciążenie
Pr , Pr+i następujący układ równań.

m ,,., . Crt1J

Y/7- 1,2.... o-; ; r - 1,2,..

c

Równanie (21) przedstawia xikład równaA liniowych nie-
jednorodnych, odpowiadający ilości "nadliczbowych" momentów
podporowych. Rozwiązując powyższy układ kolejno dla n- 1,2,,.
otrzymamy kolejne wartości mnr (n»1,2,..) a stąd wielkość
momentów podporowych.

Znajomość momentów podporowych pozwoli na wyznaczenie
powierzchni odkształcenia płyty, a tym samym na wyznaczenie
wszelkich wielkości statycznych* momentów zginających i skrę-
cających, sił poprzecznych i reakcji podporowych.

Równania (21) pozwolą na rozwiązanie szeregu układów
płytowych; dwa wypadki szczególnie proste omówimy poniżej*

/// -2*
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a) Pasmo płytowe w prostych podporowych .r- O,

utwierdzone zupełnie.

Z równania (21) otrzymamy:

o,

m. -P.
*

h a po wstawieniu <*=>•§- do wzoru (20a)
i po prostych przekształceniach :

A * sin/} /?

2 ' /—> n •* sinh A
n

Powierzchnię odkształcenia

spowodowaną momentami podporowami

otrzymamy z równania 18 i 18a.

Ugięcie pod siłą P uzyskamy z dodania ugięcia wp ,spo-

wodowanego siłą p w układzie podstawowym (wzór I9a dla *•* %)

oraz ugięcia wM spowodowanego momentem podporowym M.

F
Z

5. coih * n(sinhA

0) Pasmo płytowe w prostej x**o utwierdzone zupełnie,

w pfostej x*>a swobodnie podparte (rys. 10).

Z równania (21) : mn. <bn + P. &J; - o

otrzymamy dla $*••§-:

™ sinh * Vh- P. . cos<p.y.
coshv.sinhv-v

Powierzchnię odkształcenia spowodowaną mementem podpo-

rowym określa równanie(18), powierzchnię odkształcenia ukła-

du podstawowego wskutek ohciąfcenia siłami (ń*°O) równanie

(I9e i 19b).

I tak pod siłą P znajdziemy:

- 22



- 13 -

/i

P.a*
'/ .
n t (cosh A . sinh *-n

C). Rozwiązanie zagadnienia płyty ciągłej, obciążonej
układem sił P w odległościach stałych 2b pozwoli na roz-
wiązanie szeregu układów,płytowych, znanych w budownictwie
pod nazwą stropów grzybkowych.

Omówimy tu trzy wypadki szczególne.

a ) . S t r o p g r z y b k o w y w e d ł u g r y s . 1 1 .

Powierzchnię ugięcia w płyty
składamy z d#óch części, z powierzchni
odkształcenia przedstawiającej po-
wierzchnię zgięcia walcowego pasma
płytowego, obustronnie Utwierdzonego,
jednostajnie obciążonego wielkością p
oraz z powierzchni M/f spowodowanej
układem sił X.

Powierzchnia ugięcia «v<> jest funkcją
jedynie zmiennej x •.

w4,* * 4* .,

Wielkość X uzyskamy z przyrównania
do zera ugięcia w punktach działania

x.

III - 23
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"Warunek ten daje:

384A/ 6N
sihh 4 -A tghż

X = — p.a*
48/1/ '

/L
n

SinhA • Ą

Znajoiaośd reakcji podporowych pozwoli już na wyznacze-

nie wielkości statycznych płyty. Momenty zginające otrzymamy

przeto z równaii:

A w i ą c ; y=*O z n a j d z i e m y :

12 Z ' / . A + sinh
n

b ) . S t r o p g r z y b k o w y w e d ł u g r y s .

n
2b

2b

Tum

77777?

Xys. 12.

A
P

"W tym wypadku wo przyjmuje po3tać

O
Korzystając z rozwiązania zadania

(B/3) znajdziemy wielkość ^ z rów-

nania:

albo

fi.a2

192N

A.

„. X.a
8N

(COS/? A

2 \

n

.sini) A

$/,
As.

-A

cosh**

)

a wielkośd momentu utwierdzenia
w punkcie x<*0, y**o

/// -
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po2

8 '

sinhsy
'/ • cos/f h. sinhA - n
n

c ) . S t r o p g r z y b k o w y w e d ł u g r y s 1 3 .

2b

/w/

77777 7/777

77777

Rys. 13

m„ . M

Oznaczmy przez wVj

ugięcie płyty ciągłej dwu-,
przęsłowej w punkcie 1.
spowodowane układem sił
X-= i i przez wi2 ugięcie
płyty ciągłej dwuprzęsło-
wej w punkcie 1, spowodowa-
ne układem Xz = 1 ; wreszcie
przez t^to^so ugięcia płyty
dwuprzęsłowej w punktach
1 1 2 , wywołane obciążeniem
P-

Niech na płytę działa
jedynie układ sił Xi^1.
Z równania (21) obliczymy
wartość momentu podporowego:

Moment ten wywoła w punkcie 2 ugięcie -.

Q± y_
.(cosh A.sinha -A) *1'

n

Dodając do powyższej wielkości ugięcie spowodowane układem
sił XA"1 w systemie podstawowym (M-O) uzyskamy:

_2? Y -i
'* - aN ' l_^ a*.coshz;h. " 16N *Z

n n
Niech na płytę dwuprzęsłową działa jedynie obciążenie p.

punkcie 2 otrzymamy:
W " " 256N 'a w punkcie 1:

w10 3B4' N 256AI
7

768' A/
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Wielkości Xt i Xz znajdujemy z rozwiązania okładu równań;

X,.w
21

D). Płyta w krawędzi x-0 zupełnie utwierdzonaj w kra-
wędzi x=a podparta punktowo w stałych odstępach Zb.
Obciążeniepjednostajnie rozłożone.(rys.14.)

J_

Rys. H.

1) dla

2) dla

Jako rozwiązanie równania

różniczkowego zagadnienia

i
przyjmujemy funkcję.-

- wo (x) + w, (x.y)

Fn(x).cos<p.y,

gdzie s

Fn
. (A.cosh<p.x . sinh<p.x

+ C 5/>?/f <p.x + D. <p. x. cosh q>. x).
4$

Stałe Ą ... C znajdziemy z następujących warunków "brzegowych.

W, -O ',
dx

AI r-A/.f cos <p.y

*) W dwu ostatnich warunkach brzegowych (moment
akcja podporowa równa wielkości X) przyjęte //-o.

re-

/// - 26
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OtrzymujemyJ

A-O B =- * sinłiĄ* n.cosh/i

C« D ^ 2cos/)Ą*Ą.sin/)A
H.A ' J

Wielkość reakcji podporowej X wyznaczymy z warunku:

Stąd i

16 T^JL coshJi.sinha.~fi

n

Moment utwierdzenia ftx w punkcie x<:0,y<*0 wyraai
równaniem i

y
•

Podane rozwiązania, dotyczące stropów grzybkowych, uwa-
żać należy jako przybliżone; wpływ zgrubienia płyty u nasady
słupów jak i wpływ podpory o skończonym przekroju nie został
w powyższych rozważaniach uwzględniony.

/// -


