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CHAPTER I

FOUNDATIONS OF LINEAR PIEZOELECTRICITY

by

W. Nowacki

President of the Polish Academy of Sciences
Warsaw, Poland

1.1. Electromagnetism.

Certain crystals, such as quartz, tourmaline, Seignette salt, when subject to a

stress, become electrically polarized (J. and P. Currie 1880). This is the simple piezoelectric

effect. Conversely, an external electromagnetic field produces in a piezoelectric crystal a

deformation. This inverse piezoelectric effect was predicted on the basis of thermodynahiic

consideration by H.G. Lippmann (1) and confirmed experimentally by brothers J. and P.

Currie (2) in 1881. The linear theory of piezoelectricity was created by W. Voigt (3).

The practical applications of piezoelectric effects are widely known; first of all

in generation of ultrasonic waves, in conversion of electromagnetic energy into mechanical

energy and conversely, in prospecting solids with piezoelectric properties, etc. (4).

We begin our considerations from the electromagnetic foundations of the problem.

(1) H.G. Lippmann, Ann. Chim. 29/1881/, 145.
(2) J. and P. Currie. Compt. Rendus. 93 /1884/, 1137.
(3) W. Voigt. Lehrbuch der Kristallphysik. Teubner, Leipzig, 1910.
(4) M.P. Wolarowicz, G.A. Sobolev, Piezoelectric method of geophysical prospecting of quartz, (in Russian).

Izd. Nauka, Moscow, 1969.
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The Maxwell equations in the MKS system have the form (5)

rotH = | l + J , . (1)

rot E s - | f , (2)

where H is the vector of the magnetic field, E the vector of the electric field, B the vector

of magnetic induction, D the vector of the electric displacement and J the vector of the

conduction current. In a solid we have the following constitutive relations for the field vec-

D = s 0 E + P , (3)

B = /io(H + M ) . (4)

Here P is the vector of electric polarization and M the magnetization vector. £0> Mo

denote the constant electric and magnetic perimeabilities. Eqs. (1) and (2) should be com-

pleted by the Gauss equation

divD = Qtt (5)

and an equation following from Eq. (2), namely

div B = 0 . (6)

£q. (5) defines electric charges Qt. Eqs. (1) and (5) imply the equation of conservation

of electric charges.

~ + divj = 0 . (7)

Consider a region B of the body, bounded by surface DB . In the interior of

B there is an electromagnetic field, electric currents and Joule's heat is created.

{5, J.A. Stratton. Electromagnetic Theor). Me Graw-Hill. New York. 1941.
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Multiply Eq. (1) by E , Eq. (2) by H , subtract the result and integrate over

the region B ; than

/ ( E r o t H - I H r o t E ) dv =/(£& + H B)div + / k J dv. (8)

Taking into account that

E r o t H - H r o t E = - d i v ( E x H ) ,

and making use of the Gauss transformation we transform (8) to the form

(9)-ft\-\\6a =/(EQ*HB)dv + /EJd

where we have introduced the so-called Poynting vector

h = E x H .

Eq. (9) is a mathematical consequence of the Maxwell equations and can be physically in-

terpreted as the balance of rLctroruagnetic energy. Thus, the scalar Q.h represents the

flux of electromagnetic energy through the surface 9B of the body, into the surrounding

medium. The expression ED +HB is identified with the time increment of the electro-

magnetic energy Ut . Finally E J represents Joule's heat. Eq. (9) can be written in the

form

fdv (10)

The energy balance (10) states that the time increment of the electromagnetic energy is

equal to the energy increment flowing through the surface OB and the increment of the

electromagnetic energy dissipated by means of conversion into heat. Eq. (10) expresses the

law of energy conservation for i.he electromagnetic field.

In the next Section we shall present a generalized energy balance taking into ac-

count the deformation of the body.

Let us now return to the Maxwell equations. In accordance with Eq. (6) the vec-

tor B is solenoidal. it can therefore be expressed in terms of the rotation of a vector AQ :

B = rot Ao (ll)



108 W. Nowacki

However, (11) does not define the vector Aft uniquely. Thus, we have

B =rot A , A = Ao - grad v (12)

Introducing (11) and (12) into Eq. (2) we obtain

rot(E + Ao) = 0 , rot(E+A) = O, (13)

whence

E = - A0-gradg90 E = -A-gradgp, (14)

and the functions <p , % , y) Ate connected by the relation

In view of (12) and (14)2 w e c a n r e P r e s e n t t n e Maxwell equations in terms of the vector

potential A and the scalar potential f :

rotH=6 + J , (16)

B = rot A , (17)

E = -gradgo -A (18)

The constitutive relations (3) and (4) and the Gauss equation (6) remain the same.

The Poynting vector h can be written in terms of the potentials fl , 5? , namely

we have

h r E x H = ?>(J+D)-AxH . (19)

Consider now piezoelectric bodies (which are dielectrics). In general they are elec-

trically neutral, contain the same amount of positive and negative charges and to not con-

duct current. An introduction of a dielectric into an electromagnetic field changes the latter.

Consequently, the vectors E and D are not parallel and differ by the polarization vector P.

For piezoelectrics we introduce the same simplifications as for non-magnetizable dielectrics

J = 0 , Qt = 0 , M = 0 . (20)
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Under the above assumptions, the Maxwell equations (16)-(18) take the form

rot H = D , (21)

B = rot A , (22)

E = - gradgp - A . (23)

The constitutive rlation (3) remains the same, while the relation (9) is now

i =/AiH (24)

In view of the fact Qt = 0 , Eq. (6) is homogeneous

d i v D = 0 . (25)

and the Poynting vector takes the simpler form

h = <pD - A X H . (26)

A further simplification consists in neglecting the magnetic term ( A = 0 ) in the expres-

sion (23). Thus, we arrive at the relation

E = - grad q> (27)

We also have at our disposal the equation

div 0 = 0 , (28)

and the constitutive relation

D =60E + P . (29)

Neglecting also in the expression for the Poynting vector the magnetic term we obtain

h = g?D . (30)

A justification of the above (experimentally confirmed) simplification was presented in an

interesting paper by H.F. Tierstem '.

This simplification is valid for electromagnetic waves which are not coupled with

elastic waves and when we consider wave lengths close to the lengths of elastic waves (the

latter are much shorter than the electromagnetic waves with the same frequency).

Let us now return to the energy balance (10). For piezoelectrics, when B = 0 .

J = 0 . in view of (30) we have

d

(1) H.F. Tiersten. The radiation and confinement of electromagnetic energy accompanying the oscillations
of piezoelectric crystal plates. Rec. Advances in Engineering Science. Part 1. Ed. A.C. Eringen. Gordon
and Breach Science Publ. New York 1970.
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± /Udv =

In performing the Gauss transformation we have made use here of Eq. (28). Thus, finally

In the next Section we shall take into account the deformation of the body in the energy

balance.

1.2. Energy balance

Assume that the considered body undergoes deformation due to external loading

and electromagnetic field, whoch may vary in time. Assume also that there are no heat

sources in the body and no heat exchange by means of heat conduction (an adiabatic pro-

cess). Apply to an arbitrary region B of the body bounded by surface dB the principle of

energy conservation

aV(i~eVtVi + u ) d v =/x iv idv + A-iMa + Aib.dv, (i)
B 6 8B B

where

2 i
is the kinetic energy, U the internal (mechanical and electromagnetic) energy and denote by

^=/x A v,dv + fPivL4a (3)
& dB

the mechanical power. The last integral in (1) is the flux of electromagnetic energy through

the surface dB ,

3> - - fgtb^da = /E^dv. (4)
J J

OB B

The principle of energy conservation states that the time increment of the kinetic and inter-

nal energies is equal to the power of the external forces and the electromagnetic energy
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flowing through the surface 9B . Eq. (1) can be written in the form

dv , (5)

Let us transform in (1) the surface integral into a volume integral, making use of the relation

P = W (6)

where rij is the normal vector directed outwards. Making use of the Gauss transformation

we arrive at the equation

/Odv = ̂ [ (o j i j+Xi- j tyv i + OjiV^ + EifiiJdv, (7)
B B

which must be satisfied for every part of the body. Thus, we obtain the local principle of

energy, conservation

We shall demand that Eq. (8) be invariant under the rigid motion of the body'1)

and first consider the translation

*i-^Vi+bi (9)

where b; is an arbitrary constant vector. We assume that then the quantities' Q . U , X; ,

°j.i - E;, remain constant. Introducing (9) into (8) we have

U»(Vi+bt)(o|(lli + Xi-BVt)+ffjinIi + EiDiI do)

and subtracting (9) from (10) we are led to the equation

which should be satisfied for arbitrary bA . Thus, we arrive at the equation of motion

(1) A.E. Green. R.S. Rivlin. Arch. Rat. Mech. Anal. 17/1964/. 113.
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This equation considerably simplifies the energy balance, namely

Uscp^+EiDi. (12)

In accordance with our assumption the expression (12) must be invariant with respect to a

rigid rotation. Therefore, assume that'

V - «i - £ikt xk 0t.
 v i . r ~ v s T %t Qi > Q ' c o n s l • ( : 3 )

Introducing (13) into (12) we have

Subtracting from Eq. (14) the expression (12) and bearing in mind the invariance of the

quantities U , 0[i , Ej we obtain

This result implies the symmetry of the stress tensor 0^. ,

%* °jk z ° , % = %•

Consequently we obtain the equation

U styHj + Eifc,

moreover, now we already know that the stress tensor is symmetric. Since, by definition

we have

where 6^ is the symmetric strain tensor and 6);^ is the antisymmetric rotation tensor.

Thus, Oil (O^ = 0 . The energy balance (17) can be written in the form

U = (^ s^+ E46i

It is evident that U rU(s; ; , D̂  ) and that

4 " f t * » • $ * •
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Hence, in view of Eqs (19) and (20) we obtain

This equation should hold for arbitrary values of ki\ , D; ., whence

n - 3 U F - 9 U

In further considerations it will be convenient to employ constitutive relations in which

the quantities (fy and Dj, depend on 6^, Ej, . Therefore we introduce the electric

entalpy H defined as follows :

H : U - E i Di. (23)

Eliminating U from (19) and (23) we obtain the equation

H = a ^ e ^ - D ; Ej,. (24)

Its is evident that H s H ( 6;: , E; ) . Since

Eqs (24) and (25) imply that

which again should be satisfied for arbitrary 6^, Ê , . Hence

OH n _ 3H , „ '
^ - K / ^-TTi- (27)

This relation will be employed in deriving the constitutive relations.

1,3. The constitutive relations

Let us expand the electric entalpy H(£j,j,E;) into the Mac Laurin

series in the vicinity of the natural state (£^; = 0, E^= 0), neglecting terms higher than of

the second order. For a homogeneous anisotropic body we obtain the tollowing series :
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- \ _ 1 _ r- J p r r, Q)

We assumed that in the body there are no initial stresses and no initial electric field. The

relations

ffl-lH nt=-£tL (
° D (

lead to the constitutive equations

Di = eW £k£ + £ tk E k , (4)

where fcM - £ip.l is the elastic stiffness and Ei= const., e^; is the piezoelectric

constant and G ;̂ the constant permittivity for E^ = const.

Observe that

or

02H o r

(5)
9D

The above relations implyrthat

whereas the symmetry of the tensors 0;; and £;; leads to the relations
cr ff

The tensor £ ^ is symmetric and the polar tensor ek;; is symmetric with respect to the

indices j , and i.

In the general case ot triclinic crystal we have 21 elastic constants /Cijkf • 18

piezoelectric constants ektj and 6 permittivity constants ^ i j . -

It is known that the piezoelectric effect can occur in materials which do not have

a center of symmetry, In bodies which do have a center of symructrj the polar tensor £kt.
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vanishes.

Consider the particular case of isotropic body. We have the following isotropic

tensors :

(8)

Here €.v- is Ricci's antisymmetric tensor. Introducing (8) into (3) and (4) we obtain

^ E E k . (10)

Since the tensors 0x\, Eij are symmetric and ek;i is antisymmetric, the piezoelectric term

in Eqs (9) and (10) vanishes. We have

D i =eEi . (11)

Let us now return to the electric entalpy H = ll-E^D^ ; hence

U zH + DxE; (12)

Substituting for H from Eq. (1) and for Di from the relation (4) we have

Since U is a non-negative scalar, the right-hand side of Eq. (13) should be a positive defi-

nite quadratic form, which ensures the stability of the solution.

1.4. The differential equations of piezoelectricity

Let us collect the equations and relations of piezoelectricity. Thus, we have the

equations of motion and the equation for the electrical field

Di,. = 0 . (2)
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completed by the constitutive equations

% =/ojkJekl " ekyEk» ( 3 )

Di = eikl«kt + £ i k E k , Ek=-goik , (4)

and the definition of the strain tensor

We introduce (3) and (4) into the differential equations (l)-(2) and make use of (5) ; then

we arrive at four equations with the displacement vector Ui and the potentials <p as

unknowns

These differential equations should be completed by the boundary and initial conditions.

If on a part of the body 3B, displacements and on the complementary, part 3 B2 trac-

tions Pi are prescribed,

^ = H(U,O o n 3BH . Pi = Wi - P;G< , 0 °n 3B2 - °BH U 3B2 = OB (9)

Suppose that on 3B3 the electric potential and on 3B4 surface charges Dk nj, = - a

are given :

(p - $ ( x , t ) o n 3 B 4 , D k n k = - a o n 9 B 4 , D B 5 u 3 B 4 = 9 B . ( 1 0 )

If we know the solution (U;,<jp) of the system of equations (6)-(7) then we can determine

successively E), from the formula Ek - - <p,y , the strain tu from the definition (5),

the stress and the electric displacement from the constitutive relations (3) and (4). The

knowledge of functions Ej, and Di makes it possible to calculate the electric polarization

where £ „ is the permittivity in cacuum. If the piezoelectric effect is absent, Eq. (6) takes

the form
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If, on the other hand, it does occur but the deformation is neglected then (7) reduces to

Eq. (12) is completed by the boundary conditions (9), while Eq. (13) by the boundary

conditions (10).

1.5. Principle of virtual work. Uniqueness of solutions

Consider the celebrated Lagrange's principle for the deformable elastic body

/(Hi - Q%) H <*" + f?i <5 Uida = Aty<kj dv. (l)

Here 6\1\, is a virtual displacement increment of U; . We assume that <5ll; is continuous

and diffcrentiable of class C Moreover, we assume that the increment dUi is compati-

ble with the conditions restricting the motion of the body. On the part of the boundary on

which the displacement U, is prescribed (i.e. on 3B4 ), <5lJ;=0 . If the tractions Pi are

given on dB2 , then on this part of the surface the increment dUi is arbitrary.

We shall apply the principle of virtual work (1) to piezoelectric bodies. Making

use of the constitutive relation

in (1) we obtain

; - e'Ui) <Hdv +/ft.<Ma = /tye fevtd^ - e^ /Ek6e^dv . (3)
» B •

The second constitutive relation

D k = e k ^ + e ^ . (4)

introduced into (3) yields the equation

k6Epdv B / (Xi -eUi)6uidv +

/ J D k d v . (5)
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Making use of the relations for the electromagnetic field

Ek = - f y , Pt,i = 0 , (6)

and introducing the notation

*"= T Al« V«dv» £ = I M ^ • where ^ = £ + *'
^ B

we reduce Eq. (5) to the form

(7)

Thus, we have arrived at the principle of virtual work for a piezoelectric medium.

Consider a particular case of virtual increments 6 U ± , <5 D | namely the real in-

crements of the displacement U^ and the field D^. We have

H = !£• dt = v,dt, 6Uk = | 2 i dt = Dkdt,
(8)

=£dt .

Introducing the definitionof the kinetic energy

A v i d v = K d t , (9)
' 6

we reduce Eq. (7) to the form

= /x iv idv + / ( p ^ - geDknu)da. (10)
d t v

It is readily observed that the above equation, called the fundamental energy balance of

piezoelectricity, constitutes a version of the energy balance (see (1) in Sec. 1.2. and (13)

in Sec. 1.3.).

Eq. (10) can serve for the proof of the theorem of uniqueness of the solution of

the piezoelectricity equations.

Consider the equations
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with the boundary conditions

Uj, = Ui(x f t ) on 3B^, <7j.iru = p i0£,t)on 0Bt , aB4u0B2=DB (12)

and the initial conditions

u,(x,0) = fi(x) , UA(ji,O) SQI(X) on B (13)

Furthermore, consider the field equation

D^= 0 (14)

with the boundary condition?

q>-$ ( x , t ) on 9B3 , Dknk = - <j(x , t ) on 3B4 , 3B3U3B+= 3B (15)

We assume that two pairs of functions ( Ui , <p ) and ( Ui , (p ) satisfy Eqs. (11) and

(14) and the appropriate boundary and initial conditions. Their difference Q; = U; - U;,

<p ~(p-(p satisfies therefore the homogeneous equations (11) and (14) and the homogeneous

boundary and initial conditions. Aq. (10) holds for the soulution U^, <p namely we have

A- ( J f+ r + E) = /x^idv + y ^ da - /^fitmda (16)

Now, jn view of the homogeneity of the equations and the boundary conditions, the right-

hand side of (16) vanishes,for

Xi = 0 , G; = 0 on 3B<, ft = 0 on 9B 2 ,

<p = 0 on t )B j , Dknk = 0 on $B4 .

Thus, we have

(Jr+r+F) = o,
at

but in view of the homogeneity ot the initial conditions

X + W'+E = 0 , (19)
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or

i L + G i i E i E ^ d v r O . (20)

The integrand is a positive definite quadratic form. Hence

v i = 0 , ^ = 0 , Ei = 0 . (21)

In view of the initial conditions for Ĝ  , <p , to above relations imply that

u' = u" + linear term , <p'*q)" + const. (22)

The linear term appearing in (22)j is a rigid displacement of the body. If the latter is

clamped on 9 B4 , the linear term vanishes. The uniqueness of the strain eys e^ and the

field E;= E; implies the uniqueness of the stress oii=a*i an<^ c^e e'ectric displacement

tf.tf.

1.6. Hamilton's principle

Consider the functional

n =/(H-XiUi)dv - /( f tn - ag9)da • (l)

where H is the electric entalpy, 9) the electric potential and a the charge on 9B . Hamil-

ton's principle generalized to piezoelectricity has the form

r - j r )d t =0, (2)

where t< - t̂  is the considered time interval, it the functional (1) and K the kinetic

energy. The admissible motions of the body must be compatible with the conditions restric-

ting the motion of the body. Moreover, the following conditions must be satisfied :

<K(x>t.,) = Hte.tz) = 0 • (3)

The quantities subject to variation are the displacement Û  and the electric potential (p

Performing the variations
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r'1 r1 ' /• 1 rtl r
6 pTdt = <5 /dt / -i-eViVidv = /d t g

eiHjd = (4)

= f |Qu^UiI dv - /dt /gui^u dv .

In view of (3) we have

<5yGfdt = - / d t /Viii<5uidv (5)

Returning to Eq. (2)

3H 3H \ C 1
—.•' ofii +• —— oE; — Xiou; )dv ~ Jo- ouv ~~ (JOQP) ds f — 0 (6)

Making use of the constitutive relations

_ajj_ _ a . _3H_ _ _ D ( 7 )

and the known relation

Pi = Gin; on 30 (8)

after simple transformations we arrive at the equation

J^ljl%i" (9)

= 0 .

Since the variations <5ll;,6ff)are arbitrary, (9) leads to the following equations governing the

motion and the electromagnetic field :
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Di,i = 0 , x e B, t> o . ' (ii)

Moreover, Eq. (9) yields the boundary conditions for Eqs. (10), (11)

p iS.Ojifij on 9B2 (12)

D^i =- a on 9B< (13)

If on OBi displacement is prescribed, then 6\i^ whereas if on 6 B3 the potential is

given, dcp =0 . Thus, the Hamilton principle yields the so-called natural boundary condi-

tions. The generalized Hamilton principle was deduced by H.F. Tierstem '.

The Hamilton principle presented here contains as a particular case the principle

for an anisotropic body without piezoelectric properties. Then we replace the electric

entalpy H by the internal energy U. Thus, (1) takes the form

rt* = [([} -X^uJdV - / fcMa . . (14)
i d

and the classical Hamilton principle is

dJ(Jf- n ) dt = 0 . (15)

1.7. The recipocity theorem

Consider two sets of causes and effects. The causes are the action of body forces,

prescribed displacements and tractions on the boundary, an electric potential or electric

charges on 3 B and finally the action of initial conditions.

The effects are the displacement U^ and the electric potential Cp . The second

set of causes and effects will be denoted by primes.

We base on the equations of motion for both sets of causes and effects

' ]) H.F. Tiersten. Linear piezoelectric plate vibrations. Plenum Hress. New York. 1969.
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Performing over both equations the Laplace transform defined as follows

^ [u*(x , t)] = CF;(x , p) = p , ( x ,t) e^dt, (3)

we obtain

%'i- + **• ' 6 P G ( 4 )

%i+ xl = eiJu1 (5)

where we assumed that the initial conditions for the displacements are homogeneous, i.e.

Ui(x,0) = 0 , i i i ( x , 0 ) = 0 on B (6)

Obviously, the non-homogeneous initial conditions can be treated in the same manner.

Multiply now Eq. (4) by Q̂  and Eq. (5) by Oj, substract the result and integrate over the

region of the body ; thus

M + ^ ) ui - {3fa + X{)Hi] dv = 0 . (7)

Introducing the contract forces we transform Eq. (7) to the form

/(Xiiii - X-uJdv

%$ ^ ^ ) dv -

In view of the constitutive relation

we reduce Eq. (8) to the form

XiUi -Xi'iJ;) dv + /(Pi.ui - pid) da

We have at our disposal the equations for the electromagnetic field

Dk)U= 0, D ^ = 0 , (11)
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Let us perform over the above equations and relations the integral transform and consider

the expression

P ) d V = 0 (12)

or

- DkEk)dv = 0. (12')

Taking into account the constitutive equations

in Eq. (12') we are led to the equation

- W " k d a "-H4/CfyEj -i^Efc)dv (14)

Finally, eliminating form Eqs (10) and (14) the common terms we arrive at the equation

for reciprocity of work in the form

/x^Uidv + /(Piu{+ 6knkgc0 da =

=/X-u^v + / f e + D^n^) da . (15)

How we invert the Laplace transform

^ X ; * u > + / ( P i * u- + Dk • 5»'nk)da =

= /x^Uidv + y(p{*Uj, + Dk* 9>nk)da , (16)

using the notation

^ ~ 1 ( X i O = X i * u ' i = o / < X i ( x ) t . r ) u ; ( x , r ) d T ; e t c .

Eq. (16) consitutes the theorem of reciprocity of work generalized to piezoelectricity. If
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the piezoelectric effect is absent (<p = 0 , D; = 0) (16) implies the known D. Graffi's

theorem' '.

s ii

= /Xi*u;dv + /pi *u4da ./ (17)

[n the case of harmonic vibrations we have

Ui(x, t ) = u*(x)e t o t , Xi(ji,t) = X * ( X ) E ~ U * \ (18)

where G)>0 is the frequency. Eqs. (1) and (2) can now be written in terms of amplitudes

<£ii + X* + eco\i* = O (19)

<jjiij + xT+ ?wu" =0 . (20)

Repeating all operations performed before for transforms, we arrive at the following torm

of the reciprocity theorem :

= /x'Vdv + /(p>ut + Dknk/)da . (21)

If the piezoelectric effect is absent, Eq. (21) is simplified to the known equation of dynamic

elasticity

iVdv + /p*ui*da = /xi'ut dv + feu*da . (22)

if we regard the piezoelectric effect as uncoupled with the deformation of the body, Eq.

(21) implies that

fo*<p'\da = /oVMa. (23)

(1) D. Graffi. Sui ceoremi Ji reciprocita nei fenoment-non stazionari. Att. AcaJ. Sci. Bologna. 10, ser. 11

(1963), 33.
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1.8. Orthogonality of eigenvibrations of piezoelectrics

Consider eigenvibrations of a bounded piezoelectric body. We assume that the

vibrations are harmonic, the equations of motion and of the electromagnetic field are

homogeneous and the boundary conditions have the same property. We shall investigate

two forms of .vibrations, denoting their frequencies by 0)m and Q)n , (0m^ G)n . The e-

quations of motion can now be written in the form

(m) 2 (m)
+ e G ) U i = 0 - ( 1 )

where Uj, <s the amplitude of the eigenvibrations and Oj.i the corresponding stress.

Multiply Eq. (1) by U4, and Eq. (2) by Û  , substracting the result and integrating

over the region of the body we have

(«« (") ("> I ' l l . , I * \ An) (m)

i^ " °j*.j-Ui J d v = 0 ( a v o ) ) u M

Consider now the field equations

, C = 0 , (4)
^ = 0 (5)

We shall also use hereafter the identity

Transforming Eq. (3) and making use of the constitutive relations foi o;i, ou. we ob-

tain

/

, (mHn) (n)(m) /> fn)_(m) ln>)r(n).

(Pi "i - Pi Ui )da + ekî  Jie^ - e^ Ek ) dv =
f M (n)

2 2 . f M (n)
) / d (7)

On the other hand, transforming Eq. (6), in view of the constitutive relations for the func-
(m) (n)

tions D; , D̂  we obtain

Cm) ( n l (n) (m) r (n)(m) Cm) (n)

Di 9 - Di g> )nida + e ^ / ( E k e^ - Eu s^) dv = 0. (8)
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2 f («n> (n) r (m> <n) (n) (m)
y d / (p; U; -p^U; ) da +

Adding (7) and (8)

C,_(m) (n) in) (ml

+/ (D i y - D i gp ) n;da • (9)

We have assumed above that the body performs free vibrations, i.e. the boundary condi-

tions are homogeneous. If on 3B2 we have Pi =0 and on DB-j : u^ • 0 and, moreover,

on 3B3 : qp = 0 and on 9B4 : 0 ^ = 0 , we have

a 2 . /* (n> <m)
e ( « i . - » m ) / U i Ui dv = 0 (10)

Since the frequencies are different

'(n) (m)
Ui ^ dv = 0 , n ^ m . (11)

Thus, we have deduced the property of orthogonality of piezoelectric vibrations.

1.9. Equations and relations of piezoelectricity in new notation

In what follows, in concrete problems it will be convenient to introduce new

notation. We replace i\ and kl by p and q ; since i, j and k take the values 1, 2, 3; p and

q run from 1 to 6. Thus, we have

The constitutive equations (3) and (4) of Sec. 1.3. take the form

TP = * w S, , -e k p E k , (2)

Dj, = e i q S q + € ikEk i,k = 1 , 2 , 3 , D q = 1,2,. . . . ,6, (3)

where

£4 = Sp fo r i - j , P =1,2,3

(4)

264- Sp for i*J., p =4,5,6
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In the constitutive relation (2) we have

T, = T11 = a,, , T 2 = T 2 2= a 2 2 , T3 = T 3 3 = a 3 3 , T4 = T 2 3 = a 2 3 = a 3 2

T5 = T31 = CT31 = °13 I T6 = T12 = °12 = °31 •

The constitutive relations (2) and (3) can be written in the matrix form

T4

T6

£12 £22 £23 £ » / % £2 6

/Ci3 ^23 ^33 £34 £35 £36

£14 ^24 £34 £44 /C45 ^46

^15 £25 £35 £45 £55 ^56

/°16 £26 A 6 £46 ^56 £&6

e12

e3

e ! 5

e22

T
e25

*26

e32

633
(5)

and

D2

D,

en *12

<?22

e32

^13

^23

^33

e24

634

<?25

e35

616

e 2 6

^ 6

S3

S4

S5

and

+ c,j(u1fa+u2|1) + e,,

T2 = . . . .

D, = efl U1(1 + e ^ ^

+ e16(u1_2+u2j1) -

33

The first relations of the group (5) and (6) are the following :

T - cn ^ 1 + c i2u2^+ C B U W + C14(U2,3+ U32) + c,5(u3/1

Ek =

(6)

(7)

(8)

D 2 = . . . .
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In the case of the most general anisotropic material

-ik ki

Thus, we have 21 elastic constants /Cpq, 6 dielectric constants C^ and 18 piezoelectric

constants e^p . Altogether there are 45 independent material constants. Their number

becomes smaller when the crystal has a symmetry axis of n-th order. In the case of mono-

clinic crystal with X1 as the diagonal axis we have the following matrices in the constitutive

equations:

T,

T2

T3

T 4

T 5

filt * 2 h3 /C14 ° 0

fin Lzz hi 2̂4 0 0
A3 £23 &3 /C34 0 0

£14 £24 ^34 /C44 0 0

0 0 0 0 fissfisi
0 0 0 0 <c56/:66

s2
S3

s 4

e,, 0 0

e 1 2 0 0

e 1 3 0 0

e 1 4 0 0

0 *25 e 3

0 e26 e3l

E,

E3

(9)

and

Di

D2

ei1 ^2 ei3 ^4 0 0

0 0 0 0 e25 e26

0 0 0 0 ej5 e36

-11 0 0
0

0

(10)

Without going into details we refer the reader to the known monograph by J.F.

and present now only the constitutive relations for two widely used piezoelectric materials.

(1) J.F. Nye. Physical properties of crystals. Clarendon Press, Oxford, 1960.
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namely for hexagonal crystals (6mm) and (622).

An /C12 /c13 0 0 0

fin fin /C13 0 0 0

fin fin /̂ 33 0 0 0

0 0 0 / ^ 0 0

0 0 0 0 (C44 0

0 0 0 0 0 (Ce

s,
s2

0 0
0 0 e-
0 '0 e;

0 e15 0

e15 0 0

0 0 0

31
E,

(11)

and

D 2

D3

0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e^ 635 0 0 0

0

0

0

0

0

1 0

e33

E,
E2

E 3
(12)

This system of constants (five elastic constants /Cpq , three piezoelectric constants

and two dielectric constants e^p , altogether 10 independent constants) is characteristic

for polarized ceramic ferroelectrics, i.e. materials with a strong piezoelectric coupling. The

constitutive relations for crystals of class (622) have the form

fin £12 As 0 0 0

P12 £11 fin 0 0 0

c13 c,3 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c,Li

s, 0 0 0

0 0 0

0 0 0
en 0 0

0 -e14 0

0 0 0

(13)
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and

U1

D2

D3

0 0 0 e14 0 0

0 0 0 0 -e14 0

0 0 0 0 0 0

S,
S2

S3

0 0

0 G-•33

(14)

Here, too, we have five elastic constants Cpq but only one piezoelectric constant e^p

and two dielectric constants ^ii • Altogether there are 8 independent material constants.

Let us now introduce the constitutive relations (11) and (12) for material of

class (6mm) into the piezoelectricity equations

D: i = 0 .

Then we arrive at the system of four equations

2
i DO l | • D o *\iL

(15)

(16)

(17)

u1 j 3 1

(18)
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where

Consider a plane wave in a monoclinic medium. Assuming that the displacement

and the electric potential depend only on the variables X2 and t we obtain the following

four equations

> 22 = 0^1 .

(20)

(21)

e26U1,22 " £*l9,22 = 0 . (22)

It is evident that only the displacement l^ and the potential g> are coupled. In what

follows we shall concentrate on Eqs. (19) and (22) assuming that Uj=U3= 0 . Consider

first a plane wave moving in the direction Xj with a constant velocity c. Setting in (19)

l <pz$eMXl C (23)

we obtain the equation

U0(k c66 - Q(02) = 0 ycsez^+^i (24)

whence

, fi = ^ . (25)

Consider now a layer of thickness 2h, performing foced vibrations due to a potential applied

at the boundaries

-•icot
for X2 = ± h (26)
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We assume that the boundary X2 ± h is free of tractions. Therefore

°21 =T21 = ( c66ui + Hl&fl. ~ ° • f o r X2 = ± h (27)

Setting in Eqs. (19) and (22)

u, = U,(x a)e"< ' a , q> - * (x a ) e" x a > t , (28)

we have

U, = 0 . 1}2= ^ ! (29)
£66

and

$ ) =0 . (30)is
e26

The solution of Eqs. (29) and (30) has the form

U, = A cos 7jx2 + B sin ?jx2 ,

$ = — U, + C + x,D .
e 2 2

 1 2

The boundary conditions (26) imply that the function <£>(x2) is antisymmetric; hence

A=C=0 The boundary condition (26) for X2 = h yields the relation

(po= ^ B sLn*jh +Dh . (32)

In view of the boundary condition (27) we obtain the equation

—^-7)BC0S>jh + D = 0 , (33)

Eliminating the constant D from Eqs. (32) and (33) we arrive at the relation

B(c^Acos A - — sin A] = -q>oex, A = »?h . (34)

(32) serves for the determination of the constant D and this completes the solution. In the

case of resonance
~..c

(35)
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Some problems concerning free and forced vibrations were solved by H.F. Tiersten^1/' t2) .

The propagation of Rayleigh's surface waves was investigated in the papers^-*)~W .

1.10 R.A. Toupin's piezoelectricity equations

In Toupin' theory of dielectrics^ ' the independent variables are the strain Eii ,

the components of the vector of dielectric polarization P^ and the electric field Ej, --(f^.

The displacement or induction vector D̂  is related to the polarization vector P̂ , and the

electric field E,j, as follows :

Pi = Di- e0 Ei . (i)

Here Go is the permeability in vacuum.

R.D. Mindlin ' ' proved that Toupin's system of equations is equivalent to the

systems of equations presented in Sec. 1.4. We shall now present Mindlin's considerations.

Let us decompose the internal energy U of the dielectric into the energy related

to the deformation of the body and the polarization Lr and the energy related to the

electric field

u = uL(£^,Pt) + - l -e 0 9 U <^. (2)

Introducing the electric entalpy

H = U-EiDi (3)

we obtain from (2)

(1) H.F. Tiersten. Linear piezoelectric plate vibrations. Plenum Press, New York, 1969,

(2; H.F. Tiersten. J. Acoust. Soc. of America. 35, (1963}. 234.

(3; J.L. Bleustein. J Acoust. Soc. of America. 45, (1969; , 614.

(4, D.S. DrumheUer, A. Kalnis. J. Acoust. Soc. of America. 47. ' 1970) . 1343.

(5,i J.L. Bleustein. Applied physics Letters, 13, (1968), 412.

(6 P.M. Drenkow, C.F. Long. Acta Mechanica. 3. (1966, , 13.

(7 R.A. Toupin. The elastic dielectric. J . Rat. Mcch. Anal. 5, (1956 . 849.

(8 R.D. Mindlin. Polarization gradient in elastic dielectrics. In t . J . Solids. Structures. 4, M968i. 637.



Foundations of Linear Piezoelectricity 135

Consider a body B of volume V bounded by the surface 9B separating the body

from the vacuum B . Toupin's form of the Hamilton principle is the following :

/ / / [ y x i i j i / p i ( } u i d a ] =0 . (5)
V) B* bj B

Here a = B + B and Ei is the external electric field ;

K = j

Observe that

1

and

, 6 j QUiUidt - - QJ iii<5Uidt (see (4) and (5) of sec. 1.6) (6)

We define the stress Oij. and the effective local electric force E^ by the formulae

Then
<5H = ^ ( 5 ^ +(gpA-Ei )6r? - E Q ^ (5g>pl+ 5 % . (7')

Consequently

Introducing (7') into (5). after simple transformations we arrive at the equation

- /"dt feO9,ii6g><l / d / [ P i i i n ^ i o | y < i | 4 s ] = 0 . ( 9 )

where l^^ is the jump of the function (p,i = - Ê , on the surface 9 B . In view of the

arbitrariness of the vibrations 6<f), 6 P; we obtain Euler's equations
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=° •
(10)

*• on B , (ll)

(12)

and

= 0 on B*. (13)

These equations are completed by the natural boundary conditions

W * ' 1 on as . - (14)

(-€ol»nl+l\KsO, J (15)

Thus, we have derived the equation of motion (10) and Eq. (12), identical with the equa-

tions P;̂ = 0 .

Eq. (11) did not appear before. It constitutes the balance of intermolecular

forces, deduced by R.A. Toupin on the basis of considerations concerning the equilibrium o

of electric forces. This eauqtion is not connected with any boundary conditions.

Eqs. (10) — (12) and the natural boundary conditions (14)-(15) constitute the

linear form of the equations for elastic dielectrics, given by R.A. Toupin.

Assume not the energy U = U (Eir, r\ ) in the form

U = y £ ^ e i i 6 k l + ^ a \ ^ H y £ i j P k - (16)

The relations (8) imply the constitutive equations

• (18)

R.D. Mindlin'1) derived relations between the constants £ii|<£, euj , £jj and the constants

(1) R.D. Mindlin. Elasticity, piezoelectricity and crystal lattice dynamics. J. of Elasticity, 2, 4, (1972), 217.
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^•iikl ' a i j . ' ŵ-j. a n^ Proved that in view of the constitutive relations (17) — (18), Eqs.

(10) — (12) lead to the equations of classical piezoelectricity (6) - (7) of Sec. 1.4.

Let us now present a generalization of Toupin's piezelectricity equations, carried

out by R.D. Mindlim2'. This generalization consists in taking into account in the electric

entalpy, the gradient of the polarization vector

H =

Introducing the new definition

)- \ e0

P . .

we represent Hamilton's principle in the form

2

In view of the arbitrariness of the virtual increments we obtain Euler's equations

on dB.

and

Jii = 0 on B1 .

(19)

(20)

= 0

(21)

(22)

(23)

(24)

(25)

(2) R.D. Mindlin, see p. 29.
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These equations should be completed by the natural boundary conditions following from

Eq. (21)

Ojj.Dj.s Pi , (26)

E j ^ = 0 , (27)

( - C o l ^ l + Pjr i i =0. (28)

The surface integral (21) implies the admissible boundary conditions. Besides the condition

(26j for tractions we may assume the displacement condition (where OÛ , = 0 ). Similarly,

besides Ejj,nj =0 we may take a condition for the polarization Rj, . Finally, besides the

condition (28; prescribing the charge on the surface we may prescribe the potential <p

Let us take the energy U (£ii, Pj,, P^i) in the form

(29)

Here the indices P , G. £ denote a fixed polarization, the polarization gradient and the

strain. In view of the relations

we obtain the constitutive equations

En -&L (30)
' ^ - DPii ' ( 3 0 )

H Pt> ' ( 3 ! ]

«i.kePE,k . (32)

ykjpt,k+ bij. • ( 3 3 )

Introducing the relations (31) —(33) into Eqs. (22; — (24) we arrive at a system of seven

differential equations with the following unknowns : the polarization P̂  the displacement

Û  and the electric potential tp . Observe that introduction of the polarization gradient does
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not rise the order of the differential equations. It is also noteworthy that the electromechan_

ical coupling appears also in a body with central symmetry.Although in this particular case

f-iiV = j.iil» = 0 (since odd tensors do not appear in bodies with central symmetry), the

constants dj,i|d do not vanish. It follows from (31) and (32) that these constants play the

role of couplings between the mechanical and electric fields.

1.11. Thermopiezoelectricity. Fundamental relations and differential equations^ '

In the preceding considerations we assumed that the process in adiabatic. Now we

discard this restriction. Thus, there flows through surface elements heat represented by its

flux q referred to a unit area and unit time. In the interior of the body there act heat

sources W referred to a unit volume of the body and unit time. Consequently, there arises

in the body a temperature increment 8 equal to the temperature difference Q=T-Towhere

T is the absolute temperature and Tn the temperature of the natural state in which there

are no strains or stresses.

We shall deal with the energy balance taking into account the thermal terms

- r r A T e v i v i + u ) d v = / c x ^ + E i ^ + w) dv + /(p^v^ - qini) da, (i)
at ^ 2 J* *»

and the Clausius-Duhen inequality

The energy balance contains the non-mechanical power, the flux of heat through the sur-

face of the body and the energy generated by heat in the interior of the body.

In the inequality (2) S is the entropy referred to unit volume.

The contact forces in (1) can be expressed in terms of stresses (Rj, = ffj;np;

transforming then surface integrals into volume integrals we arrive at the local form of the

(1) R.D. Mindlin. On the equations of motion of piezoelectric crystals. Problems of Continuum Mechanics.
SIAM, Philadelphia, Pennsylvania, 1961.
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energy balance

0 = fyty + Eik-q^+W . (3)

We have made use here of the equation of motion

%i + Xi - QUi = 0 . (4)

In what follows we introduce the free energy F and the electric entalpy H,

F = U - S T f H = F - EiDi . (5)

Making use of these definitions we arrive at the new form of the energy balance

H = c*jfii| - DiEi - ST - S T - 4,4 + W . (6)

Let us eliminate from the inequality (2) and Eq. (6) the heat sources. Then we obtain the

inequality . _

( t ) ^ y ^ > 0 . (7)

Assume now that H = H(S;; , Ej,, T , T, ± ) . Then

From (7) and (8) we have

- $ T(i- ^ > 0 . (9)
OT.i

This inequality should be satisfied for all variations of the variables E^ , TT T,̂  .

Consequently the coefficients of these variables must vanish :

W ' TT
Thus, the entalpy H is independent of the temperature gradinet. The remaining inequality
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has the form

-*&• » 0 , (11)

which is satisfied by assuming that

i.e. the Fourier law for anisotropic bodies. The quantity Q =~Qi,Tj> s 0 should be a positive

definite quadratic form,

This inequality (in view of Silvester's theorem: ) leads io restrictions on the symmetric

coefficients of heat conductivity kw .

Expanding the eiu.Jpy H into the Taylor series in the vicinity of the natural state

- TiieyB -giEtB - £-£ , (14)

and making use or the relations (10) we arrive at the constitutive equations

S = Yi\ fiii + 7-e + giEi ,
* * To

(16)

Di =e i k e e k l + g i 8 + £ i k E k . (17)

Eq. (15) is the Duhamel-Neumann equations generalized to piezoelectricity, the second is

an expression for the entropy in terms of the variables 6 ;̂ , 9 , E|< and the last is an

expression for the electric displacement.

Observe that (14) — (17) lead to the constitutive relations

and

ddil 3D; 9fl̂  H H - i?i
3Ek " 3E; ' 3T " de^ ' 3E; 9T "
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The relations (18) imply that

The symmetry of the tensors 0 ;̂ , B'A leads (15)) to the symmetry conditions

(21)

In the case of general anisotropy we have 21 constants Cijki j 18 piezoelectric constants

e^il , six constants Q,) and _%; and three constants g^ . There also appear the constant

/Ct , which has the meaning of the specific heat at constant strain .B'A and constant E^ .

Altogether there are 55 material constants. Observe that meaning of the coefficients C+ikf,

e ^ , • . . is now different than that in Sec. 1.3. The latter referred to the adiabatic

state while the new coefficients are measured in the isothermal state.

In the adiabatic state q =0,W=0. The entropy balance

TS a - * , + W , , (22)

implies that in the adiabatic state S = 0 . Eq. (16) for the adiabatic case leads to the rela-

tion

8 =- j-ir^ii + g^x). (23)

This relation may serve to eliminate the temperature increment from the constitutive

equations (15) - (1 "7j. Thus we obtain the constitutive relations for the adiabatic state

% = cij.kt£kl " ekijEu , (24)

Ql = *MSti + ^ i l A (25)

where

hjki = fi-ifli + — Yll Ytt . ek i | =eki- y i :g k , Gik = £ i k - — ĝ  gk

hi & fit fit

I n t h e i s o t h e r m a l s t a t e 8 = 0 o r T = T o . I n t h i s c a s e t h e c o n s t i t u t i v e e q u a t i o n h a s

t h e f o r m

(26)
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Pi = *M*U + GiVlEk, (27)

valid for stationary state.

Introduce now the constitutive relations (15) - (17) into the equations of motion

and the equation for the electric field

aM + Xi = &4l , Di,i = ° • (28)

Taking into account that Ek
 =~9P(, we obtain

- ©Mi , (29)

^ 8 ^ = 0 . (30)

These equations should be completed by the equation of heat conduction. It is derived on

the basis of the entropy balance (22) taking into account the constitutive relation (16) and

the Fourier law (12). Thus we have

= k i, |T^ + W. (31)

Bearing in mind that

To '

and assuming that |8 /T 0 | <sl we arrive at the linear heat conduction equation in the

form

Eqs. (29), (30) and (32) constitute the complete set of equations of thermopiezoelectricity.

The considered set of eauqtions is coupled. In the case of a stationary problem Eq. (29)

becomes the Poisson equation

kijQ^i = - W , (33)

while Eqs. (29) and (30) are still coupled. The function 8 appearing here is already known

from Eq. (33).
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1.12. General theorems of thermopiezoelectricity

To prove the uniqueness of the solution of the differential equations of thermo-

piezoelectricity we .need a modified energy balance. It follows from the principle of virtual

work

/(Xi -eiii)<5u;dv+ /piHda = V W V ' (1)

in which the virtual increments have been replaced by the real increments

6Ui = Vidt, dsi\ - e^dt , . . . etc.

Thus, we obtain the fundamental energy equation

/ (Xi-evihdv + /piVida = A ^ d v , (2)

into which we introduce the constitutive relations

eki;Ek - yij6 , (3)

Hence

-1 (jf+ *r) = yki \ dv +y f tv; da + /(yqhn9 + ekiikfa)dv» (4)

Where JT is the kinetic energy and ^ the work of deformation (see the definition in

(Sec. 1.5. Tr=i/2i^Cijk{8ij6kedv) .

To eliminate the term / ywCijS dv we consider the heat conduction equation (setting

W = 0 )

T " ( k 4 9 4 " c& ~ Vi'i % + q ^ • (5)

Multiplying it by 9 and integrating over the region of the body, after simple transforma-

tions we obtain

(6)
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where

Substituting form (6) into (4) we are led to the equation

36 B

To eliminate the term ekii£ii E|i - from the last integral of Eq. (7) we make use of the

constitutive relation

^ ^ g k k ^ E ^ . (8)

After simple transformations we obtain

= - /bkgp

where we have introduced the notation £ = 1/2£,ij/Ei Ekdv .

In view of (9), bearing in mind that D ;̂ = 0 we arrive at the modified energy balance

g,, /e

/ JSL/% [b . (10)

The energy blance (10) makes it possible to carry out the proof of uniqueness of the solu-

tion. As in Sec. 1.5. we assume that there are two distinct solution (Ui,<p,8) and ( u";gp"(

6," ) , we construct their difference Û, = U -̂Ui,... and proceed as before. The difference

(denoted by "roof") satisfies the homogeneous thermopiezoelectricity equations with

homogeneous boundary and initial conditions. In view of the homogeneity of the equations

and the boundary conditions, the right-hand side of Eq. (10) vanishes.
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Hence

•^- ( j f+#+^+£+g k / eE u dv)= -x6 « 0 . (11)*
at i

where we have made use of the fact that the integrand of the energy dissipation function

%$ is a positive definite quadratic form. The integral in the left-hand side of Eq. (11)

vanishes at the initial instant, for the functions Û  , 8 , <p , £ k satisfy the homoge-

neous initial conditions. On the other hand, the inequality (11) proves that its left-hand

side is either negative or zero. The second possibility occurs if the integrand is a sum of

the squares. Consequently we assume that

J r = 0 , TT= 0, ^+£+g k / eE f c dvs0 . (12)

These results imply that

Oj, = 0 , fy : 0 , 9 = 0 , Ek = 0 . . (13)

We still have to deduce relations between the constants Cfc , p^ and . 6ji ensuring that

the inequality (12)JJ' / is true.

Eqs. (13") imply the uniqueness of the solutions of the thermopiezoelectricity

equations, e.e.

u] = u j , 9'm9\ 0 ' = G " ; E'k=E^. (14)

Moreover, it follows from the constitutive relations that

%- aij, Q[S DI , S' = S". (is)

(1) J. lgnaczak deduced the following sufficient condition (private communication). Assume that £i\ is

a known positive definite symmetric tensor, g; a vector and A -tt/^o* 0 . and consider the function

A(e,E i) = >c0' + 26 giEi+e^EiE^ .

A is non negative (A* 0 ) for every real pair (8, E^), provided

where Am is the smallest positive eigenvalue of the tensor £ i l .
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Consider now the generalized Hamilton's principle. We define two functionals

it = /(H + ST-XiUi)dv -/(RiUi - ego)da f (16)

= Ar-STT-WT)dv+ /TQin;da , (17)

Where H is the electric entalpy, <p die electric potential, 0 the electric charge on 9B and

. F the potential of the heat flow

The generalized Hamilton principle has the form

6 I (K - rc)dt = 0 , 6 vd t =0 . (19)
X %

This form of Hamilton's principle was first stated for the problems of coupled thermoelas-

ticity by H. Parkus' ' and for the adiabatic problem of piezoelectricity by H.T. Tiersten^ >.

Returning to Eq. (11) we find that the following conditions must be satisfied

<5u(x . t , ) = ^ y ( x , t 2 ) = 0 ,

(20)
d e ^ . t , ) =<J9(x , t 2 ) = 0 .

The displacement Ui, , the potential <p and the temperature 9 are subject to variation.

Performing the variations in accordance with Eq. (19)j, making use of the constitutive

relations (10) in Sec. 1.10. and bearing in mind that

(1) H. Parkus. Uber die Erweiterung des Hamilton'schen Prinzipes auf thermoelastische Vorgange.
Federhofer-Girkman Festschrift, Wien, 1950, Verlag. F. Deuticke.

(2) H.F. Tiersten. loc. cit. p. 18.
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we obtain the equation

/

] } = 0 . _ (21)

Since the variations <5llj, , <5<p are arbitrary, we obtain from (21) the equations governing

the motion and the electric field, completed by the appropriate boundary conditions. These

equations and boundary conditions are identical with those presented in Sec. 1.6. (Eqs.(lO)—

(13)).

Performing the required variation in Eq. (19)2

dl / ddfydl = Adt f A|£<5Ti-St<5T-ST<5t -W<5T)dv +/GiMTda (22)

and taking into account
op

we transform Eq. (22) to the form

Adt {/(qii-W + SDaT-(sf3T))dv-A(qi-9i)ni<JT'l = 0 . (23)

In view of the assumption (20)5 g we have

/ (ST(JT)dt = | S T 6 T | ' = 0 . (24)

We still have the equation

i-q^MTda j = 0 (25)

valid for arbitrary variation (5 T satisfying the conditions (24).

Eq. (25) yields the entropy balance

TS =-qi , i + W , x C B . (26)
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and the boundary condition for the heat flow

qi = Qi , X C 3 B . (27)

Consider now the theorem of reciprocity of work. It constitutes a generalization of the

reciprocity theorem deduced in Sec. 1.7. As before, the point of departure is the set of

equations of motion, transformed by Laplace. We have the identity (cf. Eq. (18) of Sec.

1.7.)).

i - Pi Gi)da =/(%ey -Oij i^dv . (28)

In view of the constitutive equations

- - _ . § . e . | • g ' B , f _ § ' _ « . E ' (29)

we obtain

/(X;ili - XiUi,)dv + /(Piiii, -pi 'ui

= o (30)

In what follows we shall make use of the heat conduction equation for both

systems of loadings

4 giEl) = - - f , (31)

^ M k i $ l - APe) - p(Yifii* fliEi) s - S I . (32)

Multiply now Eq. (31) by 6 , Eq. (32) by 9 , subtract the result and integrate over

the region of the body- Atter transformations we obtain the equation

W. Nowacki. A reciprocity theorem for coupled mechanical and thermoelectric fields in piezoelectric

crystal. Proc. Vibr. Problems, 6, 1 (1965).
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da - p /

- ( y * ^ + 9^ )9 ] da + j - /(W91 -W'9 )dv = 0 . (33)

Finally, let us make use of the equations for the electric field

Dk.u = 0 , 5 ; k = 0 . (34)

Multiplying the first by y ' , the second by <p substracting the result and integrating over

the region of the body we have

i^ AkEk-DkEu)dv = 0. (35)

Introducing the constitutive relation

and a similar relation for Dk , into the volume integral, we transform Eq. (35) to the

form

9 D £ > M y [ ( E ^ E ) ( 8 E e ' E ) ] d = 0 . (37)

Eliminating the common terms from Eqs. (30}, (33) and (37) we arrive at one common

equation of reciprocity of work containing all causes and effects

piCil -piili) +(Dk$p1-D1<p)nk]da]

+/(w'e -we'Jdv + K^ytee^-e'e^nida = o . • (38)
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Inverting in this equation the Laplace transform we obtain

/(W'*e-W*8')dv

Where we have introduced the notation

f
x© ul =y Xi(x,t-r)

W * 8 ' =

=0 .

• d t r , . . . . . e t c

d r , e t c

(39)

Similarly to thermoelasticity' ' we can investigate the action of concentrated

forces, instantaneous and moving concentrated sources, we can derive the Somigliana and

Green formulae generalized to thermopiezoelectricity, etc.

As in Sec. 1.7. it is easy to deduce the theorem of reciprocity of work for harmo-

nic vibrations and stationary problems.

1.13. Coupling of elastic and electromagnetic waves

In the preceding considerations we dealt with the coupling between the quasi-

static electric field and the motion of the elastic body. In this theory the equations of

motion of the elasticity theory are coupled with the Gauss equation div D by

means of the piezoelectric constants.

We now proceed to a more general problem, namely the dynamic elastic and

electromagnetic problem. We confine ourselves to the adiabatic process.

We shall now discard the previous assumption

rot E = 0 , E = -grad q> , (D

(1) W. Nowacki. Dynamic Problems of thermoelasticity. PWN-Warszawa., Nordhoff Int. Publ. Leyden.
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implying the quasistatic nature of the electric field, and consider the complete set of

Maxwell's equations (assuming that g e = 0 , 0 — 0 , M = 0 )

rot H = D , rotE = - B , (2)

divD = 0 , div B = .0 , (3)

completed by the constitutive relations

D =: C0E + P , B = p0 H . (4)

Performing over Eq. (2)o the operation of rotation, making use of Eq. (2)j and the relation

(4)2 we arrive at the wave equation^ 1

rot rot E = - p0 — r . (5)

Next, we represent the vector Q by means of the constitutive relation for the quasistatic

problem ( the formula (4)7 of Sec. 1.3.)

D^= e i k ie k E+Sxj iE, , , (6)

Than, substituting from (6) into (5) we obtain a system of three wave equations with the

unknown functions Û  and E,j, . The remaining three equations are deduced from the

quations of motion

011,1 +X ; s pUi (7)

The stresses 0̂ ; are given by the constitutive relation for the quasistatic problem

S^E^. (8)

(l)J.J. Kayme. Conductivity, and viscosity effects on wave propagation in piezoelectric crystals. J. Acoust.

Soc. Amer. 26, /19 990.
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Consider a simple example referring to the propagation of a monochromatic elastic and

electromagnetic wave in amonium dihydrogen phosphate (ADF). This crystal belongs to

the tetragonal system (of class 4 2 m) in which we have ten independent elastic, piezo-

electric and dielectric constants. Assume that the wave is propagated in the direction X, ;

then derivatives with respect to X2 and X3 vanish. The constitutive relations in the con-

sidered case have the form

0,3 = £44 "3,1+

(9)

D1 = enEi , Oj =-e 4 1u 3 ) 1+€ 1 1E 2 ,

(10)

Substituting (9) lnd (10) into the wave equations (5) and (7) we obtain a system of five

equations

-ff^Jll, sO , . (11)

2 2

iE3 = ° .
( 1 2 )

2 2 2
9 e 8 ) E + n e 9

>,E2 = 0 ,
(13)

The sixth equation does not appear, for Ej = 0 D-, =0 . Observe that the longitudinal

wave U1 is unperturbed by the electromagnetic field.

The waves U2 . E3 and U3 , E2 are coupled. Hence we have five different

wave velocities. The first phase velocity for the longitudinal wave is
V/2

V =
Q
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The system of equations (12)—(13) can be transformed to the form

: , t 3 ) = 0 (14)

,E2) = 0 (15)

For a monochromatic wave propagated in the Xj — direction we have

(16)

Introducing these functions into Eqs. (14) we obtain the following characteristic equation

for the phase velocity V of the plane wave :

We have introduced here the notation

The biquadratic equation (17) yields

2 3

Thus, if the determinant 1̂ of the equation is greater than zero. k̂  >• 0 , kj"^ 0 .

The expression (18) can be represented in the form

.2 (a2 f 1 1 vi 1 i \2

where it is ensured that A >• 0 .

The solution of Eq. (14) for the monochromatic wave has the form

u2 = e- i t t l {Ae i M '+ Be'*** U^+O^* } , (20)
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E3 = e [(Ae - B e

where

The transverse wave U2 and the electromagnetic wave E3 are propagated with the same

phase velocity V = £~ = 0)/ k . I n view of the existence of two roots k i,k2 we are faced

with two waves.

Since k-j,l<2 are constants, the waves do not undergo dispersion and since they

are real, the waves are not damped. An analogous reasoning holds for Eq. (15). Since the

latter is analogous to Eq. (14) the only difference consists in different values of the con-

stants .

The knowledge of the displacement U and the field E makes it possible to

determine the vector D from the constitutive relations (10) and the stress from the formu-

lae (9). The components of the field H are calculated on the basis of Eq. (2)^ and the vec-

tor Q from the formula (4)2-

Assume now that the conduction current J =£ 0 . Then we are faced with the

system of equations

rot H = Q + J , rotE = - B (21)

div D = 0 , dlv B = 0 (22)

We take the constitutive relations in the form

9 = e 0 E + P , B = /x0H J = a E , (23)

Thus.we assumed the proportionality of the vectors J and E and. moreover, that the

material is isqtropic with respect to the electric conductivity. 0 is a (constant) coefficient

f electric conductivity.o
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Eqs. (21)i o lead t o t n e wave equation

rot ro tE = - 1 ^ ~ T - / ^ O T T - <24>

The further procedure is analogous to that in the preceding problem. The difference as

compared with the plane wave in amonium dihydrogen phosphate, in Eqs. (14) and (15).

We have

J2 IE3) = 0, (25)

I, E,)= 0 . (26)

Consider the wave (25) assuming (16) to be true. The phase velocity of the propagation of

the waves U2 , E3 is calculated from-'the equations

1 a 1 O)

M F ŷ  ^ r ) ?v^ -^v ' v = | = f ' (27)

which yields

,2 co f 1 1 -ia/i.Q r/ •) 1 \2 4 n - iv .1

It is evident that the roots kj,;i = 1 , 2 ) are complex. Namely, we have

kp = ap + i ^ , |3 = 1 , 2 . (29)

Thus the wave is damped. The phase velocity and the damping coefficient can be found

from the formulae

v * = f = R7irv fy=4V, 0=1,2 (30)

The roots kjj iepend on the frequency of vibrations. Therefore, the waves U 2 . E3

are dispersed.



Foundations of Linear Piezoelectricity 157

The solution of Eqs. (25) has the form

+ Ce v» e l + D e v* e w . (32)

The relations between the constants A, B, . . . and A, B, . . . . can be found on the basis

of one of the following two equations :

" l \ \d)Z + 'e 92u' - 0 (33>

which constitute a generalization of Eqs. (12).

The above considerqtions can be generalized to thermopiezoelectricity. In this

case we are faced with a system of 3 equations

rot rot E = - ^ 1 ^ - - ,x0 ^ -

*ii% -fit* ~ Tofyty - Tog^ = 0 . (36)

The last equation is the heat conduction equation. The constitutive relations of thermo-

piezoelectricity (the formulae (15), (17) of Sec. 1.7.) have the form

Introducing them into Eqs. (34)—(36) we arrive at a system of seven equations containing

as unknowns three components of the displacement vector U_ , three components of the

field E_ and the temperature increment 9 . Oberve that in view of the heat coupling and

the presence of electric conductivity, all waves are damped and dispersed.



CHAPTER II

MAGNETOELASTICITY

2.1. The field equations and the constitutive equations of magnetoelasticity

In the last 20 years a new field has been developing, called magnetoelasticity, in

which we investigate the interaction between the strain and electromagnetic fields in a solid

elastic body. The theory is essentially an extension of linear elasticity and linear electrody-

namics of slowly moving media.

If a body placed in a strong initial magnetic field is moved by external loading, be-

sides the strain field, there arises an electromagnetic field. These two fields are coupled and

interact with each other.

A stimulus for the development of magnetoelasticity was its application in geophys-

ics, in some branches of acoustics and in investigating the damping of acoustic waves in a

magnetic field.

The first paper on the subject was written by L. Knopoff* ', where the author

im-tsugaied the propagation of elastic field in presence of Earth's magnetic field. We should

also mention papers by A. Bafios' ' and P. Chadwick'-^. There are also papers by S. Kalis-

ki and J. Petykiewicz^ ' -"), important in the development of magnetoelasticity. A some-

what different approach to the subject of magnetoelasticity is presented in the paper by

(1) L. Knopoff. The interaction between elastic wave motions and a magnetic field in electrical conductors.
J. of Geophysical Research, 60, 4(1955), 441.

(2; A. Banos Jr., Phys. Rev. 104. 2(1956). 300.

(3) P. Chadwick. Ninth Int. Congr. Appl. Mech. 7/1957). 143.

(4) S. Kaliski and J. Petykiewicz. Dynamical equations of motion coupled with the field of temperature
and resolving functions for elastic and viscoelastic anisotropic bodies in the magnetic field. Proc. Vibr.
Problems. I, 4(1960), 3.

(5) S. Kaliski and J. Petykievicz. Equations of motion coupled with the field of temperature in a magnetic
field involving mechanical and electromagnetic relaxations for anisotropic bodies. Proc. Vibr. Problems.
1. 41959 .
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J.W. Dunkin and A.C. Eringen(1).

Consider an elastic body in a strong initial magnetic field. The mechanical (im-

pact) and thermal (e.g. thermal shock) causes generate in the body a strain and a coupled

electromagnetic field. In all above mentioned papers it was assumed that the influence of

the electromagnetic field on the strain occurs by means of Lorentz forces appearing in the

equations of motion. The Ohm law contains a term describing the increment of the density

of the electric field depending on the velocity of the material particles moving in the mag-

netic field.

For this simplified model L. Knopoff proved that the magnetoelastic interactions

play an insignificant role in the propagation of elastic waves in the presence of Earth's

magnetic field. However, there exist instruments working in a strong initial magnetic field.

G.A. Alers and P.A. Fleury(2) proved experimentally that in these cases the influence of

magnetoelastic interactions is considerable.

Consider a homogeneous isotropic material medium, possessing a good electric

conductivity. Assume first, that the body is at rest with respect to the free space which we

identify with an initial frame. In this case Maxwell's equations have the form^3' >

rot H = D + J , rot E = - B , (l)

div D = Qa, div B = 0 . (2)

Here the vectors E, fcl, D, B, J , denote the electric field, the magnetic field, the electric

displacement, the magnetic induction and the density of the electric field, respectively.

Finally Qt is the density of the electric charge. The quantities E, H, D,B» J are ob-

served in the laboratory reference frame.

(1) J.W. Dunkin and A.C. Eringen. On the propagation of waves in an electromagnetic elastic solid. J. Engn.
Sci. 1, 4(1963), 461.

(2) G.A. Alers and P.A. Fleury. Modification of the velocity of sound in metals by magnetic fields. Phys.
Rev. 129, 6(1963) 2435.

(3) A. Soinmerfeld. Electrodynamics. Academic Press, New York, 1952.

(4) J.A. Stratton. Electromagnetic theory. Me Graw Hill, New York, 1941.
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Eqs. (l)j and (2)j yield the electric continuity equation

d i v j + - ^ = 0 . (3)

The system of equations. (1) — (2) is not complete, for we have to add the constitutive

relations. For the quantities Q and 8 they have the form of the non-linear relations

D = d ( E , H ) , B = b ( E , H ) . (4)

We shall confine ourselves to linear relations which for an isotropic body have the form

D = sE , B = jUeH (5)

The quantities £ and ju,e denote the electric and magnetic permeabilities, respectively.

The last constitutive relations, the Ohm law, is the relation between the vectors

J and E

J = OE (6)

where a is the coefficient of electric conductivity.

In vacuum we have the constitutive relations

D = B0g , B = fi0H , J = 0 , (7)

where e0 , fiQ are universal constants.

The Maxwell equations (1) — (2) hold both for the interior and the exterior of

the body. On the surface separating the body from the vacuum there are the boundary

conditions^ '

(8)

Q x [ d ] = i - v [ D ] , n x [ E ] =

n • [ D ] = 0 , n • [§] = 0. ,

(1) In general the magnetic permeability is denoted by (J , we prefer here however u e , reserving jU for
the Lame constant.

(2) H. Parkus. Magneto-thermoeiasticity, CISM, Udine, Springer-Verlag, Wien, 1972.
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where | H J denotes the jump H - H of the vector H through the surface separating the

body form the vacuum. V is the component of the velocity vector in the direction of the

vector n . The vector i is the density of surface currents.

Let us return to the Maxwell equations (1) — (2). By eliminations making use of

(5) and (6) we can transform them to the simple wave equations

V2H - II,BH - a/x,H = 0

( 9 )

( V - grad div) E - e/xeE - afiet = 0

The structure of the above hyperbolic equations indicates that the propagating waves are

damped and dispersed. For the vacuum, ftfcm the Maxwell equations and the constitutive

relations (7) we obtain the wave equations

F2H - fiosoH = 0 , V\ - MosoE = 0 , (10)

^ ) = 0 , K = (,A0£0rV2
) (11)

where c is the light velocity. The electromagnetic waves in vacuum are neither damped nor

dispersed.

In Sec. 1.1. we derived the balance of electromagnetic energy

^ - /uedv = - / n . ( E x H)da - AE Jdv ,^ / e / , (12)

where v

Consider now a body the material points of which move in an external magnetic or electric

field. Denote by E,Hj D', B,' J j -Qe the magnetic quantities observed in a coordinate system

X ' connected with a moving material point. In this moving coordinate system we have the

Maxwell equations (note the invariance with respect to the Lorentz transformation)

at
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div D' S Q'I , div B = 0

Here dcj/dtis the convective time derivative of the flux vector I :

de f a r .. , . , t . ,
— s = •—=• + v div f + ro t (I x v ) . (14)

Since the system (1) — (2) and (13) must be identical, in view of (14) we have the equations

3D' 3D
rot(H + v x D ) - J - Q,\I - ~ = rot H - J - jf-

0 1 (r t9B' 3B
rot (E - v x B) + —=• = rot E + -?=• ,

- 91 ~ 91

div D' - ge = div D - Q, ,

div B' = div B ;

implying the relations

H + y x D = H , E - v x B : E

(15)

(16)

H ' = H - V X D , E ' = E + V X § , j ' = J + e , y . ( 1 7 )

The constitutive relations of electrodynamic of slowly moving media are not invariant with

respect to the Lorentz transformation. Their form is analogous to (5) and (6), namely

D' = e E', § '= ^.H1 , S - a E'. (is)

In view of (17) they take the form

D = £(E + v x B) , B = M » ( H - v x D ) ,

(19)
J = ff(E + v

Thus, we have arrived at the complete set of equations and relations of electrodynamics of

slowly moving media. It contains the Maxwell equations (1)—(2) and the constitutive rela-

tions (19). The relation (19)^ is the modified Ohm law ; its last term is the influence of
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the velocity of the particle (moving through the electromagnetic field) on the density of

the electric current.

Consider now a deformable body. We assume that the only influence of the me-

chanical field on the electromagnetic field is an the Lorentz force

1 - e e | + J x i , (20)

which we introduce into the principle of conservation of energy as a volume force,

hi + fjdv + Ai^da = A- /evidv , (21)

Making use of the Gauss transformation for the surface integral in (21) we obtain the local

equation
0j*,i + Xi + fi = QVi , (22')

<jji1} + x i + e , E + J x | = g u t . ( 2 2 - )

The mechanical constitutive relation is taken in the form of the generalized

Hooke law. For the considered isotropic bodies we have

where fi , X are the Lame constants, referred to the adiabatic state. We assumed above

that there are no initial stresses due to the initial magnetic field in the body. We have neg-

lected in the above relations additional terms of higher order due to the influence of the

electromagnetic field on the mechanical field ; thus, we assumed that the relations (23) are

the same in both systems of reference.

Let us return to the equations of motion (22') ; in the case of magnetoelasticity

they contain the volume Lorentz force fj. Introducing the strain

£4= j K j + V5 (24)

substituting the Hooke law into the equations of motion and eliminating the strain by
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means .of (24) we obtain the displacement equations

IIV U; +(X + fi ) Uj y + X| + fi = e'lii (25)

which can be written in the vector form

,,2
+/u)grad div u +X +£ = gu (26)

Eqs. (26), the equations of electrodynamics (1) —(2) and the constitutive equations (19)

constitute a complete set of differential equations of magnetoelasticity. The equations

should be completed by the boundary and initial conditions.

The boundary conditions for the elctromagnetic field can be derived following

the procedure given by J.W. Dunkin and A.C. Eringen'*).

Let us transform Eqs. (1), (2) to an equivalent form

r o t ( E + y x g ) = - + vdivB -roUy x
t

roKH - y x D ) = (J f l . + vdivD -rot(v XD | | + j - e,Y

div D = e, div B = 0

(27)

We apply to the first two equations the Stokes transformation and to the last two, the

Gauss transformation. Thus

7(H-yxD)dc =- ^ /Qd i + y<j - e ,y

/ B d , = /Oda = /eedv
A B

(28)

(29)

(1) see footnote on p. 55.
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In integrating (27)^ 2 w e have used the convective time derivative

da = / ^ 4 - v d i v b - rotv xb^da . (30)

Observe that the curve C.the surface 3 B arid the region of the body B are moving. Let

us choose dB to be a small rectangular area, perpendicular to the boundary surface of the

body (Fig. 1.). The contour of the rectangle is denoted by c. If now the dimension of the

rectangle perpendicular to.the boundary surface is decreased and tends to zero, Eqs. (28)j 2

yield the boundary conditions in the form

(31)E + v x B ] t = 0 , [ H - v x D] t = Jm-e.vm .

where ilA JL denotes the difference of the tangential components (parallel to the direction

t) of the vector A inside and outside of the body. Jn and g« denote the density of the

surface current and the surface density of the electric charge, respectively

Suppose now that the region B is the region of a cylinder the axis of which coin-

cides with the direction of the normal (Fig. 2). If the height of the cylinder tends to zero,

Eqs. (29)j 2 yield the boundary conditions

"i] = 0 , [ D ] = Q, (32)

where

Fig. 1 Fig. 2

denotes the jump of the normal components of the vector A .

Integrating the continuity equation for the current density J .

(33)

over the region B and proceeding as with Eq. (29) j 2 w e obtain the last boundary condi-
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tion

(34)

Besides the above electrodynamic boundary conditions (31), (32) and (34) we have the

boundary conditions for the equation of motion (26).

2.2. Linearization of the equations and relations of magnetoelasticity

Let us write down the equations of magnetoelasticity. Thus, we have the Maxwell

equations

rotH = J + D , rot E =- B , (1)

div D = e, , div B = 0 , ' (2)

the constitutive relations

D = E ( E + V X B ) , B = ju. e(H - v x D ) ,

J = a ( E + v x B ) + p e v ,

and the displacement equations

i ? ( u ) + X + QtE + J X B = 0 , (4)

where Jzf( U ) is the differential operator

f ) . ) (5)

The system of equations (1) — (4) is non-linear and most complicated. A considerable

simplification is obtained if we assume the following : the body is subject to a strong ini-

tial magnetic field Ho - const and at the instant t = 0 we apply an external loading ;

then in view of the coupling between the strain field and the electromagnetic field there

appear small fluctuations e , (̂  described by the relations
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H ( x , t ) = H ° + h ( x , t ) E ( x , t ) = e ( x , t ) (6)

Substituting the above formulae into the constitutive relations (13) and neglecting products

of the quantities hi, e+ , Vi and products of their derivatives, we obtain

D = ee + av x H ° , B a (y°+ h ) ^ ,

(7)
J = <x(e + fA,v x n), a = B(it ,

where we also neglected Qt • Introducing the relations (7) into the Maxwell equations (1)-

(2) we have

rot h = o(e + ju,ev x H°) + ee + av x H°, rot e =- /i,,h , (8)

edive + adiv(v x Hc) = 0 , div h = 0 . (9)

Substituting from (7) into the displacement equations (4) we arrive at the vector equation

J2?(U) + X + JU,JX hf = 0, (10)

or, taking into account (7)^ and (8)^ ,

xH0- e ixH°- av xH°xH°) = 0 . (11)

Observe that eliminating the function £ from the Maxwell equations (8) — (9) we are led

to the wave equation for the function h_ :

(r/2_ j3at-|3oa*)h =-|Jrot(y x H°) - aroKvxH 0 ) . (12)

Here /? = Ofi, , j30= fltE . •

Eq. (12) constitutes a generalization of Eq. (9) of Sec. 1.2. ; it is an equation of

hyperbolic type.

The frequencies related to vibrations and mechanical waves are much smaller than
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the frequencies of electromagnetic waves with the same wave length. Thus, when we investigate

machanical waves we may regard the electromagnetic fields as quasistatic. Mathematically it

means that D = 0. 3D/cH-=0 and then Eqs. (7)j imply that ..£..= 0 r a = 0, j30= 0 .

Thus, we arrive at the simplified system of Maxwell equations

rot h = J rote=-|i/ ,h divh = 0 , (13)

and the constitutive relations

J = a(e + ^ x H ° ) , B = ju»(H°+h) (14)

The equations of motion are also considerably simplified, namely we have

&(u) + X + jti.roth xH°= 0 . (15)

The equations of motion (15) and the simplified field equation (12)

(F2- 09,)h =- 0rot(v x H°) (16)

constitute a complete set of equations of magnetoelasticity. Eq. (16) is a diffusion equation

rather than a wave equation.

The solution of the system of equations (15) and (16) yields the functions U and

h . The remaining functions are deduced from Eqs. (13) and (14).

A further simplification follows form the assumtion that the body is a perfect

conductor. Then a=oo,|9 =00 and Eq. (16) takes the simpler form

h = roUu x H°) ' (17)

Introducing the above formula into the equations of motion (15) we arrive at the uncoupled

system of displacement equations

fiVu + U + ju.)grad divu + fitro\. rot(u x Hc)xH° + X = QU . (18)

A solution of Eq. (18) yields the displacement U while the relation (17) makes it possible

to calculate the function h . The relation (14)j with a - oo yields

e =-jUVX H°. (19)
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Finally, form Eq. (13) we find that

J = rot h . • (20)

The boundary conditions for the system of equations (15) — (16) are also consi-

derably simplified. They can be derived from the boundary conditions (31) and (32) of Sec.

2.1. Assuming that D = 0,S = 0 , a = 0 we have

[ h ] = 0 ,
(21)

Finally, observe that Eqs. (15) and (16) can be written in the form

/A V u + (A +ju.)grad div u + — rot b x B°+ X = Q\S ,
/*• (22)

(F2-j39i)b =-|3rot(vxB0).

They refer to the case in which there appears an initial field of magnetic induction . B =

const. Then

B = B ° + b ( x , t ) , E = e ( x , t ) . (23)

2.3. The fundamental equations and relations of magnetothermoelasticity

The point of departure of our considerations is the balance of the mechanical,

electromagnetic and thermal energy, which in the spatial notation has the tornv '

The integration is over the region B and surface 9B of the deformed body. The first term

1 H. Hiirkus. Majnetothermoelasticity. CISM. Udinc. Springer Verlag. Wien. 1972.
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in the left-hand side is the time increment of the kinetic energy JT= 1/2/ Q Yi V̂ , d V , the

second is the time increment of the mechanical energy / Q U d V , U being the specific ener-

gy referred to unit mass. Finally Ut is the electromagnetic energy referred to unit volume

Q is the density and V the velocity of material point. The first term in the right-hand

side is the power of body forces and the thermal power. T is the quantity of heat generated

per unit mass and unit time. The first term of the surface integral is the power of surface

(contact) forces, the second term the heat flux through the surface DB , the third the flux

of electric energy and the last term is the flux of electromagnetic energy produced by the

motion of the body in an external magnetic field, q denotes the heat flux vector referred

to unit surface and ( E X H )^ is the component of the Poynting vector.

Let us now employ the known relations

^ n i d a , (2)

and perform the differentiation

= / p(U +• V|Vi) + (U +-* -py iV i , ) (p + py : ) I d v (3)
u L 2 J

where

Q = |̂ - , e . t . c .

Taking into account the equation of mass continuity

-gf" + Q\i = 0 (4)

and the- relation between the contact forces and stress

Pi = Oun; (5)
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we arrive at the following form of the energy balance :

/(eU + U,)dv = A[(aji>i+Xi-evi)Vi + Oj iv i i i-q i )i+ r - (E x H);,;] dv. (6)

We have made use above of the Gauss transformation. Bearing in mind that Eq. (6) should

hold for an arbitrary volume of the body we obtain the local equation

eU + U, = ((Tjij + Xi, - Q\) Vi + 0 ^ - q ^ + Qt - ( £ X tj) i ) i ( . (7)

Consider first the expression U« ; let us express the electromagnetic energy U, in terms of

the components of the electric and magnetic fields E and H :

U. r I-(€E2+/*H2), E*= EiEi, tf- HiHi , (8)

we assumed here that the constitutive equations for bodies which are isotropic and electri-

cally and magnetic linear, have the form

D = e l , B = / iH , (9)

Introducing the time derivative of the function Ut ,

Ue = e£E +(uHH (10)

into the Maxwell equations

r o t H = J + 0 , rot | = - B , (11)

and the constitutive equations (9) we have

$ t = r o t H - J , fiH = - r o t E . (12)

Substituting (12) into the expression (10) we obtain

U« = E(rotH - J ) - H rot E =- div(E x H ) - JE . (13)

This quantity can be further transformed by means of the Ohm law : the latter, in electro-

dynamics of slowly moving bodies, has the form
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J = c(E + v x B - ^ograd 8) , 8 = T - To (14)

The term containing V, indicates that the current is modified by the deformation of the

body. The classical Ohm Uw J s <jE is modified by the term V X B and by the tem-

perature flow. Multiplying Eq, (14) by J md solving for J«E we have

JE = — J 2 + (J x B ) v - rtojgrad8 (15)
o

The first term in the right-hand side is the power dissipated by means of the Joule heat.

Introducing (15) into (13)

^ i i o i i , (16)

and the result (16) into the energy balance (17) we obtain the equation

£>U = (Ojt>(j + ( J X B )± + X; - Q\)Vi + O$,\i + Qf -

I- — J 2

' o

The energy balance (17) should be invariant with respect to a rigid translation of the body.

Setting in (17)

v —•• v + b , b. = const.

and substracting the original equation we obtain for b # 0 the first Cauchy equation oF mo

tion

<Jji,i+(Jx B)i+Xi - gVi= 0 . (18)

We note that the expression ( J x B)± is the component of the Lorentz forced. The ener-

gy balance (17) also should be invariant with respect to the rigid rotation of the body.

Setting therefore in (17)

v ^ v + flxr, v __y. e o

(1) If we take into account in deriving the expression (17), the flux of electric charge, then the Lorentz pon-
deromotive force has the form f ̂  » g, E +• J X B
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we arrive at the second Cauchy equation of motion

Oii = oji . (19)

Let us return t.o the energy balance (17). In view of the equations of motion (18), (19) it

can be considerably simplified and there remains the expression

We add to the energy balance the Clausius-Duhem inequality

QTi +[$).-¥- > 0 , (21)

where 1) is the entropy per unit mass. We introduce in (20) the free energy Qip defined

by the relation

V s U - 7}T . (22)

Eliminating from Eq. (20) and the inequality (21) the term q^i we obtain the inequality

4- j W nnJiB; - %^- s 0 .
(23)

_ >h
T

We have considered so far the non-linear problem, assuming that the strain may be finite,

now however we confine ourselves to the linear problem.

Assume that the free energy has the form

W - M>(h\ 8 G J . (24)

Since

we transform the inequality (23) to the form

(26)
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It is postulated that the inequality (26) holds for all independent processes and the quanti-

ties Eji, 8 , 8(, acquire independent variations. Since the inequality (26) is linear in all

variables, we obtain

( 2 7 )

and

(28)

Consider first the free energy QtjJ and the related constitutive equations. In accordance

with (24) we assume that for a homogeneous isotropic body

QV> = i^J«4 + T £ ^ " " " ?euB - 2~ ^ • ( 2 9 )

Taking into account the relations (27) we have

(fy = 2iue^ + (Aekk-)'8)<fy , y = (3A + 2/u.) a, , (30)

Qn = r 4 + 7 - e , (3D
'o

where a t is the coefficient ot linear thermal expansion.

The inequality (28) is satisfied if

qi = -koGi + JT0JiT « - k o 6 i + n0JiT0 . (32)

The above relation constituting a generalization of the Fourier lax was given by Landau

and Lifschitz^ '. The heat conduction equation follows from the entropy balance

= -q i ( i + gr . (33)

(1) L.O. Landau and E.M. Lifschitz. Elektrodynamik der Kontinua. Akademie Verlag. Berlin. 1965.
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In view of the constitutive relations (31) and (32) we obtain the equation

k0F
26 -£ fc8 - /Tofkk - rt0Vi,i = ~ er . (34)

Making use of the charge continuity equation

d ivJ + - ^ = 0 , (35)

and eliminating from (34) and (35) the quantity dtV J we arrive at the equation

(k0F -/C£9t)8 - ^div u + jr0Toee = - pr , r\ = yT0 . (36)

In what follows we assume that Qe - 0 . Then Eq. (36) takes the form analogous to that

in coupled thermoelasticity

( F 2 - I a , ) e - , d i v i . = - i I , i , . ! , *--^-. (37)

Consider the Maxwell equations with the constitutive relations (9)

divH = J + eE , r o t E = - j U e H
( 3 8 )

div E = 0 , div H = 0 .

Eliminating the vector E we have

( F 2 - j ? a t ) H - !803tH = - /3rot(v x H) , P = ^ « 0 , ft = Ht£ • (39)

In deriving the above equation we took into account the Ohm law (14). Introducing into

the equations of motion (18! the constitutive relations (30) and the Lorentz force ( J X B ),

we obtain the vector form of the elasticity equations

( t i fu + (A + fi) grad div u + X + ju.e U rot H - et x H I =

= e'u + ygrad 8 . (40)

Eqs. *37;. (39, and 40; constitute the complete set of equations of magnetothennoelastici-

ty.

These equarions contain non-linear terms, they can however easily be linearized

in tlii.- followine particular case, Assume chat the body is subject to a strong initial magnet-
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ic field H° - const and the instant t - 0 the body is set into motion by mechanical or

thermal causes ; then for t > 0,

H(x ,M * H° + h ( x , M , E = e ( x , t _ ) , J = j ( x , L ) , (41)

where h , e , j are small fluctuations. The Maxwell equations take the form

rot h = j + ee , rot e = - fieb f

(42)
div h = 0 , div e = 0 .

Linearizing (39) we have

(V2- pdt ) h + j909fh = - | 9 r o t ( y x H ° ) . (43)

The linearized equation of motion (40) has the form

• 2 u + (A + fi) g r a d d iv u + X + /xe K r o t h - e e ) x H l = y g r a d 8 f

(44)

The only non-linear constitutive equation is the Ohm law; linearizing it we have

j a a[e + ,u,(y x H°) - na grad e] . (45)

If we regard the electrodynamic problem as quasistatic. we should neglect in Ecj. (43) the

term jSoh and in (44) the term ee .In this case the fundamental magnetothermoelasti-

city equations are the following :

(V2- l a , ) 8 -Tjdivu = - — , (46)

(V2- 09,)h = - /8 rot(y xH°) , (47)

D2u +Q+ /x)grad div u +X + ^ltrot hxH°= ygradS (48)

It a constant field of magnetic induction 8 is given, then

B = B ° + b , E = e ,
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Eqs. (46)-(48) take the form

(F2_ J_a t)8 1 Tjdtv G =- - ^ , (46')

(F2-^a t)b =- 0rot(vxB°) , (47')

Cku+U + itOgraddivu +X + — rotbxB°= ygrad 8. (48')

" ~ Me " "

The fundamental magnetothermoelasticity equations are considerably simplified

in the case of a perfect electric conductor. Then 0 - 00 , /} = 00 and Eq. (47' )~takes

the simpler form

b =rot(v xB°) (49

whereas Eq. (48') is now

D3u + (A +fi)grad divu +X+ —Trot rot(u x B°) x B j = ygrad 9 (50)

In this case only Eqs. (46') and (50) are coupled.

2.4. Propagation of plane magnetoelastic wave

Consider the propagation of a plane magnetoelastic wave in an infinite space.

In this particular case the system of the magnetoelasticity equations takes the form

u F u + U + u ) q r a d div u + — ( r o t b ) x B°= QU (1)

2 B° ) , |3 = CT^, . (2)

We consider a plane wave propagated in the direction of the Xi-axis. (1) and (2) yield the

system of s i \ equations

* ? ] - - i - a 1 ( B j b 2 - B°3b3) = 0 , (3)

+ -5-B°d,b3 = 0 , (4)
Me
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= 0

and

b, = 0

(if-

3*- /?3t)b3 = -

(5)

(6)

(7)

(8)

0

Assuming that b 3 = 0 we find that B 3 = 0 , U3 = 0 . There remains a system of three

equations containing the function Ui, U2, b 2 1

[( A+2[i) a? - rf] u, - J - B°2 a,b2 = 0, (9)

-i-Bftbj = 0 ,

B,V) =0 .

(10)

( a , 2 - j s a , ) b 2 - / ? 9 , 8 ( 6

For a monochromatic wave propagated in the direction of the 3C)__-axis we assume that

Substituting (12) into Eqs. (9)—(11) we arrive at a system of three homogeneous equations.

The condition of existence of a non-trivial solution is the frequency equation

k 2 -

0

ikB2

2

<*1 0

2

-lkB°

2 "

h

ikC2

-if
. 2

= 0 , . (13)

where we have introduced the notation

a, =
CO ft)
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i T £2 = - ^ , " =(^cco)\ (14)

Eq. (13) yields

(k 2 - CT2)[(k2-aj)(ik2r+1) + k 2 q ] + k ! e 2 ( k 2 - a]) = 0 . (15)

This equation contains a number of particular cases which we now proceed to examine.

A) First we consider the particular case of a perfect conductor: then 0 =00

|3 =00, V =0 and Eq. (15) takes the simpler form

• a , a2- 0 . (16)

a) if the initial electromagnetic field is absent, c.e. when B, - B2 and

£, = € .^0 thcn-Eq. (16) yields

2 2 2 2

(k - o,) (k - a2) = 0 . (17)

We are now faced with clastic waves Ui . U2 unperturbed by the electromagnetic field.

The longitudinal wave U, is propagated with the velocity Z^ and the transverse wave

with the velocity C2 •

b) In the presence of the initial field B1 = O.B2:£ 0 Eq. (16) takes the simpler

form

(k2- o2)[k2(1 + €2) - a2] = 0 (18)

Now we have an unperturbed transverse wave U2 propagated with the phase velocity

V = C2 and a perturbed longitudinal wave U\ .

The equation

k2d + e2) - o2 = 0

imp l i e s thi i t

v = c , (1 + e2)1 '2 (19)



180 W. Nowacki

Thus, the velocity of the longitudinal wave is increased, for € 2 > 0 .

c) If B , * 0 and B2=0 for G2 = OEq. (16) leads to the relation

(k2-a2)(k2(1 + e,) - a\) =0 . (20)

In this case the longitudinal wave Û  is unperturbed and propagated with the phase veloci-

ty V = C,. The transverse wave U2 is perturbed by the electromagnetic field. The equa-

tion

k2(1 + € i ) -o\ ) - 0

leads to the formula for the phase velocity of the transverse wave

v = ca(1 + € , ) 1 / 2 (21)

d) In the case€i i- 0, E^tO both waves, Ui and U2 , are perturbed by the

electromagnetic field. Eq. (16) has the solutions

k2

A

1

2(1 + €

.[•!«-
= [a2(H

1 +

'«!

G2)

) +

) - (

(22)
K£ t\\ +1, + t 2 ' u ' -1

where

a2d+ €2)|"-4o1"o5(1+ e,G2)

G 2 ) > 0

It is evident that k, > 0 , k2>0 and that the solutions of the biquadratic equation are real.

The solution of Eqs. (9)—(11) for 0=00 has the form

u, = Ae " v < + B e < ' " ( U ~ + C e A t l > " v i + D e ' U i > ( t + ^ ' , (23)

where

v, = co/k, , v2 = a i / k 2 .

Observe that the quantities k] , k2 depend on the parameter U) . Thus, we are faced

wirh dispersed waves. Let us now return to the frequency equation (15; and consider again
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some particular cases of wave propagation.

e) If the initial electromagnetic field is absent, ( B° c B | = 0 , £^ = £ 2 = 0 ),

Eq. (15) takes the form

(k2 - of) (k2 - a\) (ik2v +1) = 0 (24)

We now have three independent waves. The longitudinal wave Uj is propagated with the

velocity C1 and the transverse wave U2 with the velocity C2 . The case

i k 2 v + 1 = 0 , (25)

represents quasistatic oscillations of the electromagnetic field, which are not coupled with

the displacement U .

f) Consider the case B^ - 0 , B2 f 0 . Then the characteristic equation (15) takes

the simpler form

tk2- a2)[vk4-k2(va2 + i(1 +€2)) + io J |= 0 . (26)

It is evident that the transverse wave is unperturbed by the electromagnetic field, while the

longitudinal wave U1 and the wave b 2 are propagated with the velocity V = (Oj k

The quantity k satisfies the equation

)]+i<72 = 0 (27)e2

The solutions k^ 2 are complex. Therefore the longitudinal wave Û  and the wave U2

are dispersed and damped. The phase velocity Vtt and the damping coefficients $« are

determined from the formulae

a =1,2 (28)

The solution of the considered equations for the waves U] and b2 has the form

ui = Aexp[-ico(t -—) -i3Sx,| +Bexp[-i©(t + —)+ i^x,] +

+ Cexp[- i w U - — )-i>2xj] + Dexp[-tco(t + —)+ i>2x,] . (29)
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and

t>2= Aexp [- i»( l - — )-#iX,]+ Bexp[-ifu(t + —)+ #, xj +

+ C exp[-uo(t- — )-#2
xi] + Dexp[-io)(t + —)+ 1V1] . (30)

A A*

The relations between the constants A, B, . . . and A, B , . . . is deduced from Eq. (9).

g) The case B^ i- 0 , B 2
= 0 leads to the characteristic equation

(k2- ajSftk2- ol)li\?v+))+ e^-0 (3D

We find therefore that the longitudinal wave Uj is unperturbed by the electromagnetic

field, while the waves U2 and b 2 are coupled. The phase velocity of these waves and the

dampins; coefficient are determined from the formulae (28) and the quantities k are found

from the equation

vk* - k (vo\ + i{1 + €,)+ ia2 = ° (32)

The solution of (32 are complex : consequently, the waves Uj and b 2 are damped and

since the k s depend on the frequency (0 , the waves are dispersed. The form of the waves

U2 and b2 's t' '0 same as (29) as (30).

h In the most general case Bj t 0 . B2 ̂  0 we are faced with coupled waves U1 .

U2 • t>2 • The quantity k is determined form Eq. (15). Since- the solutions are complex

and depend on CO the waves are both damped and dispersed.

There is no diHicultv in generalizing the considered solution to thurnio magneto-

elastic media with a finite electric conductivity. A detailed exposition of the problem is

presented in a paper by A.J. Wilson'

1 A.J. Wilson. The propagation of magneuithermoelasric plane waves. Proc. Camb. Phil. Soc. 59 (1963;.
p. 4S3.
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2.5. Two-dimensional problems of magnetothermoelasticity

Consider first an elastic medium with a perfect electric conductivity. The motion of

this medium is described by the system of differential equations

2 1 o
[iV u+(A + jit)graddiv u + —(rot b) xB +X = Qu + ygrad 9 (1)

x ' " x '

b = rot(u x B ° ) . (3)

We assume that the vector of magnetic induction B is parallel to the X3-axis, i.e.iB = ( 0 , 0 ,

Bj)_ . Then, taking into account the relation (3), Eqs. (1) take the form

e + aog93 O3u, - 9,u3) + X, = y3,9 + gii,,

+ X2= y%Q + QU2 (4)

93e + + X3 = QU3

where we have introduced the notation

e = 9,11, + 92u2 + 93u3 , ' o s j ^ s ^ e i i Pf=*? + ^+^»

Eqs. (4) should be completed by the equation of heat conduction (2). The system of equa-

tions (14) is symmetric with respect to the diagonal and its structure is the same as that of

the system of equations for an anisotropic body with transverse isotropy? This anisotropy

vanishes when ao —• 0 .

In what follows we confine ourselves to the two-dimensional problem, assuming

that all functions are independent of the variable X3 . Thus, our system of equations is de-

composed into two independent systems

fu, + (X + n + ZIQ) 3,e + X, = y9,8 + gii, ,
(5)

^ u2 + (X + fi + a0 Q) &£ + X2 = y 329 + QU 2 ,
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( F , Z - l - 9 , ) 9 - Tie = - — ,

and

/xF, u3 + X3 = QU3 . (6)

The last equation is unperturbed by the electromagnetic field and therefore we shall not in-

vestigate it here.

Eqs. (5) describe the plane state of strain U = (Ui,U2,0) and as ao~t-0 they become

the coupled thermoelasticity equations.

Let us differentiate Eq, (5) j with respect to X, , Eq. (5)2 with respect to X2 and

add the result. Thus, we arrive at the wave equation for the dilatation e :

, + d , X 2 ) - m,F 2 8 = 0 , (7)
QC

Here

Eq. (7) is coupled with the heat conduction equation (5)j ; eliminating the temperature from

Eqs. (5)3 and (7) we arrive at a complicated wave equation, namely

f ^ 4 , X 1 +3 2 X 2 ) - ^ ^2Q; .. D = V?- 1-9, (8)

The coupling between the dilatation e and the electromagnetic field is due to the presence of

the qunatity €3 Making use of Eq. (5)^ 9 it is readily observed that

•2$=- -V(Ma- Ml'. (9)

where

Q = a,u2 -
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The function Q describes rotation about axis X3 . It is evident that the propagation of the

torsional wave Q is unperturbed by the temperature and electromagnetic fields.

Let us decompose the vectors U = (Ui,U2,0) and X =(X1)X2,0) into the potential

and solenoidal parts

u, = 8 , * - 92<P, |
( I D

Substituting (11) into the system of equations (5) we obtain a system of three wave equations,

two of which are coupled, namely

(12)

D6 - 7,atR> s .

Eliminating the temperature from Eqs. (12) we arrive at the wave equation

6? 2 ) * =- -El Q - 4-D#, (14)

describing the propagation of a longitudinal wave, while Eq. (13) describes the transverse wave.

The longitudinal wave is perturbed by both temperature and electromagnetic fields, whereas

the transverse wave is not. Observe that the form of the wave equations (14) is analogous to

that of the wave equation of thermoelasticity. The thermoclasticity equation is obtained when

a 0 — 0 .

The knowledge of the functions <£, *P makes it possible to calculate the remaining

electromagnetic and thermal quantities. The temperature is obtained from Eq. (12)^ :

e = i-(D?* + i-#) , (is)

;md the quantities b, j . , E from the formulae

b = rot(u x B°) , fi.j. = rot b , | = - y x B ° - (16)
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Thus, we have

b = (0,0,-83^*), p^si-^vfa, B3a^2*,o)
(17)

E = ( - B 3 o 2 < J + a1<P) , B 3 ( a , $ - a 2 < P ) , o

Consider a particularly simple example of an action of a linear heat source in the infinite elas-

tic plane. Assume that there acts along the X3 -axis the heat source Q(r,t) = Qoe"''

The considered problem is axisymmetric. Eq. (14) takes the form

[ A ^ ^ | ^ i w l , (18)
where

Applying the Hankcl integral transform we obtain a closed solution of Eq. (1,8)

(19)

Here k1 . k2 are the solutions of the equation

k - k (a, + q (1 + er)) + q o,2 = 0 , (20)

where

We arc i n t e r e s t e d in the real par t o f t h e s o l u t i o n ( 1 9 . T h e t e m p e r a t u r e is d e t e r m i n e d o n the

r) -(a,* - k, )Hn'(k->r )| . (23)
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Consider now the propagation of waves in an infinite elastic medium with a finite

electric conductivity ( a j- 0 ). The motion in this medium obeys the system of equations

/ i F u + ( U f i ) grad div u + — (rot b) x B° + X = QU + ygrad 9 ,

( P 2 - jSat) b = - j9rot(u xB°) , (22)

(V2- -L aps - ijdiv li =- JL .

In the case of the presence of an initial magnetic induction B = (0 ,0 ,63 ) ar>d ' n t n e plane

state of strain U =(u1,U2,0) Eqs. (22) take the form

2 B3

- 70282-— 92b3 +X2 = ei
^ (23)

b3 = jSBje , b, = b2 = 0 ,

Introducing into Eqs. (23) the representation (11) we arrive at a system of four equations,

three of which are coupled

•?.* -
D,b3 - /

D8 - tjl

m8

JB3a

)tvS.

_ £3 b 3 - = -

= 0 ,

JQ_
X

(24)

and an independent equation

r-i2

f r ^ . (25)
-2

Eliminating from Eqs. (24) the functions b3 and 8 we have the following equation tor
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the potential $ ."

( •JD,D - J - J ^ ' c c D ^ e a D ) ) * s - J j D D , * - — D,Q (26)
C

Here

e = fjmx , e3 = j3xt3

The knowledge of the function $ makes it possible to determine the functions b 3 and

9 from Eqs. (24)23-

Observe that these functions satisfy equations of the type (20) with a different

right-hand side. Thus, we have the equations

D))bj= m ^ 3 3 ( ^ 0 - -H_33atF1
2i?'. (28)

The equations are considerably simplified in the absence of heat sources and for

adiabatic processes. In this case the temperature is determined from the equation

9 = - Tjxe = - Tjxpf* (29)

In view of (29) we obtain from (24) a system of coupled equations

— 1 J fT — ^ 5 1

2 * (30)

vhere

Eliminating from (30)^ 9 the function b3 we have

(D2D,- ^e33 tF,2)* = 1 0,0 . (31)
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Similarly, eliminating from (30)-^ 2 the function <£ we are led to the equation

( •?0 , - /»€39,Pi2> b3 =- - 4 ^ 9 t F> . (32)

Both the longitudinal wave $ and the wave bj are damped and dispersed.


