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1.1. Electromagnetism.

Certain crystals, such as quartz, tourmaline, Seignette salt, when subject to a
stress, become electrically polarized (J. and P. Currie 1880). This is the simple piezoelectric
effect. Conversely, an external electromagnetic field produces in a piezoelectric crystal a
deformation. This inverse piezoelectric effect was predicted on the basis of thermodynamic
consideration by H.G. Lippmann (1) and confirmed experimentally by brothers J. and P.
Currie (2) in 1881. The linear theory of piezoelectricity was created by W. Voigt (3).

The practical applications of piezoelectric effects are widely known; first of all
in generation of ultrasonic waves, in conversion of electromagnetic energy into mechanical
energy and conversely, in prospecting solids with piezoelectric properties, etc. (4).

We begin our considerations from the electromagnetic foundations of the problem.

(1) H.G. Lippmann, Ann, Chim. 29/1881/, 145.

(2) J. and P. Currie, Compt. Rendus. 93 /1884/, 1137.

(3) W. Voigt. Lehrbuch der Kristallphysik. Teubner, Leipzig, 1910.

(4) M.P. Wolarowicz, G.A. Sobolev, Piezoelectric method of geophysical prospecting of quartz, (in Russian).
lzd. Nauka, Moscow, 1969.
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The Maxwell equations in the MKS system have the form (5)

o0
= e 1
rotH = s=4 ], (1)
rotg---ﬁ, (2)

where H is the vector of the magnetic field, E the vector of the electric field, B the vector

J the vector of the

of magnetic induction, D the vector of the electric displacement and
conducrtion current. In a solid we have the following constitutive relations for the field vec-
tors :

D=gE+P , (3)

B = u(H+M). @
Here P is the vector of electric polarization and M the magnetization vector. &,, Mo

denote the constant electric and magnetic perimeabilities. Egs. (1) and (2) should be com-

pleted by the Gauss equation
divD = o,, (5)
and an equation following from Eq. (2), namely
divB =0, (6)

Eq. (5) defines electric charges 0, . Eqs. (1) and (5) imply the equation of conservation

of electric charges.

=5 diVT= B (7)

Consider a region B of the body. bounded by surface 9B . In the interior of

B there is an electromagnetic field, cleceric currents and Joule's heat is created.

{5, J.A. Stratton, Electromagnetic Theory. Me Graw-Hill. New York, 1941,
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Multiply Eq. (1) by E , Eq. (2) by H, subtract the result and integrate over

the region B ; than

[(g rotH-H rot E) dv =I/(Ef1+ﬁ:B,)cliv+[EJdv. ®)

Taking into account that
ErotH -HrotE = - div(E xH),

and making use of the Gauss transformation we transform (8) to the form

- [o-bda = fiEdeuBlav + [E1av ©)
a8
where we have introduced the so-called Poynting vector
h=ExH.
Eq. (9) is a mathematical consequence of the Maxwell equations and can be physically in-
terpreted as the balance of ¢!cctromagnetic energy. Thus, the scalar D-h represents the
flux of electromagnetic energy through the surface 9B of the body, into the surrounding

medium. The expression ED +HB is identified with the time increment of the electro-

- =

EE:_/U.dV :—’[g-l'_l_da —/E‘Jd\' (10)
B B

The energy balance (10) states that the time increment of the electromagnetic energy is

magnetic energy  Ue . Finally E Jcepresents Joule’s heat. Eq. (9) can be written in the

form

equal to the energy increment flowing through the surface 9B and the increment of the
electromagnetic energy dissipated by means of conversion into heat. Eq. (10) expresses the
law of energy conservation for che electromagnetic field.

In the next Section we shall present a generalized energy balance taking into ac-
count the deformation of the body.

Let us now return to the Maxwell equations. In accordance with Eq. (6) the vec-

tor B is solenoidal, it can therefore be expressed in terms of the rotation of a vector A :

B =rotA, (11)
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However, (11) does not define the vector A, uniquely. Thus, we have

B =rotA, Az A, - grad (12)

Introducing (11) and (12) into Eq. (2) we obtain

rot(E+A,)=0, rot(E+A)=0, (13)
whence

E-»-éo-gl‘ad% §=”A'grad¢$ (14)

and the functions @ , @, , W are connected by the relation

dy
- —— (15)

In view of (12) and (14), we can represent the Maxwell equations in terms of the vector

potential A and the scalar potential @ :

rotH=0+J (16)
" B=rotA, : an
E=z-gradg -'5 ‘ (18)

The constitutive relations (3) and (4) dnd the Gauss equation (6) remain the same.

The Poynting vector h can be written in terms of the potentials A, @ , namely

we have

h=ExH=g(J+D)-AxH. (19)

Consider now piezoelectric bodies (which are dielectrics). In general they are elec-
trically neutral, contain the same amount of positive and negative charges and to not con-
duct current. An introduction of a dielectric into an electromagnetic field changes the latcer.
Consequently, the vectors E and D are not parallel and differ by the polarization vector P.

For piczoelectrics we introduce the same simplifications as for non-magnetizable dielectrics

J =05 g, = 0, M=0. (20)
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Under the above assumptions, the Maxwell equations (16)-(18) take the form

rot H = Q : (21)
B=rotA, (22)
E =-gradg -é 3 (23)
The constitutive rlation (3) remains the same, while the relation (9) is now
B zuH (24)
In view of the fact 0,= 0, Eq. (6) is homogeneous -
divD =0, (25)
and the Poynting vector takes the simpler form
h=¢0-AxH. (26)

A further simplification consists in neglecting the magnetic term ( A=0 ) in the expres—

sion (23). Thus, we arrive at the relation

E=-gradg (27)
We also have at our disposal the equation
o dvD= 0, - (28)
and the constitutive relation
D =¢E +P . _ (29)

Neglecting also in the expression for the Poynting vector the magnetic term we obtain

h=gD. (30

A justification of the above (experimentally confirmed) simplification was presented in an
i ing paper b iersten(1)
interesting paper by H.F. Tiersten\/,

This simplification is valid for electromagnetic waves which are not coupled with
elastic waves and when we consider wave lengths close to the lengths of elastic waves (the
latter are much shorter than the electromagnetic waves with the same frequency).

Let us now return to the energy balance (10). For piezoelectrics, when B=0 .

J =0 . in view of (30) we have

Ef*!t. Uydv = - al[n;lf’u;vda

(1) H.F. Tiersten. The radiation and confinement of electromagnetic energy accompanving the oscillations
of piezoelectric crystal plates. Rec, Advances in Engineering Science. Part [. Ed. A.C. Eringen. Gordon
and Breach Science Publ. New York 1970,
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or

ﬁaT Uedv = -/gp,Lﬁidv (31)

In performing the Gauss transformation we have made use here of Eq. (28). Thus, finally

ﬁ—[u,dv = .[E+ D, dv (32)

In the next Section we shall take into account the deformation of the body in the energy

balance.
1.2. Energy balance

Assume that the considered body undergoes deformation due to external loading
and electromagnetic field, whoch may vary in time. Assume also that there are no heat
sources in the body and no heat exchange by means of heat conduction (an- adiabatic pro-
cess). Apply to an arbitrary region B of the body bounded by surface 9B the principle of

energy conservation

aat (1' ovivy +U dv —/xv¢dv+/4vl-da +/Ede’ (1)

G g -15 [&Vi\'j.d V. (2)

where

is the kinetic energy, U the internal (mechanical and electromagnetic) energy and denote by
L vaLdv +\/p‘v,‘da (3)

the mechanical power. The last integral in (1) is the flux of electromagnetic energy through

,@=f .nda = /Endv )

The principle of energy conscrvation states that the rime increment of the kinetic and inter-

the surface B |

nal energics is equal to the power of the external forces and the electromagnetic enerey
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flowing through the surface OB . Eq. (1) can be written in the form
it(xw:):smg, @z:/um, (5)
Let us transform in (1) the surface integral into a volume integral, making use of the relation
P =0;n; (6)

where n; is the normal vector directed outwards, Making use of the Gauss transformation

we arrive at the equation
/Udv = f[(%.i.,}"‘xi“?\;i.)vl"'oj,i.vi.,j.*'Eibi] dv, (7)
8 B8

which must be satisfied for every part of the body. Thus, we obtain the local principle of

energy, conservation

U= OV, * (G, +X

Q\'lfi)\';+Ei D; (8)
We shall demand that Eq. (8) be invariant under the rigid motion of the body{])
and first consider the translation
v, =V, + b; 9)
where b; is an arbitrary constant vector. We assume that then the quantities” @ . U, Xy

Oji - E;, remain constant. Introducing (9) into (8) we have
A}
U =V +b-¢)(aJ_-h}+Xi_-gi‘,')+ o};viléq-E;D,;, (10)
and subtracting (9) from (10) we are led to the equation
bi (0, +Xi - ov;)=0
which should be satisfied for arbitrary b; . Thus, we arrive at the equation of motion

J,t;+xx'9\" (11)

17 A.E. Green. R.S. Rivlin. Arch. Rat. Mech. Anal. 17/1964/, 113
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This equation considerably simplifies the energy balance, namely
U = ojv;+ E.D;. (12)
In accordance with our assumption the expression (12) must be invariant with respect to a

rigid rotation. Therefore, assume that -
iV Xy, Vi V- &t Q, Q =const, (13)
Introducing (13) into (12) we have
U= g;(%,; - ;0 Q) +E. O _ (14)

Subtracting from Eq. (14) the expression (12) and bearing in mind the invariance of the

quantities U , 0ji s E; we obtain

.QLE;J‘*U“= 0. (15)
This result implies the symmetry of the stress tensor 044 ,
& Oy =0, 05 = 0. (16)
Consequently we obtain the equation
U = guv+ED;, (17)
moreover, now we already know that the stress tensor is symmetric. Since, by definition
. | : i Mg g
Bq'_ = -Q—(Ui'J'I- UJ';‘), (ﬂq- ‘5—(}1‘_&-— UJ,L) (18)

we have
V"--J' Gid_-b w,;é
where & is the symmetric strain tensor and @;j is the antisymmetric rotation tensor.

Thus, 0@, = 0 . The energy balance (17) can be written in the form
)= Uq'_ é4§.+ ELD‘_ (19)

It is evident that U =U(&;,D;) and that

j= U ;. , 3V p
U-= ﬂe;;e‘*+ a0, D;
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Hence, in view of Eqs (19) and (20) we obtain

i OU) - au ) :
o - . - e
( i Gs,;i & + (El 7D, D; = 0s (21)
This equation should hold for arbitrary values of é_;i 4 |'J;, , whence
au U
O = PR —
4 Bq. ! E“ GD; 22)

In further considerations it will be convenient to employ constitutive relations in which
the quantities ¢;; and D; depend on &, E; . Therefore we introduce the electric
entalpy H lefined as follows : -

H=U-E; D;. (23)

Eliminating U from (19) and (23) we obtain the equation

H = o8 -D; E;. (24)

[ts is evident that H = H(g;, E;) . Since

dH . dH ¢
H = —¢;;+ — E; 25
Osif‘* GE;_ * -
Eqs (24) and (25) imply that
w = QNN a, f o OHNE g
(q& osié- & (D‘ + ﬂEz) Ei =10, (26)

which again should be satisfied for arbitrary &, é; . Hence

H :
ﬂi‘;: ge&a f Di.=- "—-b . (27)

This relation will be employed in deriving the constitutive relations.
1.3. The constitutive relations
Let us expand the electric entalpy H(&;,E;) into the Mac Laurin

series in the vicinity of the natural stace (g =0, E¢= 0), neglecting terms higher than of

the second order. For a homogeneous anisotropic body we obtain the following series :
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EO | 1 . .
H(‘E,-,;,E.J = -é-,tmgeqsm—ihj Ei}ER- —EE;&Ei E*. (1)
We assumed that in the body there are no initial stresses and no initial electric field. The
relations
aH . dH
01 T m—— D - —— (2)
k} ﬂsj,é 1 'L OEL L]
lead to the constitutive equaéions
Oij = Fijut &~ ey Eu (3)
Di =eyp & +E€y Ey, (4)
where Fige = ,C;J_:g is the elastic stiffness and  E; = const., €} is the piezoelectric

constant and E"—} the constant permitrivity for €, = const.

Observe that

¢H _ _OH = 9oy _ doy
05405;‘5 3£k938ij aEkg 05,;} !
(5)
fH .o _
9E,AE; AE; 9E; aE; 0E;
The above relations imply"that
Fipe = Faj , €y = €. 6
whereas the symmetry of the tensors 0 and A leads to the relations
Fire = Fikty  fje = Fijiko Buij = Sjis (7)

The wensor €3y is symmetric and the polar tensor 8. is symmetric with respeet to the
indices jand 4.

In the gencral case of triclinic crystal we have 21 elastic constants Lijue . 18
piczoclectric constants @y and 6 permittivity constants €.

It is known that the piczoclectric effect can occur in materials which do not have

a center of symmetry. In bodies which do have a center of svmmerry the polar tensor Exj
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vanishes.

Consider the particular case of isotropic body. We have the following isotropic

tensors :

Fige = w0y d;g +0y é‘-}k) +A é;j Op »

(8)
ew = €yje, €= 6,'_; €.
Here € is Ricci’s antisymmetric tensor. Introducing (8) into (3) and (4) we obtain
g = 2“8"4*' Aey, - eEu;Ek ; (9
0; = e ey + 0 €E, . (10)

Since the tensors 0jj,€ij are symmetric and ey is antisymmetric, the piezoelectric term

in Eqs (9) and (10) vanishes. We have
9 =2p£;&+).6i45u, D; =ck;. (11)
Let us now return to the electric entalpy H = U-E;D; ; hence

U=H+D,E; (12)

Substituting for H from Eq. (1) and for D; from the relation (4) we have

1
U= %‘F@;ueﬁifu*- 5 & EE (13)

Since U is a non-negative scalar, the right-hand side of Eq. (13) should be a positive defi-

nite quadratic form, which ensures the stability of the solution.
1.4. The differential equations of piezoelectricity

Let us collect the equations and relations of piezoclectricity. Thus, we have the

equations of motion and the equation for the elecrrical field
O'J{Ii-l'xi = Qi.l‘, (1)

i =0. (2)
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completed by the constitutive equations
Gij = Fijue & ~ &ayEy 3)
O, = et + €y Ex=-9u, D
and the definition of the strain tensor
g = A (U +4y0). | )

We introduce (3) and (4) into the differential equations (1)-(2) and make use of (5) ; then
we arrive at four equations with the displacement vector uj and the potentials @ as
unknowns
Fijat Vit + & P + X0 = 0 (6)
G U - €SP = 0. (M
These differential equations should be completed by the boundary and initial conditions.

If on a part of the body 9B, displacements and on the complementary, part 9B, trac-

tions P; are prescribed,

u, = Uy(x,t) on 3By, p; =g;m =R(x,t)on 3B,, 0B,u 9B, = B (9)

Suppose that on 3B, the electric potential and on 9B, surface charges D,ny=-¢

are given :
@ =¢(x,t)ondB,, D,n, =-oon 9B,, 0B,udB, = 9B . (10)

If we know the solution (U;,@) of the system of equations (6)-(7) then we can determine
successively E, from the formula E, = ~ @, , the strain £} from the definition (5),
the stress and the electric displacement from the constitutive relations (3) and (4). The

knowledge of functions Ei and D, makes it possible to calculate the electric polarization

R =0;,-€,E, (11)

where €, is the permittivity in cacuum. If the piezoelectric cffect is absent, Eq. (6) takes

the form a
Fipeligy = QU . (12)
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If, on the other hand, it does occur but the deformation is neglected then (7) reduces to
E;J_Qli_l =0. (13)

Eq. (12) is completed by the boundary conditions (9), while Eq. (13) by the boundary

conditions (10).
1.5. Principle of virtual work. Uniqueness of solutions

Consider the celebrated Lagrange’s principle for the deformable elastic body

‘/(X,;— ou;) 0y, dv +3Jpléu;da = /qideiidv' (1)

Here Ou; is a virtual displacement increment of Ui . We assume that du; is continuous
and differentiable of class Cm Moreover, we assume that the increment 0V is compati-
ble with the conditions restricting the motion of the body. On the part of the boundary on
which the displacement u, is prescribed (i.e. on 3B, ), duy;=0 . If the tractions p; are
given on @B, , then on this part of the surface the increment du; is arbitrary.

We shall apply the principle of virtual work (1) to piezoelectric bodies. Making

use of the constitutive relation

G, = it &t~ i Ex 2
in (1) we obtain
j(x-‘- o) Ou; dv +_B/p¢6u);da = Lij fek,d&jdv - &) E/Euéeij,d" . (3)
B 8 8
The second constitutive relation
O = ety + €4E; (4)

introduced into (3} vields the equation
/(,thmshg (584 e Gk;EkéE&) dv :‘/(XL = gu,,)éuadv +
8 8
+fp16uida +fEkQDkdv . (5)
F1) B
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Making use of the relations for the electromagnetic field

Ex ==y, D,i=0, (6)
and introducing the notation
1 =
W= 1?,!:&3\.!5135&2"“: E =§.‘[EilEiEld“' : where w=E +U,
we reduce Eq. (5) to the form
0(#+E) = f(x-. - ou;)0udv + {(pidu,-_ - @oDyn,)da . 7
g 8

Thus, we have arrived at the principle of virtual work for a piezoelectric medium.
Consider a particular case of virtual increments 0u; , 0 D; namely the real in-

crements of the displacement Uj and the field D, . We have

3U; aD .
éUL='ﬁ'dt=\""’dt, éD ='a—t-l't‘dt=Dldt,
) ) (8)
ow =widt , 0L = Edt .
Introducing the definition-of the kinetic energy
e 1?9 V';\'id\f, 0= o \f.'_{fi_d\i' =kdt, (9)
)
we reduce Eq. (7) to the form
%(x*"’f”*'b') = fxmdv'r[(m - g0n,)da. (10)
B a

It is readily observed that the above equation, called the fundamental energy balance of
piezoelectricity, constitutes a version of the energy balance (sce (1) in Sec. 1.2, and (13)
in Sec. 1.3.). '

Eq. (10) can serve for the proof of the theorem of uniqueness of the solution of
the piezoelectricity equations.

Consider the equations

U}l.i + Xl = Qu'“ (11)
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with the boundary conditions

U =U(x,t) on 0B, aun =p(x,t)ondB, , 8B,u0B,= 08 (12)

and the initial conditions

ui(iso} = 4(5) ’ 1'14_(5,0] = gt(’.‘.) on B (13)

Furthermore, consider the field equation

Dii= 0 (14)

with the boundary conditions
p=P(x,t)ondB;, DOyn =-0(x,t)ondB,, 3B,UdB, = 0B (15)

We assume that two pairs of functions ( uj , @' ) and ( uf', @" ) satisfy Egs. (11) and
(14) and the appropriate boundary and initial conditions. Their difference G; = U.{ - U";,
@ =@~ @' satisfies therefore the homogeneous equations (11) and (14) and the homogeneous

boundary and initial conditions. Aq. (10) holds for the soulution U, @ namely we have

4 (H+W'+£) = /dev +/p,. da - /@Dn;da (16)
dt a8, 98, s 8,
Now, in view of the homogeneity of the equations and the boundary conditions. the right-

hand side of (16) vanishes,for

i;:O, G, =0 on 3B, p =0 on 0B,,

R (17)
® =0 on0B,, O, =0 onB, .
Thus, we have
ad-—t-(x’+ﬂ’+5) = 0, (18)

X +W+E =0, (19)
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or
Johb + £ipatyta+ EE) v =0. (20)
B

The integrand is a positive definite quadratic form. Hence

A

gj_ B 0: Ei.i.= 0! E.i. =0 . (21)

In view of the initial conditions for G , @ , to above relations imply that

u' = u" + linear term , @' = @"+ const. : (22)

The linear term appearing in (22)q is a rigid displacement of the body. If the latter is
clamped on 9B, , the linear term vanishes. The uniqueness of the strain elj: sfd" and the

field E;=Ef implies the uniqueness of the stress oij_= 0,;1 and the electric displacement

D, =D;.
1.6. Hamilton's principle

Consider the functional

F1 =/(H-—X; u; ) dv —[(p,;u;L -o@)da ' (1)

where H is the electric entalpy, @ the electric potential and @ the charge on 3B . Hamil-

ton’s principle generalized to piezoelectricity has the form

t2
d[(.x’-:c)dl =0, 2)

where I, =1, is the considered time interval, 7 the functional (1) and K the kinetic
energy. The admissible motions of the body must be compatible with the conditions restric-

ting the motion of the body. Moreover, the following conditions must be satisfied :
6ui(5,l‘) = 5”i(.‘!,tz) =0 (3)

The quantities subject to variation are the displacement u; and the electric potential @

Performing the variations
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t2
6_[.3[’dt & 6fdt g\avl,dv fdlfgvdv dv =
L+ a
= /;dt [ [-El-(gﬁitﬁui)-gijiéui]dv - (4)
ty L2
=fa[gu;du,;]qdv -f;dt fagu,;du dv .
In view of (3) we have
ta ta
dftffdt = -j;dt f.gu;duidv (5)
Returning to Eq. (2)
by ta
df(x_x)dt " -fdt{[gi.i dudy +
aH = -
f( Ty 6a‘+ dE -X éu )dv - ﬁ‘du - aéqa)da} =0, (6)
Making use of the constitutive relations
M, Mo
By oE, =0 @
and the known relation
P = a,‘H on 98 (8)

after simple transformations we arrive at the equation

‘[dl‘t { ,/ [";4,; + X - eﬁ;] ou; + D;_,i,étp] dv -

“4[(01;03 =p) 0u + (O;m; + a)dw]da} =0,

9

Since the variations dui,dg;: are arbitrary, (9) leads to the following equations governing the

motion and the electromagnetic field :

i+ X, = ol

(10)
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0, =0, ¥E€EB; bty 0- I 0

Moreover, Eq. (9) yields the boundary conditions for Eqs. (10), (11)
P=ggn; on 3B, (12)
On, =-0- on 0B (13)
If on 9B displacement is prescribed, then OU; whereas if on 0 Bj the potential is
given, 0@ =0 . Thus, the Hamilton principle yields the so-called natural boundary condi-
tions. The generalized Hamilton principle was deduced by H.F. Tiersten(1).
The Hamilton principle presented here contains as a particular case the principle

for an anisotropic body without piezoelectric properties. Then we replace the electric

entalpy H by the internal energy U. Thus, (1) takes the form

:z*:/(u - X ;) dv -[p;u;da . ‘ (14)
9

and the classical Hamilton principle is

f2
*
8 [(H-n")dt=0. (15)
fh( )

1.7. The recipocity theorem

Consider two sets of causes and effects. The causes are the action of body forces,
prescribed displacements and tractions on the boundary, an electric potential or electric
charges on 9B and finally the action of initial conditions.

The effects are the displacement uj and the electric potential @ . The second
set of causes and effects will be denoted by primes.

We base on the equations of motion for both sets of causes and effects

oé,;li+xi—gi.ii =0, (1)

aihl + X;_ -pi' = 0. (2)

1. H.F. Tiersten. Linear piezoelectric plate vibrations. Plenum Press. New York. 1969,
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Performing over both equations the Laplace transform defined as follows
2[ux,t)] = Gx,p) = Jueh &, 3)

we obrtain

gp’ﬁ (4)

Gij * X;

=2 = =

Gij+ X = epl (5)
where we assumed that the initial conditions for the displacements are homogeneous, i.e.

y(x,0) =0, G(x,0)=0 on B (6)

Obviously, the non-homogeneous initial conditions can be treated in the same manner.
Multiply now Eq. (4) by U; and Eq. (5) by @ substract the result and integrate over the
region of the body ; thus

sf[(@,li+X;)ﬁ{-(3§4+i£)'ﬁgdv = 0. (7)
Introducing the contract forces we transform Eq. (7) to the form
[ - Rigyev + [T - ) da -
]
:FS[(E:IJLE»{i L (8)
In view of the constitutive relation
G = Fijefe ~eEs G = Ajede - eaibis &)
we reduce Eq. (8) to the form
[o'ga; X, ) dv + [(ﬁ-_ﬁl -F.5) da
3
— "ek';s_é/.(ii’j‘fh - Eij EL) dv. (10)

We have at our disposal the equations for the electromagnetic field

Dip = O, Oy, =0, (11)
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Elu =“P,L ' Ek =—'w,’k .

Let us perform over, the above equations and relations the integral transform and consider

the expression

[(ﬁ.,@' - B, F)dv =0 (12)

ar
- - U - -
JB.7-Bpynda + [BE -BEgav =0, (12)
Taking into account the constitutive equations

ﬁk — EM‘E‘* + EkJ.EJ, : : _ﬁl: - ew'él}-a- Ek}El ' (13)
in Eq. (12”) we are led to the equation
I .

Finally, eliminating form Eqs (10) and (14) the common terms we arrive at the equation

for reciprocity of work in the form

JRiidv + '[ (i + Dyn, ) da =
L.} |

:ﬁiﬁidv +jl3iﬁx + D0, ) da. (15)

How we invert the Laplace transform
[X;, *Ujdv + [(p,;# u + D, * @n)da =
3

= jxii udv +j(pi *uj,+0;‘* pn,)da, (16)
using the notation

LET) =% e = [X :
LML) = = .,(,Jg,t-z}u,-_(;g,r)dt, etc.

Eq. (16) consitutes the theorem of reciprocity of work generalized to piezoelectricity. [f
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the piezoelectric effect is absent (@ =0, D0; =0) (16) implies the known D. Graffi's

'/X;&u;dv +r{p¢nf;da =
:ij:*u;,dv +‘[p1 wu;da . (17)

In the case of harmonic vibrations we have

theorem(l}.

~iwk

u(x,t) = u)e X, t) =X (e, (18)

where @ >0 is the frequency. Eqs. (1) and (2) can now be written in terms of amplitudes

»
g+ X +ew =0 (19)
gij+Xi+ 0@t =0 (20)

Repeating all operations performed before for transforms, we arrive at the following form

of the reciprocity theorem :
ﬂf Xuldv + ‘[(pfu'i'-i- On,@")da =
= E[X"u;dv +’{(p’£"'u: + D':nkq:')da . (21)

If the piezoelectric effect is absent, Eq. (21) is simplified to the known equation of dynamic

elasticity

X + [ pu'da = / X; U dv + s[ pruida . (22)
B d

If we regard the piezoelectric effect as uncoupled with the deformation of the body, Eq.

(21) implies that

[D:gp"nida = ID?:;J'n;_da, (23)

(1) D. Graffi, Sui teoremi di reciprocita nei fenomeni-non stazionari. Att. Acad. Sci. Bologna, 10, ser. 11
(1963), 33.



126 W. Nowacki

1.8. Orthogonality of eigenvibrations of piezoelectrics

Consider eigenvibrations of a bounded piezoelectric body. We assume that the
vibrations are harmonic, the equations of motion and of the electromagnetic field are
homogeneous and the boundary conditions have the same property. We shall investigate
two forms of vibrations, denoting their frequencies by @y and @, , @p# ®, . The e-

quations of motion can now be written in the form

u;,':’ el =0 1)
oy +ooily =0 2)

(m) ] (
where U; is the amplitude of the eigenvibrations and Ugl the corresponding stress.
Multiply Eq. (1) by Llin] and Eq. (2) by ui;"" , substracting the result and integrating

over the region of the body we have

n n) (m)
[[";:.n}'-iu'- ';: Ua] dv = Q(fﬂr ...)f} (v, (3)

Consider now the field equations

o =0, (4)
i ol
_ o = (5
We shall also use hereafter the identity
(m) () {n) (m)
ﬂnﬁq;“ -0 9 |dv=0. 6)
. (m) (n)

Transforming Eq. (3) and making use of the constitutive relations for 6, g we ob-

tain

(m.'lfﬂ) (n) (m) () ("' {n)
J( P: :')d +e kq_[(sdg_ E )dv

(m (n)
=0 (a),,-co,,,)‘[u‘ uidv . : )
On the other hand, transforming Eq. (6), in view of the constitutive relations for the func-
(m) (n)
tions Dj , D-n we obtain

(m (n) (n) (m) (n) (I!I) (m) (n)
Jolg - olp nda s cuy [ (B - 5)av = 0. (8)
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Adding (7) and (8)
2 2 (m) (n) (m) (N) () (m)
el@, - wmifuimw"dv =[( B -p,u; )da +
(m) (M) (n) (m) .

+[tu¢“‘g:"-n,;“g:"' ynda 9)
We have assumed above that the body performs free vibrations, i.e. thelboundary condi-
tions are homogeneous. If on 9B, we have p; =0 andon 0Bj:u; =0 and, moreover,
on B3 :@=0 andon B, :0m=0 , we have

(ny (m)

0 (0n —wi‘)[u;mu;mdv = 0 (10)

Since the frequencies are different

(n} (m)
fu; u dv =0, n==m., (11)

Thus, we have deduced the property of orthogonality of piezoelectric vibrations.
1.9. Equations and relations of piezoelectricity in new notation

In what follows, in concrete problems it will be convenient to introduce new
notation. We replace ij_ and k& by p and g ; since 41 and k take the values 1, 2, 3; p and

q run from 1 to 6. Thus. we have

Icij.l(!':tc"r B = ei.q! aij.:"‘l;} =TP' (1)

The constitutive equations (3) and (4) of Sec. 1.3. take the form

To =paSq =y Eics (2)
D, = eiqSq+ €iky ik =123, pq=12,....,6, (3)

where

34‘.; = SP fori‘j.; p=123
. (4)
251‘1-* Sp for i!}_, p =456
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In the constitutive relation (2) we have
T=T=0y, h=Tp=0p, Th=Th=0;, T =Th= 0y =05,
Ts=Ty= oy=05, Tg=T,=0,= 0.

The constitutive relations (2) and (3) can be written in the matrix form

T -‘ Fn Fi2 Frfu Fis Fs || S ] e €z ey |

T, L2 k22 F23 Fa Los Fos Sz e € €32 | | E

Tl - | A k2 Fx Fas Fxs 3 S| _lemeaney||E

Ta Fia L24 F3s Lag Ras Kag S, ®4 €24 B34 E; )
i L5 K25 L35 Las Fss Lse S5 5 €p5 €35

[ Ts | | K16 Fas Fas Fas Fse Fes | | Se | B €26 €36 |

and
B |
S
0y B € €3 By €5 B S € €Ep€n|| &
B | = | &n & €y ey €y €y Soo |+ € €565 | B (6)
Ds € €32 €33 B34 €3 By Ss € €65, E;
L SE )

The first relations of the group (5) and (6) are the following :
Ty = 0y = Oy Uy + Gl Calyat Crglly 3t Ugp) + Cys(Uy+ Uy ) +
+ CelUy o+ Upy) + €@y + exP, +e3,0; , Ee =-on (7)

5 =

and

Dy = ey Uy +epUa+esUy g+ey(Uy o+ ,) +esluy+u;) +
+e (U, + ) - €49, - €, - €,9;, (8)

D, =
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In the case of the most general anisotropic material

Lpq = Cqp » €k = €y

Thus, we have 21 elastic constants £pa, 6 dielectric constants €, and 18 piezoelectric
constants @y, . Altogether there are 45 independent material constants. Their number
becomes smaller when the crystal has a symmetry axis of n-th order. In the case of mono-

clinic crystal with X; as the diagonal axis we have the following matrices in the constitutive

equations:
- - - - - — -<| — —|
Ty Ln £z fr3 £14 0 0 Sy ey 0 0
L Fi2 F22 F23 24 O 0 S, e, 0 0 E,
B| | Fnkfakafu0 0 S; e 0 O E, (9
Ta |~ | £1a F2u £3a L4 O O S4 eq 0 O E;
Ty 0 0 0 0 Fsskss (| Ss 0 ey5e5
Te 0 0 0 0 f£gekee S |_[:l €2 €36
and
s
S
D1 eﬂ E12 e|3 e'"- 0 0 52 E“ 0 0 E|
Dz = 0 0 0 O €55 eza 53 + 0 E22 633 Eg (10)
D, 000 0 egeg || S 0 €nE5il E
Ss

Without going into details we refer the reader to the known monograph by J.F. Nye(l)

and present now only the constitutive relations for two widely used piezoelectric materials,

(1) J.F. Nye. Physical properties of crystals. Clarendon Press, Oxford, 1960.
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namely for hexagonal crystals (6mm) and (622).
- = ar = — S
T2 Biaky ki 0 0D Sa 0 0 ey ||E,
Ty || Fufaks0 00 Sy | _| 0 '0 ey ||E; (11)
T4 0 0 0 £,0 O S, C e 0 E,
Tg 0 0 0O Fq;O Ss 9150 0
1 \_mooonp65 Se 00 0
and
s, |
D, 0 0 0 0 e0 5 &omoioi (e :
0, 0 0 0 50 O S; [+ 0 €40 E; 'Fss=3kn"ﬁz]
0 € €y & 0 0 O S4 0 0 &5k
(12)
Ss
Se

This svstem of constants (five elastic constants £pq , three piezoelectric constants

and two dielectric constants  y, , altogether 10 independent constants) is characteristic

for polarized ceramic ferroelectrics, i.e. materials with a strong piezoelectric coupling. The

constiturive relations for crystals of class (622) have the form

£y Fr2 f30 0 0
Fiz by £3 0 0 0
Cip €3 €30 0 0
0 0 0 ¢0 O
0 0 0 0 ¢y O
0000 0 ¢

1<

=

0 0 O
0 0 O
0 0O
ey 0 0
0 -e,0
0 0 O

Cea= 1?(c“—r:]z)

(13)
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and

5y
D, 0 0 0 e0 O S, €,0 0 E,
D, [=| 0 0 0 0 -e4 0 S [+|0 €40 E; (14)
D,_I 000O0TO0O O H 0 0 &||Es

Ss

Sﬁ

Here, too, we have five elastic constants Cpq but only one piezoelectric constant &j
and two dielectric constants € . Altogether there are 8 independent material constants.
Let us now introduce the constitutive relations (11) and (12) for material of

class (6mm) into the piezoelectricity equations
T = ouij Dii =0.

Then we arrive at the system Of fOlll' equaticns

2
Fos Vi Uy + (Lgg+ Frp) (Uygy + Upgd + Ly Uy 3.+

+ (Cr3+£4) Uz gy +(830+ £45) @3 = 01y, (15)

2
Fes ¥ Uz Hget £12)(Ug 21 +Up 5p) #L44U2 53 +

+(£13+£aa)Uz 23+ (B15+ 83)) @3 = 0y, (16)

2
FasVy Uz + 33Uz +(£13+£44) (U3 +Up 30) +

2 i
+esp+engs = o, an

2’5(U3'” + U3I22+ uu, + Uz’az)'l-e”{u"u + u2,23}+

. 2
+epUyn-(€ylg+E€5395)=0. (18)
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where

2 2 a2 1
=9+, Fss"‘é‘{Fn'Fw)

Consider a plane wave in a monoclinic medium. Assuming that the displacement
and the electric potential depend only ‘on the variables X, and t we obtain the following

four equations

Feslr22 + €269,22 = QU _ (19)
Faala22 +F24l 22 = ol j (20)
£24lp02 + FaqUapa = QU3 (21)
Cxli22 ~ €22%22= 0, (22)

[t is evident that only the displacement U; and the potential @ are coupled. In what
follows we shall concentrate on Egs. (19) and (22) assuming that uz=u3= O . Consider

first a plane wave moving in the direction X, with a constant velocity c. Setting in (19)
and (22)

ikl ~ct) ikl =ct)
u.,:U,_.,e*“g , ¢=%Qe e (23)
we obtain’ the equation
w
24 2 s Ega
Upk cgg = 0@ ) =0 Fes = Leg + £ (24)
whence
- 1/2
_[Ces ) .
F(g)"c'k‘ (25)

Consider now a layer of thickness 2h, performing foced vibrations due to a potential applied

at the boundaries

—iwt

p=t @e for X, = %h (26)
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We assume that the boundary X;% h s free of tractions. Therefore
Oy = Ty = (Ceeuy + eﬁgp)'g =0, for Xp=%th (27)

Setting in Eqs. (19) and (22)

U, = U;(x,) S ; Q= ',b(xa)e—mu, (28)
we have
w2
(3:4-'?]2]'.]1:0. ’rf:g——— (29)
Fes
and
2w, -S2g) -0, (30)

€26
The solution of Egs. (29) and (30) has the form

Uy = Acos nx, +Bsingx, |

2 (31)
¢ = 22U +C+x,0.
€22
The boundary conditions (26) imply that the function @ (%) is antisymmetric; hence
A=C=0 The boundary condition (26) for X; =h yields the relation
@0 = <288 sinqh +Dh . (32)
€22
In view of the boundary condition (27) we obtain the equation
et nBcosnh+D =0 . (33)
€26
Eliminating the constant D from Egs. (32) and (33) we arrive at the relation
= el .
B(cﬁelcosl-—sm)_) = - @pes, A=nh . (34)
€2

(32) serves for the determination of the constant D and this completes the solution. In the

case of resonance

Les€
tgA=Sc2 (35)
€%
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Some problems concerning free and forced vibrations were solved by H.F. Tiersten(1)s (2) |

The propagation of Rayleigh's surface waves was investigated in the papers(3) -(6),
1.10 R.A. Toupin's piezoelectricity equations

In Toupin’ theory of dielectrics(?) the independent variables are the strain &
the components of the vector of dielectric polarization P; and the electric field E;=-@;
The displacement or induction vector D is related to the polarization vector P and the

electric field Ej; as follows :

Here € is the permeability in vacuum.
R.D. Mindlin (8) proved that Toupin’s system of equations is equivalent to the
systems of equations presented in Sec. 1.4. We shall now present Mindlin’s considerations.
Let us decompose the internal energy U of the dielectric into the energy related
to the deformation of the body and the polarization U" and the energy related to the

electric field

U=UL(5;;,P._)+-;— €0 PP - (2)

Introducing the electric entalpy

H=U-ED, 3)

we obrain froml (2)

L
H=U (6 P) - 3 €0 gigi+ 9. . )

{1} H.F. Tiersten. Linear piezoelectric plate vibrations. Plenum Press, New York, 1969.

(2; H.F. Tiersten. J. Acoust. Soc. of America, 35, (1963}. 234.

{3 J.L. Bleustein. ] Acoust. Soc. of America, 45, (1969;, 614,

(4, D.S. Drumbheller, A. Kalnis. J. Acoust. Soc. of America, 47. 11970;. 1343,

{5/ J.L. Bleustein. Applied phvsics Letters, 13. (1968}, 412.

{6 P.M. Drenkow, C.F. Long. Acta Mechanica, 3. {1966,, 13.

{7 R.A. Toupin. The elastic dielectric. J. Rat. Mech. Anal. 5, 11956 . 849,

{8 R.D. Mindlin. Polarization gradient in elastic dielectrics. Int. ]. Solids. Structures. 4, (1968, 637.
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Consider a body B of volume v bounded by the surface 3B separating the body

from the vacuum B'. Toupin’s form of the Hamilton principle is the following :

ba Ly o
a{ur[(K-H)dv »ffut[[{x;éui +E¢6F1)dv'+[p,;du,;da:| =0. (5
¥ b
Here B'=B+B' and E} is the external electric field ;
1
K= "‘2—9 ViV .
Observe that
1 tz \?
= éégu;u,;dl =- g_/;uiéu;dt (see (4) and (5) of sec. 1.6) (6)
and
au au*
H =— dg; + — 0P, - 09 (O0R + o, P, . 7
0 3&_; Git ap €0 @0+ @ 0R + 09 B (7)
We define the stress ;) and the effective local electric force E:: by the formulae
o L__aut
04}_ - 38% ! E‘ - ﬂF"_ ) ®
Then ) i
0H = cr;jésq +(@,-E)OF - g, 09 + Rog . (7
Consequently
oy06; = (g 0u); - 05 1 0U;,
9:09:.= (@ 09);, - 9,09,
P;éqg; = {Fl 69?)';. - P*J» op,
Introducing (7°) into (5). after simple transformations we arrive at the equation
ty !
/[ at f[{a}--,_}q-x-‘-gii;}éu;HE;- qJ’;-bEg)éPi-t—(-Eogqu-i-H;)dq?] dv+
t-l
ty ty
-_[dt €09 pdv +[hd55/[i{p;— 0,n) du; +(€o| 9| -RIndg]da =0.  (9)
‘ .
where |ng-‘| is the jump of the function @; =-E; on the surface 3B . In view of the

arbitrariness of the vibrations (550. 6P we obtain Euler's equations
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Gij,'i+x,; = Qi.ii 7 (10)
E'f -g{l-u-Eq‘:U ,fon B , (11)
-0 %u+R; =0 . (12)
and
-€%i =0 on B, (13)

These equations are completed by the natural boundary conditions

Tt =P } on 98B . 2
(-€l@i| +P)n; = 0, (15)

Thus, we have derived the equation of motion (10) and Eq. (12), identical with the equa-
tions Djj= 0.

Eq. (11) did not appear before. It constitutes the balance of intermolecular
forces, deduced by R.A. Toupin on the basis of considerations concerning the equilibrium o
of electric forces. This eauqtion is not connected with any boundary conditions.

Egs. (10) — (12) and the natural boundary conditions (14)-(15) constitute the
linear form of the equations for elastic dielectrics, given by R.A. Toupin.

- L L
Assume not the energy U =UT(gi;, P;) in the form

L P 1 ¢
U= %pi_wsusui- —anﬁﬁi-fkqs,;ﬁ. (16)
The relations (8) imply the constitutive equations
P
gj'j" - ‘C‘W B + fh‘Pﬁ ' (17)
L
'Ei. = it Ext + aih Ph i (18)

R.D. Mindlin(1) derived relations between the constants Cijd> ) » Ej_J’ and the constants

(1) R.D. Mindlin. Elasticity, piezoelectricity and crystal lattice dynamics. J. of Elasticity, 2, 4, (1972), 217.
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pfp‘; : ai; ; fki.j and proved that in view of the constitutive relations (17) — (18), Eqgs.
(10) — (12) lead to the equations of classical piezoelectricity (6) — (7) of Sec. 1.4.

Let us now present a generalization of Toupin’s piezelectricity equations, carried
out by R.D. Mindlin(2), This generalization consists in taking into account in the electric

entalpy, the gradient of the polarization vector

.
H = U (g R RY- 13_%%9’,;'*9’,;&- (19)
Introducing the new definition
au*
Eiizs — , (20)
bR,

we represent Hamilton’s principle in the form
tl
jl- dt A I:(o.ii.i +X; - Qi..ii)éﬂj_""(E‘}L.j_‘i' Ei'-gv,;"" E;)0P, + (-quu, + F{I;)ég}] dv +

t tz
—/hd:t /B:Eu%xdq’d“ +/l:dt‘£[(p;-aj,;ni)dui —Ej;.niéE+n;(€o|qa,¢|—&)d¢]da= 0

(21)
In view of the arbitrariness of the virtual increments we obtain Euler’s equations
0 +X -0l =0, (22)
L
E},-_Ij_-i-E,; -cp’.&+EE =0, on 9B. : (23)
-€o@ii+Ri= 0 (24)
and
9i =0 on B, (25)

{2) R.D. Mindlin, see p. 29.
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These equations should be completed by the natural boundary conditions following from
Eq. (21)

Ounp=Pi (e6)
Ej_j,n"t =0 , (27)
(—Eolgo,;|+ﬁ)n,; =0. (28)

The surface integral (21) implies the admissible boundary conditions. Besides the condition

(26 for tractions we may assume the displacement condition (where éU& =0 ). Similarly,
besides Ejinj =0 we may take a condition for the polarization B . Finally, besides the

condition (28, prescribing the charge on the surface we may prescribe the potential @

i
Let us take the energy U (g, P, P i) in the form

L Q 1 2P (2]
U= b@&.l"' 12 34 P —2 b i,i&,k"’ ‘%dci.}kl Eijbu + -
P G Y
+ dj_;“F}'iEk! + f‘,}kaﬁk + Jﬁ}k P" PIHJ.' (29)

Here the indices P, G. € denote a fixed polarization, the polarization gradient and the

strain. In view of the relations

aut L_ Ut au
e . B e-dY By = , (30)
+4 35;; i 3& X ﬂfid_

we obtain the constitutive equations

Uj.i = fC,j_m Ep + fki.;Pk + dkﬁi Pl,k . (31)
L y
~Ei= b v apfir Jpe (32)
. 0
Eip = dijnetur * JuijRtbigua P+ by - (33)

Introducing the relations (31) —(33) into Eqs. (22; — (24 we arrive at a system of seven

differential equations with the following unknowns : the polarization Pj the displacement

u; and the electric potential @ . Observe that introducrion of the polarization gradient does
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not rise the order of the differential equations. It is also noteworthy that the electromechan
ical coupling appears also in a body with central symmetry.Although in this particular case
f-ij.k = iiill =0 (since odd- tensors do not appear in bodies with central symmetry), the
constants d;Jkp_ do not vanish. It follows from (31) and (32) that these constants play the

role of couplings between the mechanical and electric fields.
1.11. Thermopiezoelectricity. Fundamental relations and differential equationsu}

In the preceding considerations we assumed that cthe process in adiabatic. Now we
discard this restriction. Thus, there flows through surface elements heat represented by its
flux q referred to a unit area and unit time. In the interior of the body there act heat
sources W referred to a unit volume of the body and unit time. Consequently, there arises
in the body a temperature increment 8 equal to the temperature difference 8 =T-Tp where
T is the absolute temperature and Ty the temperature of the natural state in which there
are no strains or stresses.

We shall deal with the energy balance taking into account the thermal terms

?dt—/;(%gviv; +U)dv :_{(X,-,\UE-&['L-_ +W)dv ¥ L(m'v; - qn;)da, (1)
and the Clausius-Duhen inequality

§+(ET‘-)‘;-F{ >0. @)

The energy balance contains the non-mechanical power, the flux of heat through the sur-
face of the body and the energy generated by heat in the interior of the body.

In the inequality (2) S is the entropy referred to unit volume.

The contact forces in (1) can be expressed in terms of stresses (P, = 03 N});

transforming then surface integrals into volume integrals we arrive at the local form of the

(1) R.D. Mindlin. On the equations of motion of piezoelectric crystals. Problems of Continuum Mechanics.
SIAM, Philadelphia, Pennsylvania, 1961.
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energy balance
0 = u;jé;i+E;['l¢-q-,,;+W . (3)

We have made use here of the equation of motion

O *+ Xi - 0l = 0 . )

In what follows we introduce the free energy F and the electric entalpy H,

F =U-ST, H=F-ED; . (5)

Making use of these definitions we arrive at the new form of the energy balance

H = g8 - BE; - ST-5T -qu+W. (6)

Let us eliminate from the inequality (2) and Eq. (6) the heat sources. Then we obtain the
inequality -

-(H +ST)+011£,4-D;E,,,--—- (7

Assume now that H = Hlgy ,E{, T, T,4) . Then

1 OH,  OHp  dH: . OH
H‘as-e aEE+ﬂTT+aTT ; (8)

From (7) and (8) we have

(0 - 32 ) b0 * 35 TE ~(g 80T -
H + &l
aT,._ T~ ' T =0, (9)

This inequality should be satisfied for all variations of the variables E; o () 1T
Consequently the coefficients of these variables must vanish :

aH aH dH IH

gz — D =~ . Sz= m—

+ 38;_1 4 * an_ G ﬂ_T.‘

0 (10)

Thus. the entalpy H is independent of the temperature gradinet. The remaining inequality
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has the form

-+ 50, (11)
which is satisfied by assuming that
G=-kjT; , (12)

ie. the Fourier law for anisotropic bodies. The quantity Q =-q;T; =0 should be a positive

definite quadratic form,
Q=k;T;T;>0. (13)

This inequality (in view of Silvester's theorem! ) leads 1o iestrictions on the symmetric
coefficients of heat conductivity kij .

Expanding the en:.lpy H into the Taylor series in the vicinity of the natural state

H = —:l?":ijkleij,su —ek;leiiEh + %E@E;E; -
Gy 3
=0 swkl=a20, (14)

and making use of the relations (10) we arrive at the constitutive equations

0 = Fijefu —Vij8-egiEy (15)
c

S = Vij & * %9+Q;E;. , [1.6)

D, =ee6q + 0,8 +€,E, . (17)

Eq. (15) is the Duhamel-Neumann equations generalized to piezoelectricity, the second is
an expression for the entropy in terms of the variables &j B , Ex and the last is an
expression for the electric displacement.
Observe that (14) — (17) lead to the constitutive relations
m _ 00y, 0, _a_D_;_

= ) st S , (18)
Ve 08y 9E;  9E,

and

LT Yoy 95 95 0b (19)
9E, 9E, ' DT g’ 9 T
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The relations (18) imply that

Fipe = Fuj € = €i (20)
The symmetry of the tensors Gij &} leads (15)) to the symmetry conditions

Rijkt = Cjikt = Eije Ui = Th o> Bl T e, (21)

In the case of general anisotropy we have 21 constants Cijud 5 18 piezoelectric constants
i} , six constants € and .y;| and three constantc g; . There also appear the constant
£¢ , which has the meaning of the specific heat at constant strain. €;j and constant E; .
Altogether there are 55 material constants. Observe that meaning of the coefficients Cijut,
€lij »--. dsnow different than that in Sec. 1.3. The latter referred to the adiabatic
state while the new coefficients are measured in the isothermal state.

In the adiabatic state @ =0,W=0. The entropy balance

TS =-q; + W, _ (22)

implies that in the adiabatic state §=0. Eq. (16) for the adiabatic case leads to the rela-

tion
B =- b’(?ﬁ;&; +0.E) . (23)
Le

This relation may serve to eliminate the temperature increment from the constitutive

equations (15) — (17). Thus we obtain the constitutive relations for the adiabatic state

W "
U‘"JI - Ciﬂj}!lekl = ek*jEk ) (24)
o v
D]. = Bty + EikEh {25)
where
¥ To v Ty v To
R = Riga® 2= Vij T Chij =8 - e Vij9k» G = € E;& 9

In the isothermal state 8 =0 or T = Ty . In this case the constitutive equation has

the form

Gj = FLije & = & Ey (26)
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Dy = eaey + €4E, (27)

valid for stationary state.

Introduce now the constitutive relations (15) — (17) into the equations of motion

and the equation for the electric field

Oji,j + X; = ol ; D;'; =0, (28)
Taking into account that Ey, =-@, we obtain
Fijel,y + ey - 78 = el 29

0 . (30)

€ Uy~ Ein P +8,8,

These equations should be completed by the equation of heat conduction. 1t is derived on
the basis of the entropy balance (22) taking into account the constitutive relation (16) and

the Fourier law (12). Thus we have

. Ce - :
T(}’j,j_Sj,i+ -1-_;-94- g;E;) = kj,iT,ii‘i'w. (31)

Bearing in mind that

B
T=EU+E),

and assuming that lQ[TO} <=1 we arrive at the linear heat conduction equation in the
form

' k;j_e'u - c,.,e -Ta(}’;ia‘ii - gqa*) ==-W. (32)
Egs. (29). (30) and (32) constitute the compléte set of equations of thermopiezoelectricity.
The considered set of eaugtions is coupled. In the case of a stationary problem Eq. (29)

becomes the Poisson equation
klj_g,i.j_ =-W 5 (33)

while Eqs. (29) and (30) are still coupled. The function 8 appearing here is already known

from Eq. {33).
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1.12. General theorems of thermopiezoelectricity

To prove the uniqueness of the solution of the differential equations of thermo-
piezoelectricity we need a modified energy balance. It follows from the principle of virtual

work

f(x,-, -pii;) du;dv +[p;6u;da = [o;iéel}dv . (1)

in which the virtual increments have been replaced by the real increments

ou; = v dt, og; = gdt, | etc.
Thus, we obtain the fundamental energy equatit-)n
[(X,; -ov; )vdv + [p,;v;da = /a;lé;idv N " 1(2)
into which we introduce the constitutive relations
% = Lt - ejEr - vy8, (3)

Hence

%(1@#’) ='/xi v, dv +,[pgv;, da +/‘(y,;ié;,ie + ey &;E, ) dv, (4)

Where A" is the kinetic energy and W the work of deformation (see the definition in
(Sec. 1.5. #'= 1/2@4&;5@“@) .
To eliminate the term .[y;is';ie dv we consider the heat conduction equation (setting

wW=0)

%D" (i85 = ) = yij &y + G Ey . (5)

Multiplying it by 8 and integrating over the region of the body, after simple transforma -

tions we obtain

. Kij .
Jy;ie;ledv = T:Jee,in;da-z—?xa —gkfeEkdv, (6)
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where
Ce ;s
o - e..” 4 0.
o, [gzdv, Lo T [B*Q,J_dv.

Substituting form (6) into (4) we are led to the equation

-a‘it-(.f+#’+6°}-+ Xo= fxlv;dv+[pmda +

+ %a‘efe BJn;da+‘[(emé;§Ek- g Ex8)dv . (7)

To eliminate the term e"i..}é‘.'li- E, . from the last integral of Eq. (7) we make use of the

constitutive relation
Dk = Eui‘qu" + ng + EK}E& - {8)

After simple transformations we obtain
[{euiEké,;; -g,8E,) dv =—/ﬁk¢’kdv "

i :
; i%_-a.?(gk[askcfw ) )
where we have introduced the notation & =1/2 E;iIEJE@v .

In view of (9), bearing in mind that Dj;= 0 we arrive at the modified energy balance

f—ttf+ﬂ’+£+€?+gkfeEkdv)+xa =6/X;_v;dv+
+[pmcla + %Je,iamda -,[f];garuda ; (10)
0

The energy blance (10) makes it possible to carry out the proof of uniqueness of the solu-
tion. As in Sec. 1.5. we assume that there are two distinct solution (U;,,fp:el) and (U@,
8" ), we construct their difference U; = Uj~\,... and proceed as before. The difference
(denoted by *“roof”’) satisfies the homogeneous thermopiezoelectricity equations with

homogeneous boundary and initial conditions. In view of the homogeneity of the equations

and the boundary conditions, the right-hand side of Eq. (10) vanishes.
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Hence

a‘%[ﬁ+£f+§+§+gk[éﬁkd\f]= -7 0. an’
where we have made use of the fact that the integrand of the energy dissipation function
25 is a positive definite quadratic form. The integral in the left-hand side of Eq. (11)
vanishes at the initial instant, for the functions G;_ , 8 ; &J ; Ek satisfy the homoge-
neous initial conditions. On the other hand, the inequality (11) proves that its left-hand

side is either negative or zera. The second possibility occurs if the integrand is a sum of

the squares. Consequently we assume that

¥=0, #=0, §’+§+gk[§ﬂdv;0 . (12)
These results imply that
. % =0, #=0, 8=0, E=0. . (13)

We still have to deduce relations between the constants C¢ , P; and . €jj ensuring that

the inequality (12)3[” is true.

Egs. (13”) imply the uniqueness of the solutions of the thermopiezoelectricity
equations, e.e.

' "

" i ! 1 1
y=uy, o=¢, 0=8, E=E. (14)
Moreover, it follows from the constitutive relations that

gj=0y, D=0, S=5". (15)

(1) J. lgnaczak deduced the following sufficient condition (private communication), Assume that €1} is
a known positive definite symmetric tensor, g; a vector and £ =£¢/Tg> O , and consider the function
A(e,g):pﬁ' + 28 g-,Eiﬂ-:‘-@E;Ei.
A is non negative (A= 0 for every real pair (8, E;), provided

’ 9; lis £Am

where Ap is the smallest positive eigenvalue of the tensor €ij -
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Consider now the generalized Hamilton’s principle. We define two functionals

:r=[(H+ST-X;u;)dv —’/(p;lu;—.ag)}da, a6
w:{(F~ST?—WT)dv+JTQ;n;da , (17)

Where H is the electric entalpy, @ the electric potential, ¢ the electric charge on 9B and

_I" the potential of the heat flow

I'= ;_RLJ,T,l T’&' 3 q, = -g% ='kiJ,T,J. 3 (18)
The generalized Hamilton principle has the form
t ty
6/ k-m)dt=0 , o wat =0 . (19)
4 4

This form of Hamilton’s principle was first stated for the problems of coupled thermoelas-
ticity by H. Parkus(!) and for the adiabatic problem of piezoelectricity by H.T. Tiersten(2).
Returning to Eq. (11) we find that the following conditions must be satisfied
oulx,t,) =dulx,t;) =0,
(20)
60(x,t,) =460(x,t;) =0,
The displacement U; , the potential ¢ and the terperature 8 are subject to varidtion.
Performing the variations in accordance with Eq. (19)1, making use of the constitutive
relations (10) in Sec. 1.10. and bearing in mind that ‘

S OH 5., 3H A e
O6H = 0, & + 3T 0T + BEidE“"

(1) H. Parkus. Uber die Erweiterung des Hamilton'schen Prinzipes auf thermoelastische Vorginge.
Federhofer-Girkman Festschrift. Wien, 1950, Verlag. F. Deuticke.

{21 H.F. Tiersten. loc. cit. p. 18.
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we obtain the equation
‘[dl (q”+x -ou*}éu‘-rn".,dga]dv +

4[(%% p,,)duj,+(Qq+o)ng]da} = 0. . (21)

Since the variations OU; , 0@ are arbitrary, we obtain from (21) the equations governing
the motion and the electric field, completed by the appropriate boundary conditions. These
equations and boundary conditions are identical with those presented in Sec. 1.6. (Eqs.(10)—
(13)).

Performing the required variatio.n m Eq. (19),
df wdt = _{dt [t” oT, -ST4T =ST4T -WoT)dv +£9;n;6Tda @2) -

and taking into account

=- %'%' 5 qldT,'& =—qi-4'»6T * (q‘aT )’i

we transform Eq. (22) to the form

fdt {f(qu W+8T)4T -tE"Ty)dv f(q, 8 )n,dT} =0. (@23

In view of the assumption (20)5 ¢ we have

t.__;_ . ty
[(smndt % [STJTL‘ =0 . (24)
We still have the equation
. ty A )
fldt{i[tq-,,;—w+Ts1deu+£(Q;-q)nlaTda} =0 25)

valid for arbitrary variation 0T satisfying the conditions {24]
Eq. (25) yields the entropy balance

T8 =-q +W, x€B . ' (26)
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and the boundary condition for the heat flow
QG =Q;, X €08, (27)

Consider now the theorem of reciprocity of work. It constitutes a generalization of the
reciprocity theorem deduced in Sec. 1.7. As before, the point of departure is the set of
equations of motion, transformed by Laplace. We have the identity (cf. Eq. (18) of Sec.
1.7.)).

o = Corp o - -l - e | - - 4
‘[[x;uj, - X% dv +[alp¢u; - B, G,)da :.-fn(a,;jsu SHEdv.  @8)

In view of the constitutive equations
- - 3 - -t oy — —
g = f.;wskl - y,;-}B - ek%lEk B aii-= ij..'ll 8;1 -}1519 - eulEk (29)
we obtain
a/(?;ﬁ,f ~Xi ) dv +n[tr:1 U -p0;)da +
+J.[}’,‘}{§-S:,} - E'S;i) + eu;{Ek Ei‘_ - .E-LE;,;}]dv =0 (30)

In what follows we shall make use of the heat conduction equation for both

systems of loadings

1 a 3 e .". i .
Tﬁ(k;ja';j.-ﬁgpel -p(y*Js,,*+g,,E,,} = s (31)
LB ent 5By - W
f(k%B‘q-p,pB) "p(?%E‘}-{-ghE&) =- ﬁ . (32)

Multiply now Eq. (31) by 8, Eq. (32) by B | subtract the result and integrate over

the region of the body. After transformations we obtain the equation

W. Nowacki. A Eeciptociry theorem for coupled mechanical and thermoelectric fields in piezoelectric
crystal. Proc. Vibr, Problems, 6, 1 (1965).
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. %;kqligg’d' -ég;)n‘da . p{ﬁnﬁq+gk€k)§'_

- (7ij8; + 0,E)8]da + ?lo-[(ﬁé‘ ~W8)dv =0 . (33)

Finally, let us make use of the equations for the electric field
Dy =0, Dk =0 . | (34)

Mulciplying the first by @', the second by @ substracting the result and integrating over

the region of the body we have

J(f)kq_n'—-ﬁ:g'i ) n, da +[(BkEL-ELEk>dv = 0. (35)

Introducing the constitutive relation
ﬁk = ewE,;J-_+gk§+ E&J.EJ, (36)

and a similar relation for BL , into the volume integral, we transform Eq. (35) to the

form

[{b,@' - B,@)nda *‘f[eku“‘iia - §;E ) +g,@E,-8E,)|av = 0. (7

1

Eliminating the common terms from Eqgs. (30), (33) and (37) we arrive at one common

equation of reciprocity of work containing all causes and effects

Top {[{EG{-EI,G,; )dv + _é[(ﬁ,;ﬁ,-’, -PiG) + (D, @' -D'P)n, da}

+[tﬁ'é -Wé’)dv+k;1[(§ §;-88)nda =0 .- (38)
B
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Inverting in this equation the Laplace transform we obtain
Tu{‘af(x,;@u}_ - X,0y; )dv +£[(p;o §)- (p© 4;) + (0,0 ¢' ~ Dy, © ginydal} +
+[{w'npe*w *6)dv + k;i‘l;(e «6;-8+6nda=0. (9

Where we have introduced the notation

: t dulx,7)
x;ouﬁ‘gmg,g-n ma"r %5 = 3 50n ete

I ‘ 1)
W #8 =£W(5,t -7)B(x,v)dr, ... .. ete

Similarly to thermoelasticity{” we can investigate the action of concentrated
forces, instantaneous and moving concentrated sources, we can derive the Somigliana and
Green formulae generalized to thermopiezoelectricity, etc.

As in Sec. 1.7. it is easy to deduce the theorem of reciprocity of work for harmo-

nic vibrations and stationary problems.
1.13. Coupling of elastic and electromagnetic waves

In the preceding considerations we dealt with the coupling between the quasi-
static electric field and the motion of the elastic body. In this theory the equations of
motion of the elasticity theory are coupled with the Gauss equation div D by
means of the piezoelectric constants.

We now proceed to a more general problem, namely the dynamic elastic and
electromagnetic problem. We confine ourselves to the adiabatic process.

We shall now discard the previous assumption

-rotgzﬂ. Ez-grad ¢, (1)

(1) W. Nowacki. Dynamic Problems of thermoelasticity. PWN-Warszawa, Nordhoff [nt. Publ. Leyden.
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implying the quasistatic nature of the electric field, and consider the complete set of

Maxwell’s equations (assuming that g¢=0,J=0,M=0)

rotﬂ:ﬁ}, rotE =-'E, (2)

divd = 0, div B =0, 3)

completed by the constitutive relations

D=€E+ P, B=pgH . (4)

Performing over Eq. (2), the operation of rotation, making use of Eq. (2); and the relation

(4)o we arrive at the wave equation(]‘}

)

rot rotE =~ —_ (5)
- p‘ﬂ atz

Next, we represent the vector D by means of the constitutive relation for the quasistatic

problem ( the formula (4)7 of Sec. 1.3.)

D_‘ = e,;n Skz + eikEk f (6)

Then, substituting from (6) into (5) we obtain a system of three wave equations with the
unknown functions u;, and E; . The remaining three equations are deduced from the

quations of motion
Oji,i +X = 04 (7)

The stresses 0, are given by the constitutive relation for the quasistatic problem

0ij o Lijkebxt — ek Ex- (8)

(1)J.J. Kayme. Conductivity, and viscosity effects on wave propagation in piezoelectric crystals. J. Acoust,

Soc. Amer. 26, /19 990.
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Consider a simple example referring to the propagation of a monochromatic elastic and
electromagnetic wave in amonium dihydrogen phosphate (ADF). This crystal belongs to
the tetragonal system (of class 4 2 m) in which we have ten independent elastic, piezo-
electric and dielectric constants. Assume that the wave is propagated in the direction X; ;

then derivatives with respect to X2 and X3 vanish. The constitutive relations in the con-

sidered case have the form

Oy = £y Uy Oy = 44 Uy, + e4Ep
(9)
Op = Lo Upy + e b3 |
0, = ey Ey 02 =-eyus + €4E, ,
(10)

0; =-egupy + €565 .

Substituting (9) 1nd (10) into the wave equations (5) and (7) we obtain a system of five

equations
2 2 :
(Fﬁa! -Qal }U1 =0, s (11]

(;cﬁsff-oﬂz:)Uz + eg30Ey =0,
2 2 2 (12)
(3 — o Epd)Ey + ppeg®diuz=0,

2 2
ll:“3.| = Qat )U3+ 34131E2 =0 1

2 2 2 (13)
(0 - o€y % )Ex + proeyy ;31U =0.

The sixth equation does not appear, for E{=0 D; =0 . Observe that the longitudinal
wave Uy is unperturbed by the electromagnetic field.
The waves Uy . E3 and uj , E; are coupled. Hence we have five different

wave velocities. The first phase velocity for the longitudinal wave is

= (),
e
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The system of equations (12)—(13) can be transformed to the form

[(3.,2-;39(-:353?)13“321 - Qi)'ﬂoeisafaf](uzsta} =0 (14)
[(3:-#051135%4 % - 000)- po ey afﬂﬂfus.i:z) =0 (15)

For a monochromatic wave propagated in the Xq — direction we have

T
) (16)
£ = Fyo 0t -ox)
=Ee™ .
Introducing these functions into Eqs. (14) we obtain the following characteristic equation

for the phase velocity v of the plane wave :

i
o
-
n

C c(pz Vz"“"-‘)"‘ %=% a7

We have introduced here the notation

The biquadratic equation (17) yields

k2= “?{:2 v—+‘q [(lz -\}— n)-;ﬁv]h}, (18)

Thus, if the determinant 4 of the equation is greater than zero, kf:— 0, ki'a- 0.

The expression (18) can be represented in the form
K = .Ef{l.+ st [p-»‘ + )2 4”]"2} | (19)
mo21¢ PSRRI '

where it is ensured that 4 > 0 .

The solution of Eq. (14) for the monoahramatic wave has the form

u =e o {Ae" s B U cDe ™}, T o)
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’

-iwt i - K -
Ey=¢e = {(Aem‘- Be‘k"'}x1+{Ce “%_De ""‘"‘Jxa}

where
2 rd
il . vk ® €63
A1 = 4 5 Ka=+ ) Y=z —, T = — ,
T k4 Tk, [ Ce6

The transverse wave U, and the electromagnetic wave Ej3 are propagated with the same
phase velocity v = C_1= ® [k . In view of the existence of two roots k 1,k we are faced
with two waves.

Since Ky,Kz are constants, the waves do not undergo dispersion and since they
are real, the waves are not damped. An analogous reasoning holds for Eq. (15). Since the
latter is analogous to Eq. (14) the only difference consists in different values of the con-
stants .

The knowledge of the displacement U and the field E makes it possible to
determine the vector D from the constitutive relations (10) and the stress from the formu-
lac (9). The components of the field H are calculated on the basis of Eq. (2); and the vec-
tor B from the formula (4),.

Assume now that the conduction current  J # 0 . Then we are faced wirh the
svstem of equations

rot H D+J, rotE =-B (21)

diviDl = 01 div B=0 (22)
We take the constitutive relations in the form

D=€egE+P B = ueH J = ok, (23)

=i - - -

Thus.we assumed the proportionality of the vectors J and E and. morcover, that the
material is isatropic with respect to the electric conductivity. @ is a (constant) coefficient

of clectric conduetivity.
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Egs. (21) 5 lead o the wave equation

0 aJ
rot rotE == py "é‘i:z' e (24)

The further procedure is analogous to that in the preceding problem. The difference as
compared with the plane wave in amonium dihydrogen phosphate, in Eqs. (14) and (15).
We have

2 - 2 2,22
[(Fas % -3 (3 - o€ 0, - o ady) - P"neaaa'uat] (U E5) = 0, (25)

2 2 2,2
(sl - 08 ® - o€l - p0 9) = pokay &34 (3 Ex)= 0. (26)

Consider the wave (25) assuming (16) to be true. The phase velocity of the propagation of

the waves U5, Ejis calculated from.the equarions

1 L0y 1 0 1 ®
vt Ty )+€V2_mzc2’ "“'g" T n BN

+

"

S

c

which yields

2_ o[ 1 .0k 1 1 2 417y,
Cs Frgn 2= fl-zeqeafeTlt) oo

It is evident that the roots ki’i = 1, 2) are complex. Namely, we have
kg =ap + ity , B= 2 (29)

Thus the wave is damped. The phase velocity and the damping coefficient can be found

from the formulae
w (0] ;
Vg = — = ——— ‘1? =i (k ) =12
o T L A D e
The roots kg lepend on the frequency of vibrations. Therefore, the waves  Uj, E,

are dispersed.
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The solution of Egs. (25) has the form

—iwlt-34 gx =i+ g x
u, =Ae  “e  '+Be aghn

—ilt- 2 ~tg —iwlt+ 3L) By
+Ce e W Dottt Rl %

(31)
A —iBlt- Xy A aiwlt+ )
E = Re® W™ gt W™,
A _jelt-%) i Xy
w Lo ed‘,"' + Do ot ’eM i (32)

A
The relations between the constants A, B, ... and A, é, . ... can be found on the basis
of one of the following two equations :
2 2
(Cssa.' - Qat}uZ % 8533153 = 0 ']
2 2 2 (33)
() - po €30 + P 0 ) Ey + poeerdu, = 0,

which constitute a generalization of Egs. (12).

The above considerqtions can be generalized to thermopiezoelectricity. In this

case we arc faced with a system of 3 equations

2
rot rot E :-#0._5.%:2 - pul?’_ (34)
o= ety =0, (35)
kii8ij -£e8 - ro)’;;éii ~Togif; = 0. (36)

The last equation is the heat conduction equation. The constitutive relations of thermo-

piezoelectricity (the formulae (15), (17) of Sec. 1.7.) have the form
“i't :Jcijklskl = ek,-_iEh = }',;}S i (37)
D; = et + €;E, + 0,8, (38)

Introducing them into Egs. (34)—(36) we arrive at a system of seven equations containing
as unknowns three components of the displacement vector U, three components of the
ficld E and the temperature increment 8 . Oberve that in view of the heat coupling and

the presence of electric conductivity. all waves are damped and dispersed.



CHAPTER I
MAGNETOELASTICITY
2.1. The field equations and the constitutive equations of magnetoelasticity

In the last 20 years a new field has been developing, called magnetoelasticity, in
which we investigate the interaction between the strain and electromagnetic fields in a solid
elastic body. The theory is essentially an extension of linear elasticity and linear electrody~
namics of slowly moving media.

1f a body placed in a strong initial magnetic field is moved by external loading, be-
sides the strain field, there arises an electromagnetic field. These two fields are coupled and
interact with each other.

A stimulus for the development of magnetoelasticity was its application in geophys-
ics, in some branches of acoustics and in investigating the damping of acoustic waves in a
magnetic field.

The first paper on the subject was written by L. Knopo{"f“}, where the author
nvestigated the propagation of elastic field in presence of Earth’s magnetic field. We should
also mention papers by A. Banios(2) and P. Chadwick(3). There are also papers by S. Kalis-
ki and J. Pet_vkiewicziq’ 5), important in the development of magneroelasticity. A some-

whart different approach to the subject of magnetoelasticity is presented in the paper by

(1) L. Knopoff. The interaction between elastic wave motions and a magnetic field in electrical conductors.
J. of Geophysical Research, 60, 4(1955). 441,

(2; A. Baiios Jr., Phys. Rev. 104, 2(1956). 300.
(3 P. Chadwick. Ninth Int. Congr. Appl. Mech. 7/1957), 143.

(4) S. Kaliski and J. Petvkiewicz. Dynamical equations of motion coupled with the field of temperature
and resolving functions for elastic and viscoelastic anisotropic bodies in the magnetic field. Proc. Vibr.
Problems, 1. 4’1960, 3.

(5} S. Kaliski and |. Petvkievicz. Equations of motion coupled with the field of temperature in a magnetic
field involving mechanical and electromagnetic relaxations for anisotropic bodies. Proc. Vibr. Problems.
1..4'1959..
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J.W. Dunkin and A.C. Eri.ngen(”. '

Consider an elastic body in a strong initial magnetic field. The mechanical (im-
Ipact] and thermal (e.g. thermal shock) causes generate in the body a strain and a coupled
electromagnetic field. In all above mentioned papers it was assumed that the influence of
the electromagnetic field on the strain occurs by means of Lorentz forces appearing in the

| equations of motion. The Ohm law contains a term describing the increment of the density
of the electric field depending on the velocity of the material particles moving in the mag-
netic field. _

For this simplified model L. Knopoff proved that the magnetoelastic interactions
play an insignificant role in the propagation of elastic waves in the presence of Earth’s
magnetic field. However, there exist instruments working in a strong initial magnetic field.
G.A. Alers and P.A. Fleury(z) proved experimentally that in these cases the influence of
magnetoelastic interactions is considerable.

Consider a homogeneous isotropic material medium, possessing a good electric

_conductivity, Assume first. that the body is at rest with respect to the free space which we

identify with an initial frame. In this case Maxwell’s equations have the form(34) ~

rot H =0+J , rot E=-8B, (1)

divD =g,, divB=0 . (2)

Here the vectors E, H; B, B, J, denote the electric field, the magnetic field, the electric
displacement, the magnetic induction and the density of the electric field, respectively.

Finally @, is the density of the electric charge. The quantities E, H, D, B, J are ob-

served in the laboratory reference frame.

(1) J.W. Dunkin and A.C. Eringen. On the propagation of waves in an electromagnetic elastic solid. J. Engn,
Sci. 1, 4(1963), 461.

(2) G.A. Alers and P.A. Fleury, Modification of the velocity of sound in metals by magnetic fields. Phys.
Rev. 129, 6(1963) 2435,

(3) A. Sommerfeld. Electrodynamics. Academic Press, New York, 1952,
(4) J.A. Stratton. Electromagnetic theory. Mc Graw Hill, New York, 1941.
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Eqgs. (1) and (2); yield the electric continuity equation
dvJ+ — = 0. 3
g+ 3 (3)

The system of equations (1) — (2) is not complete, for we have to add the constitutive

relations. For the quantities D and B they have the form of the non-linear relations

D = d(E,H), B = b(E,H) . )

We shall confine ourselves to linear relations which for an isotropic body have the form

g = SE', B = pH ()

The quantities &€ and pedenote the electric and magnetic permeabilities, respectively.

The last constitutive relations, the Ohm law, is the relation between the vectors

Jand E

LI: Ug (6)

where 0 is the coefficient of electric conductivity.

In vacuum we have the constitutive relations
g=sﬂ-§; Ez.hlol_'l_, J:D: (7)

where &g , Ug are universal constants.
The Maxwell equations (1) — (2) hold both for the interior and the exterior of

the body. On the surface separating the body from the vacuum there are the boundary

i-vle],

0, n

conditions!

(=1
*x
I

(8)

{ve}

1o
e p—
o
= =
i
1=
x
r— | p—
im
e —d
I
<
==
Lo}
[ —

1) In general the magnetic permeability is denoted by p , we prefer here however g , reserving p for
the Lamé constant,

(2) H. Parkus. Magneto-thermoelasticity, CISM, Udine, Springer-Verlag, Wien, 1972.
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where IIE] denotes the jump H* = H™ of the vector H through the surface separating the
body form the vacuum. V is the component of the velocity vector in the direction of the
vector N . The vector i is the density of surface currents.

Let us return to the Maxwell equations (1) — (2). By eliminations making use of
(5) and (6) we can transform them to the simple wave equations '

PH - poell - ol = 0
i L . (9
(V -grad div)E - euE - opE =0

The structure of the above hyperbolic equations indicates that the propagating waves are
damped and dispersed. For the vacuum, fégm the Maxwell equations and the constitutive

relations (7) we obtain the wave equations

V-zﬁ - pogoH =0, Vz_E. - Mok =0, (10)

or

v>- %raf)(H,E) =0, £ = lpgeg) 2, (11)

where c is the light velocity. The electromagnetic waves in vacuum are neither damped nor

dispersed.
In Sec. 1.1. we derived the balance of electromagnetic-energy
%Afu,dvz-‘[g-(gxﬂ)da -/g__ldv , (12)
where i '
U,

'a—l';gg"'ﬁ_a.

Consider now a body the material points of which move in an external magneric or electric
! 'yl (] ! ) . e . *
field. Denote by E,H, D, B, J, -@ the magnetic quantities observed in a coordinate system
1 . ‘. . >= . . .
X' connected with a moving material point. In this moving coordinate system we have the

Maxwell equations (note the invariance with respect to the Lorentz transformation)

1- ' dcul l'__gf_-?_l 13
rotﬁ-g+?i-—, rot £ = Tl (13)
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divD = o , divB =0
‘Here dc_f/dt is the convective time derivative of the flux vector [ :

di_:%{-+3div[+rut(f_£g). (14)

==

Since the system (1) — (2) and (13) must be identical, in view of (14) we have the equations

SR | ' D' 3D
rot(ﬂ«-gxg}-._l—g,g-?—l': rotﬂ—.lua—t'-
, 9B 98B
rot(§-gx§}+-a—‘t:=rot§+-—t‘— ,
i (15)
divg"@: = dwg =0
divB' = divB ;
implying the relations
H+yxOD=H, E-yxB=E
(16)
QI=[.}7 §'=E: LI,_Q!.Y.:‘.I‘l
or , ; ;
W=H-vyxD, E=E+yxB, J=J+ov. an

The constitutive relations of electrodynamic of slowly moving media are not invariant with

respect to the Lorentz transformation. Their form is analogous to (5) and (6), namely
I

D'= sE, B'= phH, J=oE. (18)
In view of (17) they take the form

D=elE+yxB), B=gH-vyxD,

(19)
J= aE+yxBl+gy.

Thus. we have arrived at the complete set of equations and relations of electrodynamics of
slowly moving media. It contains the Maxwell equations (1)—(2) and the constitutive rela-

tions (19). The relation (19)5 is the modified Ohm law : its last term is the influence of
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the velocity of the particle (moving through the electromagnetic field) on the density of

the electric current.

Consider now a deformable body. We assume that the only influence of the me-

chanical field on the electromagnetic field is an the Lorentz force
f =eE+JxB, (20)

which we introduce into the principle of conservation of energy as a volume force,

d .
f(xﬂ f,)dv +,[ai;nida = E'E'fmdv . | (21)

Making use of the Gauss transformation for the surface integral in (21) we obtain the local

equation ' .
Gij+r Xu+fi= v, (227)
oF "ii,l"xi* .E+JxB = ol . (227)

The mechanical constitutive relation is taken in the form of the genera.li}.ed

Hooke law. For the considered isotropic bodies we have -

0 = 2;&8;1'_ + zdifkk - (23)

where W , A are the Lamé constants, referred to the adiabatic state. We assumed above
that there are no initial stresses due to the initial magnetic field in the body. We have neg-
lected in the above relations additional terms of higher order due to the influence of the
electromagnetic field on the mechanical field ; thus, we assumed that the relations (23) are
the same in both systems of reference.

Let us return to the equations of motion (22°) ; in the case of magnetoelasticity

they contain the volume Lorentz force f;. Introducing the strain

& = -12--{11,"‘1 + uini-} (24)

substituting the Hooke law into the equations of motion and eliminating the strain by
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means of (24) we obtain the displacement equations
2 . -
: pl7ui+(ﬂ.+p}ujIF+X,;+ﬁ = 0U; (25)
which can be written in the vector form

uP%u+(A +p)grad divu + X +f = gii (26)

Egs. (26), the equations of electrodynamics (1) —(2) and the constitutive equations (19)
constitute a complete set of differential equations of magnetoelasticity. The equa;tions
should be completed by the boundary and initial conditions.

The boundary conditions for the elctromagnetic field can be derived following
the procedure given by J.W. Dunkin and A.C. E‘tingen“).

Let us transform Egs. (1), (2) to an equivalent form

rot(E +v x §) =- (%{E+!divg - rot(y xg)) .

rot(H -y x D) =(g%+gdivg_-rot(g xg»-i-i-g;g (27)
divD = g, divB =0

We apply to the first two equations the Stokes transformation and to the last two, the

Gauss transformation. Thus

/{E+va}dc = - 9- Bda ,

fﬂ-ggg)dg == [Dda+/(4 o.v)da ,
c
[Edg =0 [ng 5 [@.dv . (29)
8 ' ‘

(28)

(1) see footnote on p. 55.
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In integrating (2?)1‘2 we have used the convective time derivative

de = [(db b - b
dthdg [(dla-gdwg rotgx_)d_a_l. (30)

Observe that the curve ¢,the surface - 0B and the region of the body B are moving. Let
us choose @B to be a small rectangular area, perpendicular to the boundary surface of the
body (Fig. 1.). The contour of the rectangle is denoted by c. If now the dimension of the

rectangle perpendicular to the boundary surface is decreased and tends to zero, Eqs. (28) 5

yield the boundary conditions in the form |

[g , VX g]]t:. 0, | |[L-! Con g]l = Jn=0eVm - (31)

where [&JI, denotes the difference of the tangential components (parallel to the direction
t) of the vector A inside and outside of the body.j-n and D, denote the density of the
surface current and the surface density of the electric charge, respectively

Suppose now that tﬁe region B is the region of a cylinder the axis of which coin-
cides with the direction of the normal (Fig. 2). If the height of the cylinder tends to zero,

Egs. (29); 4 yield the boundary conditions

[el,=o. [o]-a o

Fig. 2

where [A_ﬂn denotes the jump of the normal components of the vector A .

Integrating the continuity equation for the current density J .

: o,
= 3
divJ + T 0 (33)

over the region B and proceeding as with Eq. (29); 5 we obtain the Jast boundary condi-
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tion

[o(§+gx.§] e _(34)

Besides the above electrodynamic boundary conditions (31), (32) and (34) we have the

boundary conditions for the equation of motion (26).
2.2. Linearization of the equations and relations of magnetoelasticity

Let us write down the equations of magnetoelasticity. Thus, we have the Maxwell

equations
rotH =J +0, rotE =-8 , M

divD = o, , divB =0, : (2)

the constitutive relations

D=e(E+yxB), B=p(H-vxD),

(3)
Q = a{g+!x§}+ Q!!l
and the displacement equations
ZLu)+ X+ 0E+JxB =0, (4)
where #(u) is the differential operator
2 . 2
L) = (uV +(A + pigrad div - 3;)(..) (5)

The system of equations (1) — (4) is non-linear and most complicated. A considerable
simplification is obtained if we assume the following : the body is subject to a strong ini-
tial magnetic field  Ho = const and at the instant t = O we apply an external loading :
then in view of the coupling between the strain field and the electromagnetic field there

appear small fluctuations e , h described by the relations
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H(x,t) =H%+ h(x,t) E(x,t) = e(x,t) (6)

Substituting the above formulae into the constitutive relations (13) and neglecting products
of the quantities h;, €, Vi and products of their derivatives, we obtain
D=ce+avxt, B=(H+hu,

(7)
J=ole+ruyxH), a-= ep,,

where we also neglected Qe . Introducing the relations (7) into the Maxwell equations (1) -

(2) we have

“roth = ole + py x H) + €& + av x H°, rot e =- uh, (8)
edive + adiviy xH°) = 0, divh = 0. 9

Substituting from (7) into the displacement equations (4) we arrive at the vector equation
L)+ X+pedxH = 0, (10)
or, taking into account (7)3 and (8); ,
L)+ X+ (rothx H- eé x H’ - ay x H'x H") = 0 . (11)

Observe that eliminating the function & from the Maxwell equations (8) — (9) we are led

e
to the wave equation for the function h :
(7> B3, - Bod; Jh =- Brotly x H) - arot(y x H). (12)

Here B = op, Bo= et . -
Eq. (12) constitutes a generalization of Eq. (9) of Sec. 1.2. ; it is an equation of

hyperbolic type.

The frequencies related to vibrations and mechanical waves are much smaller than
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the frequencies of electromagnetic waves with the same wave length. Thus, when we investigate
machanical waves we may regard the electromagnetic fields as quasistatic. Mathematically it
means that D = 0. 39/&.:0 and then Eqgs. (7)q imply that .6 =0, a =0, §,=0.

Thus, we arrive at the simplified system of Maxwell equations

roth =J rote =- ph divh =0, (13)

and the constitutive relations

J = ole +uyxH), B=puH+h (14)

The equations of motion are also considerably simplified, namely we have _
L) + X+ prothxH=0. (15)

The equations of motion (15) and the simplified field equation (12)
(72~ Bayh =- Brotly x H*) - (16)

constitute a corﬁplete set of equations of magnetoelasticity. Eq. (16) is a diffusion equation
rather than a wave equation. . )

The solution of the system of equations (15) and (16) yields the functions U and
h . The remaining functions are deduced from Eqgs. (13) and (14).

A further simplification follows form the assumtion that the body is a perfect
conductor. Then 0= 00,8 =00 and Eq. (16) takes the simpler form

h = rot(u x H") ° (17)

Introducing the above formula into the equations of motion (15) we arrive at the uncoupled

system of displacement equations
wVu+(A+ pigrad divu + ,rot rot(u x HYXH + X = oii . (18)

A solution of Eq. (18) yields the displacement U while the relation (17) makes it possible

-

to calculate the function h . The relation (14); with 0 =00 yields

e =-puvxH, (19)
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Finally, form Eq. (13) we find that
J=roth. ’ (20)
The boundary conditions for the system of equations (15) — (16) are also consi-

derably simplified. They can be derived from the boundary conditions (31) and (32) of Sec.
2.1. Assuming that D = 0,6 =0,a =0 we have

q - _ -
[s+mxt11-0, ][h]]t-O, -
- n -
#.h],,-O, I[sw.!xt*]n-o-
Finally, observe that Egs. (15) and (16) can be written in the form
pV% +(A+p)grad divu + rot b x B+ X = ii ,
Heo (22)

(7~ B3)b =-Brotly xB°).

o
They refer to the case in which there appears an initial field of magnetic induction Bz

const. Then

B =B +bix,t), E =elx,t). (23)

2.3. The fundamental equations and relations of magnetothermoelasticity

The point of departure of our considerations is the balance of the mechanical.

clecrromagnetic and thermal energy, which in the spatial notation has the formt1)

d fi1

ovivi + oU +Uddv = [(X;v; + or)dv +
aty 2 bl ,,f*

(1
+,[(p,;v‘-_ -qn - (E x H); + U vwn)da .

The integration is over the region B and surface 3B of the deformed body. The first term

1 H. Parkus. Mametothermoelasticity, CISM. Udine. Springer Verlag, Wien. 1972,
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in the left-hand side is the time increment of the kinetic energy J'= 1/2_[9 vivpdv | the
second is the time increment of the mechanical energy f;g Udv , U being the specific ener-
gy referred to unit mass. Finally U, is the electromagnetic energy referred to unit volume

0 is the density and Vv the velocity of material point. The first term in the right-hand
side is the power of body forces and the thermal power. I is the quantity of heat generated
per unit mass and unit time. The first term of the surface integral is the power of surface
(contact) forces, the second term the heat flux through the surface 9B , the third the flux
of electric energy and the last term is the flux of electromagnetic energy produced by the
motion of the body in an external magnetic field. q denotes the heat ﬂux_ vector referred
to unit surface and (E x M)y is the component of the Poynting vector.

Let us now employ the known relations
4 = [ e
dt/u,dv 'g['dt dv +Q[U.v¢n‘da ; (2)

and perform the differentiation
—d—bﬁlgv;vn oU)dv "-'/[Q(U + V) + (U +-1-gv-v-](é + 0V, -)]dv (3)
dty 2 gl 0 !

where

0 ==, e.t.c.
'Taking into account the equarion of mass continuity

3
Tt-'i-Q'Jir":U (4)

and the relation berween the contact forces and stress

Pi = oyn; (5)
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we arrive at the following form of the energy balance :
lr/2@1] + 0,)dv =sf[(°“ # X - QW + gy - G+ T (ExHy]dv. ©

We have made use above of the Gauss transformation. Bearing in mind that Eq. (6) should

hold for an arbitrary volume of the body we obtain the local equation

QU +U. = [Us;.‘j_ + X-‘ - 9‘:'1.)\’5 + Uﬁ\\‘i‘j - q‘ﬁ + or -{EX B);‘L - (7)
Consider first the expression U, ; let us express the electromagnetic energy Ue in terms of
the components of the electric and magnetic fields E and H :

U = L(eE+ und), €= EE, H= HH,, (8)

A
2
we assumed here that the constitutive equations for bodies which are isotropic and electri-

cally and magnetic linear, have the form

D=¢E, B=pH, ®

Introducing the rime derivative of the function U, ,

U = ¢EE + ubH : (10)
into the Maxwell equations
rotH = J + 0, rotE =-8, (1
and the constitutive equations (9) we have
¢E =rotH-J,  wH=-rotE, (12)
Substituting (12) into the ;:xprcssion (10) we obtain
U, = E(rotH =J) =H rot £ == div(E x H) - JE , (13)

This quantity can be further cransformed by means of the Ohm law : the lateer. in electro-

dvnamics of slowly moving bodies. has the form
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J = o(E+yxB- mgrad 8), 8 =T-T, (14)

The term containing ¥ indicates that the current is modified by the deformation of the
body. The classical Ohm law J =0E is modified by the term ¥ X B and by the tem-
perature flow. Multiplying Eq. (14) by J wnd solving for J¢E we have

JE = —;-J’Hg x B)y - mpJgrade (15)

The first term in the right-hand side is the power dissipated by means of the Joule heat.

Introducing (15) into (13)
U, == (E xH); - %,J’ngx Bhvi- 046, (16)
and the result (16) into the energy balance (17) we obtain the equation
oU = (o5 +(IxBY + X, = oW)y, + auvi; + or -
-qu.’f'l-Jz*« T Ji8; . (17)

The energy balance (17) should be invariant with respect to a rigid translation of the body.

Setting in (17)

1<

i<
+

o

b = const.
and substracting the original equation we obtain for b #0 the first Cauchy equation of mo
tion

aﬁ‘“-(JxB)”x; -Q\'f;:-.O. (18)
We note that the expression (J X B); is the component of the Lorentz forc;:(l). The ener-

gy balance (17) also should be invariant with respect to the rigid rotation of the body.

Setting therefore in [i?)

!""!"'Q"I[., Vij = % - €jp R, ,

(1) If we take into account in deriving the expression (17), the flux of electric charge, then the Lorentz pon-
deromotive force has the form F, =g E+JxB
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we arrive at the second Cauchy equation of motion
G = o . (19)

Let us return to the energy balance (17). In view of the equations of motion (18), (19) it

can be considerably simplified and chere remains the expression
. . 2 :
oU = OiEij+er -G+ -:T J +mJ8; (20)

We add to the energy balance the Clausius-Duhem inequality

on + (?,—")’i- ?T—r = 0, (21)

where 17 is the entropy per unit mass. We introduce in (20) the free energy Q% defined

by the relation

v=U-1T, (22)

Eliminating from Eq. (20) and the inequality (21) the term q;j we obtain the inequality

- TQ-(\EH n6) + —1-(\;;.-}0,;-}) +

£ a3 T W (23)
+TJ0+R’UJ;83_-T-30.

We have considered so far the non-linear problem, assuming that the strain may be finite,
now however we confine ourselves to the linear problem.

Assume that the free energy has the form

P o= w(é;he, 8,). (24)
Since
.y ; ﬂtp Ay .
= — 8+ (25
ATV S TR TR )
we transform the inequality (23) to the form
107 9wy, dy y .
ITARC TN AR
IS 9, - ¥B.i 1
+ -T—-(U J + 1 J.8; = )a 0. (26)
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It is postulated that the inequality (26) holds for all independent processes and the quanti-
ties Sqe ; ék acquire independent variations. Since the inequality (26) is linear in all

" variables, we obtain

Iy : Iy 1y
g = T’ m =38 FB—;:-O’ (27)
and
-1.2 - q.8;
oJd+ NOJ"G"‘- -}—2— =0. (28)

Consider first the free cnergy 09 and the related constitutive equations. In accordance

with (24) we assume that for a homogeneous isotropic body
A n A2
QY = pEig+ S Eukémn = 76,0 - ?9 : (29)
Taking into account the relations (27) we have
0 = 2}.&5;;‘*’(18“-}’9)6;} 5 y =(34 +2u)q , (30)
| £
en = yeu+ =8, (31)
To
where @y is the coefficient of linear thermal expansion.
The inequality (28) is satisfied if
q = 'kua,i + uﬂ‘}iT £ -'koel", + ﬂ:oJ;To 5 (32)

The above relation constituting a generalization of the Fourier lax was given by Landau

and Lifschitz{!). The heat conduction equation follows from the entropy balance

oTon = =Gy i + or . (33)

(1) L.O. Landau and E.M. Lifschitz. Elektrodynamik der Kontinua. Akademie Verlag. Berlin. 1965.
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In view of the constitutive relations (31) and (32) we obtain the equation

2 . f
koV 6 -£,8 - yToé,, - moTgJdiy = - or. (34)

Making use of the charge continuity equation

divd+ 2% _ g

35
at i (35)
and eliminating from (34) and (35) the quantity div g we arrive at the equation
2 & A 7
(koV -£.0,08 ~ fidivi # m,Tgpe = - o , 7 =yTo . (6

In what follows we assume that @, = O . Then Eq. (36) takes the form analogous to that

in coupled thermoelasticity

2 4 - or 7 Ko
(V' -—23)8 -qdivu =- =, = — = — 37
N 1 k L s e
Consider the Maxwell equations with the constitutive relations (9)
divH =J + ¢E | rotE =-pH
(38)
dvE =0, dvH =0,
Eliminating the vector E we have
2
(F" = Bo,H = 303‘,"5 =- Brot(v x H), B zp.0, Bo= tee. (39

In deriving the above equation we took into account the Ohm law (14). Introducing into
the equations of motion (18) the constitutive relations (30) and the Lorentz force (J x B),

we obtain the veetor form of the elasticity equations
ulu+ (A + p)grad divu + X + p.,[(rot H - s_E_xtji] =
= pli+ ygrad 8, (40)
Eqs. [37,. (39 and 40! constitute the complete set of equations of magnetothermoclastici-
fy.
These equations contain non-lincar terms, they can however easily be lincarized

in the following particular case. Assume that the body is subject to a strong initial magner-
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ic field H® = const and the instant t = O the body is set into motion by mechanical or

thermal causes ; then fort >0,

Hx,t) = H +hix,b), E=elx,b, J = jx,b,

where h , e | é are small fluctuations, The Maxwell equations take the form

rot h = j + ee, rot e =-p.h ,

divh =0, dve =0 .
Linearizing (39) we have

(7%= BOOh + Bod h =- Brot(y x H) .

The linearized equation of motion (40) has the form

. ’

ng+u+p}graddivg+§+p,,[(f0§b - ge)x ﬂ] = ygrad8 |

2 2
The only non-linear constitutive equation is the Ohm law; lincarizing it we have

i’ =z o[g + ey xH) - n’ngradej.

(41)

(42)

(43)

(44)

(45)

If we regard the electrodynamic problem as quasistatic. we should neglect in Eq. (43) the

term Boh and in (44) the term €@ . In this case the fundamental magnetothermoelasti-

city equations are the following :

2 i or
(- %a,ae -ndivd =- 3

(7°- B3)h =-Brotly xH) |

(Jou +(A + w)grad div u + X + g, rot r_mxljo.—.ygradB

2 - - o " o &
I a constant ficld of magnetic induction B™ is given. then

B=8+b, E=c¢

(46)

47

(48)
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Eqs. (46)—(48) take the form

(7'~ Laye = pdivi =- _ii ) (46')
0
(V- 89,)b =- Brotly x B, (47"
Chu +(A+p)graddivu + X + Lot bxB°= ygrad 8. (48)

He

The fundamental magnetothermoelasticity equations are considerably simplified
in the case of a perfect electric conductor. Then ¢ =00, B = and Eq. (47°) takes

the simpler form

b =rot(y x8°) (49
whereas Eq. (48”) is now
Clou+(A +p)grad divu + X+ -l[rot rot(i x 8°) x §°] = ygrad 8 (50)
e

In this case only Eqs. (467) and (50) are coupled.
2.4. Propagation of plane magnetoelastic wave

Consider the propagation of a plane magneroelastic wave in an infinite space.

In this particular case the system of the magnetoelasticity equations takes the form

uVu +{A+p)graddivg+;1—(rot Q)x§°: ol (1)
[

(V°- B)b =- Brot(ix B), B = ou,. 2)

We consider a plane wave propagaced in the direction of the  Xq-axis. (1) and (2) vield the
system of six equacions

(k42097 - 08 Juy - L 0,83, - B3b,) =0, (3)
e

(13} - 00 Ju,+ ;1_ Blab, = 0, )
= 2
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[p,&f- Qaf] u; + L B: agb; =0 (5)
- Mg
and
by =0 (6)
2 ' o a
(& - Bdb, = B9, 0, By, -Bluy), )

(312‘ B)by =~ 3, BL{B:“J - Byu) : ®

Assuming that by = O we find that B: =0, u3=0 . There remains a system of three

equations containing the function Uy, Uz, ba:

(2420087 - 08wy - 1;3231% =0, )
2

(9 - 63, Jup+ -::Eﬂfhbz =0, (10)

(3 - B3, b, - B3, (Boy, - Blu,) =0. 1

For a monochromatic wave propagated in the direction of the _ X, -axis we assume that
ikx, - wb)
(U Upbp) = (U] 5, b5 ) @ (12)
Substituting (12) into Eqs. (9)—(11) we arrive at a system of three homogeneous equations.

The condition of existence of a non-trivial solution is the frequency equation

kz - 612 0 LkE.
0. K- - ike =0, (13)
1
(kB  -ikB]  iKw+1

where we have introduced the notation

&1 = 'E):' ' o, = -.C% ; Ry-2 (M)‘;’a, £q = (ﬁ’_)"fz .
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(B (B3)? -
(-::—Bl—, €, = CAA v =(p,00) . (14)
"7 opmec? 27 oped e

Eq. (13) yields

(K - oIk - ) Gky + ) +K'g ] + K - a3 =0 . a3)

This equation contains a number of particular cases which we now proceed to examine.
A) First we consider the particular case of a perfect conducror: then 0 =00

B =, ¥ =0 and Eq. (15) takes the simpler form

2 2

102

k4(1+E.,+ Ez)—k2 r.r,z(‘l+ €1}+a§(1+ €2)]+0 g2 0, (16)

[ . " . 0 o
a) If the initial electromagnetic field is absent, e.c. when By = B,  and

€,=€70 then-Eq. (16) yiclus

(%= ook =05 = 0, (17)

We are now faced with clastic waves Uy . Uy unperturbed by the electromagnetic field.
The longitudinal wave Uy is propagated with the velocity €y and the transverse wave
with the velocity €3 .

b) In the presence of the initial field B) = U.B; #0 Eq. (16) takes the simpler

form

(- o) K1+ €) -0f | =0 (18)

Now we have an unperturbed transverse wave Uy propagared with the phase velocity
v =€, and a perrurbed longitudinal wave Uy .
The equation
2 2
k(1+ &)~ 0,=0
imphes char

vz 1+ € (19)
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Thus, the velocity of the longitudinal wave is increased, for €;>0.

c) If B;#0 and B,=0 for €= 0 Eq. (16) leads to the relation
K-oH P+ €) ~03)=0 (20)

In this case the longitudinal wave Uy is unperturbed and propagated with the phase veloci-
ty V= Cy. The transverse wave Uy is perturbed by the electromagnetic field. The equa-
tion

K'(1+ €) -02)=0

leads to the formula for the phase velocity of the transverse wave
1
v=cll+ 51)12 (21)

d) In the case €4 # 0, €2# 0 both waves, Uy and U, , are perturbed by the

electromagnetic field. Eq. (16) has the solutions

2 .
kil _ 1 2 2
W< Firer ey [oft+ €+ B3+ €27, 22)

where

a4 = [a?ﬁ + €)+ a:{1+ 623]2-40,20:(“ €,€,;)
2
= [01{1 + €) - 02(1 + E;,)]z-l- 401202(81 +6,)>0

; : 2 2 . . , .
It is evident that k>0 , k>0 and that the solutions of the biquadratic equation are real.

The solution of Egs. (9)—(11) for 0= 00 has the form

. X ¥ o
—e(t-T8) L -l B ~io(t- X —twft+ X
u, = Ae wge Ot + Ce "2)4- De™* ) i (23)
where
Y = ofky v2 = @[k, .
Obscrve that the quanrities ky ., K depend on the parameter w . Thus. we are faced

with dispersed waves. Let us now return to the frequency equation (15} and consider again
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some particular cases of wave propagation.
e) If the initial electromagnetic field is absent, (B° = B3=0 , €, = €,=0 ),
Eq. (15) takes the form

(6 = 01 (K - o) ikw +1) = 0 (24)

We now have three independent waves. The longitudinal wave Uy is propagated with the

velocity €4 and the transverse wave Ua with the velocity €2 . The case
vl
ikv +1 =0, (25)

represents quasistatic oscillations of the electromagnetic field, which are not coupled with
the displacement U .
f) Consider the case B?l =0, B;#O . Then the characteristic equation (15) takes

the simpler form

(6 - o) [7K - K'(wal +i01 + € +ig;]= 0. - (26)

It is evident that the transverse wave is unperturbed by the electromagnetic field, while the
longitudinal wave U, and the wave b, are propagated with the velocity Vv = @[k

The quantity k satisfies the equation
vk - kz[vo12+i.(1 +E2)]+i.0?='0 (27)
The solutions K,  are complex. Therefore the longitudinal wave Uj and the wave Uz

are dispersed and damped. The phase velocity Vq and the damping coefficients Py are

determined from the formulae

Y = R_J’Q ' B =Jmky), a=12 (28)

The solution of the considered equations for the waves Uy and b has the form

: X . X '
U = Aexp[- Lo (t --;11—) -*ﬂgxﬂ +Bexp[—a.m(t + v—:}+ D) xJ +

+ Cexp{- Lw{t—-:—‘)—'ﬂzx,]+09xp[-iw(t +:—;)+ 1}23(;[ : (29)
2
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and

A -~ . ‘ X
b= Rexp [~ioo(t- :—1‘) - 9y + Bexp| 1ot + ;:"n D%, +

+Cexp [-i.m{t- E‘—}-'ﬂ‘;xJ - ﬁexp[—tm(t - :—;H 1?2)(,] ; (30)
2

~A
The relations between the constants A, B, ... and A, B, .. . is deduced from Eq. (9).

g The case By # 0 . B;=0 leads to the characteristic equation
(K - o[k - a3 kw + 1) + €)’] = 0 (31)

We find therefore that the longitudinal wave U; is unperturbed by the electromagnetic
ficld. while the waves Uz and b2 are coupled. The phase velocity of these waves and the
damping cocfficient are determined from the formulae (28) and the quantities k are found

from the equation

wK - Ko+ i+ €)+id =0 (32)

The solution of (32 are complex @ consequently, the waves Uz and b, are damped and
since the K's depend on the frequency @ , the waves are dispersed. The form of the waves
U and by is the same as (29) as (30).

h In the most general case By2 0 .Ba#0 we are faced with coupled waves uy .
Uy . by . The quantity kis determined form Eq. (15). Since the solutions are comples
and depend on @ the waves are both damped and dispersed.

There is no difficulty in generalizing the considered solution to thermo magneto-
clasric media with a finite electric conductivity, A derailed exposition of the problem is

presented ina paper by AL Wilson' ! .

1AL Wilsan. The propagation of magnetothermoelastic planc waves. Proc, Camb, Phil. Soc. 59 {1963,
p. 483
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2.5. Two-dimensional problems of magnetothermoelasticity

Consider first an elastic medium with a perfect electric conductivity. The motion of

this medium is described by the system of differential equations

w7+ (A + p)grad div u +1;‘(rot b) xB+X = oii + ygrad 8 (1)
4 aemdnid e B

(|?"2 % 3,)8-ndivu = e (2)

b :rot(l_.l_xgn)_ (3)

We assume that the vector of magnetic induction B is parallel to the X;-axis, i.e.(B=(0,0,

By). . Then, taking intc account the relation (3), Eqs. (1) take the form

PV2U1+{3- + 0+ aig} 0e + aﬁg&, (uy - Quy) + X, = 70,6 + pu,,

2 2 2 ..
BV Ut (A + o+ 300) Be + 39003(Q3u - Buy) + X, = 788 + iy 4)
iu.l?'zu3 +(A+ ) e + + X;3= o,

where we have introduced the notation
e =uy + du, + du,y , = — = 5§ , V=2

Egs. (4) should be completed by the equation of heat conduction (2). The system of equa-
tions (14) is symmetric with respect to the diagonal and its structure is the same as that of
the system of equations for an anisotropic body with transverse isotropy' This anisotropy
vanishes when ag—0.

[n what follows we confine ourselves to the two-dimensional problem, assuming
that all functions are independent of the variable X3 . Thus, our system of equations is de-
composed into twoindependent systems

,u.V;zut+ (A+p+ a00) de + X, = ¥8,8 + ol ,

) (5)
¥ aEB + Quz ,

BT, + (A4 p+ 3 Q) B+ X
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2—1_ - : ---g-
(v, = 0,08 -ne = i
and

2 o
pViuy + Xy = ey . (6)
The last equation is unperturbed by the electromagnetic field and therefore we shall not in-

vestigate it here.

Egs. (5) describe the plane state of strain U =(uyu;,0) and as ag—0 they become

the coupled thermoelasticity equations.

Let us differentiate Eq. (5); with respect to Xy , Eq. (5), with respect to X3 and
add the result, Thus, we arrive at the wave equation for the dilatation e :
22 1 2
D1E+E-;!-(31X1+32X2)—m,v19 =0, {-7}
<

Here

2 A2 12
BFV;:‘E'!:'at: B2+ €), my=y/ekf.
1

Eq. (7) is coupled with the heat conduction equation (5)3 ; eliminating the temperature from

Eqgs. (5)3 and (7) we arrive at a complicated wave equation, namely

(0CF - mndF e = - 5%3“9‘31"1 ¥ 0,%,) - —:‘- ra, - 0=%-Lla (8

1
The coupling between the dilatation e and the electromagnetic field is due to the presence of
the qunatity €3  Making use of Eq. (5)) o itis readily observed that

2
50 =L (85~ B0, (9)
or?

where

Q= ai“Z - 32U1 )
(10)
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The function Q describes rotation about axis X3 . It is evident that the propagation of the
torsional wave Q is unperturbed by the temperature and electromagnetic fields.

Let us decompose the vectors U = (Uy,u,0) and X =(X,, X;,0) into the potential
and solenoidal parts

U =% - 9,9, u=3P+3P,

ey

(11)
X1= Qlﬂ{l?- 3;,‘() ’ _X2= Q(ag'g'f 61Z) P

Subsrituting (11) into the system of equations (5) we obtain a system of three wave equations,

two of which are coupled, namely

=2
0d - m,8 =- f‘ﬁa,
ik 0 (12)
0e - "?alRI¢ = '; 1
2 1
0.9 =- = 71. (13)
4
Eliminating the tempcratur_c from Eqgs. (12) we arrive at the wave equation
(320 - ym3aFe =- g - 209, (14)
£y

describing the propagation of a longitudinal wave, while Eq. (13) deseribes the transverse wave.
The longitudinal wave is perturbed by both temperature and electrromagnetic fields. whercas
the transverse wave is not, Obscrve that the form of the wave equations (14) is analogous to
that of the wave equation of thermoelasticity. The thermoelasticity equacion is obtained when
a, —+0.

The knowledge of the functions @. @ makes it possible to calculate the remaining
clectromagnetic and thermal quantities. The temperature is obtained from Eq. (12 :

A
8 =L(0p+ Lo, (15)

m, Cy

and the quantities ‘_b_,J, g from the formulac

p_:rot(ng_io), fed = 7Ot D, (16)

m™m
n
1
(K=
>
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Thus, we have
2 2 2
b =(0,0,- BV, &), ;.L,J_:(-Blﬂzﬂfp, B,9,V;9,0)
: N . . (17)
E = (-B,(0,% +0,®) , B;(3,d - 3,9),0)
Consider a particularly simple example of an action of a linear heat source in the infinite elas-
tic plane. Assume that there acts along the Xj -axis the heat source Q(r,t)= Qoe""‘“atryznr.

The considered problem is axisymmetric. Eq. (14) takes the form

2 peE 9 _ | d(r) '"‘“
where

2. ¥ .1 9

(ki

Applyving the Hankel integral transform we obtain a closed solution of Eg. (18)

Q,mie- it r (4
Blrt) = % T k) - H Xkar) 19)
PRI ]:n 17) = R z:l (

Here Ky . ky are the solutions of the equation

4 A "
k-k2[012+q(1+t:r))+q0,2=0, (20)
where
§2- & d
6, = =, m, % = ==
1 72 n q e

We are interested in the real part of the solution (19 The temperature is determined on the

basic of Ey. (15) ‘forit=0.

i QD e—kh.ll

1 "
2 —0 (6, - KHg tky 1) = (87~ k3 Hgthar) 2
4x(k§-k$)[ ' otar)] =
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Consider now the propagation of waves in an infinite elastic medium with a finite

clectric conductivity (6 # O ), The motion in this medium obeys the system of equations

p.!?zg +(A+p)grad div u + 2 (ot g)x§°+§ = ou +ygrad 8 ,
[

(72~ Bayb =- Brot(u x&) , - (22)

2 -pdiva =- &
v = )8 - ndivu = =

In the case of the presence of an initial magnetic induction B =(0,0,B3) and in the plane

state of strain U =(u,u,,0) Eqs. (22) take the form

uV2u+ (A + u)de - 79,0 -%‘- &by + X, = olly .
[ 4

R (e ) e = 1028, 22 Bty + X, = iy
e

2 : (23)
(Vy - B3,)b; = Bye, by=b; =0,

1350 -ne =- 4
(v J‘3,)9 ne gk

Introducing into Egs. (23) the representation (11) we arrive at a system of four equations,

three of which are coupled

D12¢ '-me = Eab; O '1—21?',
B, & |
D,by - AB;3 ¥, = 0, (24)
)
08 - "?atv1z¢ =- L ' 0y = V|2" By, D= P l“at. O =7 "1'5‘3;:
X ® £
and an independent equation
2
[EF a-dey . (25)
€2

Eliminating from Eqs. {241 the functions by and 8  we have che following equation for
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the potential ¢ :

(E]’;'qn--l-alvfteoﬁé,nncb =-;—20010-L:-n.a (26)
1
Here
€ = pmx , é;:ﬂxt;

The knowledge of the function @ makes it possible to determine the functions_ bj and
B8 from Egs. {24]2 3
Observe that these functions satisfy equations of the type (20) with a different

right-hand side. Thus, we have the equations

(0200 - -l—a. 7i(eD, + &,008 =- 10,00} - apapa- %a. 7D (27)

m

i A B
(0, - 13,7 (eD, + & DN by= — v, Q - }B,a‘z’é. (28)
1

The equations are considerably simplified in the absence of heat sources and for
adiabatic processes. In this case the temperature is determined from the equation
2
8 =-nxe =-nxV, P (29)

In view of (29) we obtain from (24) a system of coupled equations

=) - b
Dlltp -€3-Bs-i =""'1'-0,

=2
s M (30)
- Dby -8BV @ =0,
where
-2 2 A 32 =2 2 1
& = £ (1+€) €; = 2 O, =0 ==x8.
1 ! g,u.-cT, 1 .1 ‘_:152
Eliminating from (30); 5 the function by we have
=2
({50, - pEa ) d =- L9 . 131)

Cy
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Similarly, eliminating from (30)1,2 the function & we are led to the equation

‘ - B
(070, - BE,8,7) by =- %5& WV . (32)
1

Both the longitudinal wave @ and the wave by are damped and dispersed.



