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SOME STABILITY PROBLEMS OF CYLINDRICAL SHELLS

W. Nowacki,

Prqf., D. ry" En& Se., Warsaw

1. A cylindrical shell of constant curvature,
supported along all its four edges

Let the forces ¢, = o,, q,=oh, ¢, =710
(where h is the plate thickness) which are functions
of the variables x, y independent of z, act on the
shell. We assume that these forces are known and
have been determined by solving the corresponding
membrane problem. Our problem is that of solving
in an accurate manner the problem of stability of
a cylindrical shell of constant curvature.

The deflection of a cylindrical shell is described

in the engineer’s theory of shells developed by V. Z.
Vlasov [1], by the following system of differential
equations:

R 22w

e Ve a0
(1.1)
_1_;_)=ip+Ww:_(qa_zw_+q LT T
R ax? * ox vogy? ™ 9x3y

In these equations w denotes the deflection of the
shell, @ — the stress function, N — the flexural
rigidity of the shell, E — Young's modulus. The
assumed reference frame and the load are shown in
Fig. 1.

Using Vlasov's substitution,

Eh #F
R oxt

we reduce the system of ecquations (1.1) to one
differential equation

w = VF, @ =

NGEF 4+ Eh 0F
R oxt
(1.2)
( *w *w 42 Jaw)
- 9= 5 Ty y? Tiey Ixdy
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Fig. 1.

The solution of this differential equation can be
represented in the form of the integral relation

= tw M*w
e = ffreeTE T
ety ;
d&d

The function F(x, y; & =) is Green’s function for
the non-homogeneous differential equation (1.2) in
the case of concentrated load P = 1 acting at the
point (£, m) in the 2-direction.

Performing the operation

M 9 2 .o
=om T o
on both members of equation (1.3) and remembering
that
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Some Stability Problems of Cylindrical Shells

we reduce equation (1.3) to the form

i PEL i
“'(x, y) = _'ff II‘(X, w gr 7,}) [qf {gﬁ 7?) '_'J('éi-n_) ke
Q (1.4)
»w(€, n) Pw(E, )
Mg T ¢ —Em | 46

Through application of Green's transformation on
a plane, equation (1.4) takes the form

z?@n - aw
wx, y) = [ [(w m Q an Ji=
Jé?iﬁ - W
— (w — (o )] ds — .
asQ f aeén Q¢
= /'f lt!( P P ) dédy

where the ioilowmg notations have been introduced:

Q= wq
= E)g cos’a + _Q,? sin?a 4 (-’;lf,? sin 2a

n = W(qg COS? @ + gy sinta + gg, sin 2a) =

- = - sin 2a
Qs = WG, g =—W [(q,} — qf}————— + ggyc082a] =

- QE?} cos 2a]

We confine our considerations to the problem of
stability of cylindrical shells simply supported or
rigidly clamped along all edges.

In both cases the curvilinear integral in equation
(1.5) is equal to zero, w and w being both equal to
zero at the edges. Thus equation (1.5) reduces to

’Q
Mo 1) = — [ WE ) (g L
1.6
JGQT" Qf"? 5 ( )
i ot aga )
or
()213’

w(x, y) = —ffw(§ m [9g 2o 0.,6,., Rk

5 321?+ (aq§ f)w+£)q,? 9w+
Py rs . T
1 9am * ot on  an
(1.7)
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53 9én : G én ) !
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i | AL qen
+w(a§'=+aqi+ 2Ean )] d€ dn

Since the equilibrium equations for plane stress
have the form

Jq 5 q £y

- — Xfi==),
zﬁf f o + 0Xh
(1.8)
rJq§...'| (){?7]
Bl 8 =
r)f (‘q

equation (1.7) may be considerably simplified if
there are no mass forces (X =0, Y = 0).

Then, we have
2w
w(x, y) = — [[w(& 7 [qg 75" + il = P +
(1.9)
J*w — % r)zqr.,'I 2 Pq¢y
b 20gy —— & (f;gz +: pe aga )] dédn

The problem of stability of a cylindrical shell with
simply supported edges is then reduced to the solu-
tion of a Fredholm integral equation of the second
type (equation (1.9)) with an asymmetric kernel (in
the most general case of load).

2. A cylindrical shell simply supported at the edges

First, let us determine Green's function w (x, y;
&, m) for the case of free support along the edges.
The following differential equation should be
solved:
NF Eh

NVEF = =
\vi +}‘ax4 p, R

where p denotes the load of the shell, reduced here
to the concentrated force P = 1 acting at the point
(€, m). Assuming that

= @ —
F = >F, .. sina,xsin By

n,m

ni
L= ;Bm =

which enables the satisfaction of any boundary condi-
tions for equation (2.1), and representing the con-
centrated load by the trigonometric series

4 & : : .
p=— > sin a,é sin B,m sin a,x sin B, v
n,m

we obtain the solution of equation (2.1) in the form:
F(x,y; ém) = (2.2)

4 & sina, £ sin B, 7
=_Z 2 2\ | A4
ab nN(un+Bna) i)\u”

sin a,x sin f,, ¥

233



Symposium on Concrete Shell Roof Construction 1957

In view of the relation U4F — W, we find
;:r (xv Yi f’ 7]) ==
(2.3)

sin a,x sin B, v

i Sin aﬂ g Sin BIHT}
m

ab Doaym

n,

where

Loy =N (@ + B + A1
My om ﬁm ( ,a + ﬁz )2

We assume further that the solution of the integral
equation (1.9) can be represented in the form of the
trigonometric series:

w(x,y) = E"‘A,.k sin a, xsin B,y (2.4)
ik

This assumption satisfies the boundary conditions
of the problem, and the coefficients A, will be
chosen to satisfy the integral equation (1.9).

Thus, we substitute the expressions (2.3) and (2.4)
in equation (1.9).

After integration and rearrangement, we obtain
the infinite system of equations

, @ (2.5)

1.?.'_

(=]
aba,k Zm o Dpan by K =172 s

By introducing the notations
0 (€. = a¢r (&)
q (€, = qi?)i (%)
9g,y (£:m) = q(ga,)n s(ém)

and substitution

mmk —. f./ r (‘f’ 1?) sin a E sin Bk’? sin a'uf
sin B,m d¢ dq

ffi (&, m) sin a,€ sin Byn sin a,é

mmI.
sin B, d¢ dn
ab J°r
Chimk :ff'—"_ sin a;f sin ﬁk’? sin (].ﬂ.f
sin an 3 dn
(2.6)
ab I
Dnimp = jj sin aif sin ﬁk'f} sin a,,f

sin 8,,m d¢ dn
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ab J%
Coimr = /_/ sin C’-,-f sin Bk‘!}l sin ang
0o dEdm _
sin B, d€ dy
ab
mmk j["’ (gl 1}) cos (16 cos ﬁk'q sin (1“5

sin B, d¢ dy
the quantity G, .. can be expressed by the relation

(0) (0)
Gm’mk = "i"f 0'- mmk+q'ﬁ' ﬁk nimk qf Cﬂfmk +
(o)
== q'l',l d-ufmk o 2q§‘fj Chime 20‘:’3# qfi‘] fnimk (27)

Taking the determinant of the system (2.5) equal
to zero, and assuming two of the three parameters,

() (0 (0) .
4¢ 4. q¢q to be constants, we have the buckling

condition of the cylindrical shell.

It should be noted that the system of equations
(2.5) is identical with that obtained using the Ritz-
Timoshenko energy method, assuming that the
deflection of the plate is expressed by the series (2.4).

The system of equations (2.6) holds also for the
load (g) distributed in a non-uniform manner over
the plate region. If ¢ acts over a region £, con-
stituting part of the shell, the coefficients a,;,,.,
..... fwamy €an be determined by integrating over
the region Q.

We use the system of equations (2.5) to determine
the critical load in an approximate manner in the
case when the shell is acted upon by a load g¢(x)
constituting a function of the variable » only. Con-
sider first an auxiliary problem (Fig. 2). Let the
shell be loaded by a concentrated force which will
be defined as

Fig. 2.
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where a, ;... takes the form

ff sm a, & sin a;& sin By sin B, n d& dy =
(2.8)

mmi

=aesin Byysin B,m i=n

The other integrals (2.6) are equal to zero.
We reduce the system of equations (2.5) to the form

sin ﬁk’?: ZA sin Bm 7}: (2 9)

“ ke m=1

A, =

)
Let us replace the load qff)(q) by a system of forces
Py, .... P, Then we can express the system of
equations (2.5) in the form

. sin
KAy = Z B" s . Z A, sin B m;  (2.10)
§=1 m=1
= 1,2, ..... , ©
We introduce the notations
b f P;
K= =
262 P, P
where P, is any of the forces Py and j =1, ..... r

We multiply the system of equations (2.10) by
sin B;m, and perform summation with respect to k.
Introducing the notation

Sy =kziAksin Binu  pm=pi
we reduce the infinite system of equations (2.10) to

r equations
j=r

Zm oy

—Kk8,;)8; =0
@.11)

where Sm is Kronnecker's delta and

_ & sin By, sin By,

JAY

The buckling condition of the shell is that the deter-
minant of the system of equations (2.11) should be
equal to zero. With greater numbers of concentrated
forces assumed, the critical load is determined
accurately. However, as the number of forces in-
creases, the difficulties of determining the elements
of the system of equations (2.11) increase also. These
difficulties may be avoided in the following manner.
Note that the quantity a,; is expressed by a rapidly

converging series. It is sufficient, therefore, without
impairing the accuracy of the calculation, to take
only a few terms of the a,; serics.

We assume therefore that

a5 k.__z_s sin Bk M sin Bk i

k=1 Ai‘

Copj

Now, let us write the system of equations in the
form

k=tsin Byn, 1o
kS, = D S, sin B, n;
» k2=,1 Ar j_%lii i B m;

(2.12)

and multiply the above system by [ sinf,n, (v =
=172 oy &)
Let us perform summation of both members from
p =1 to r. After some simple transformations we
obtain the following system of equations

k=s

ch (byp— Svk Kx) =0

¥=1

(2.13)

where
izr

Cp = .lef} S;sin B n;
=

=P -
byp =—— zfy sin ﬁv 7p SN Bk Mo
Ap p=1

The determinant set equal to zero constitutes the
buckling condition of the shell

o Biuk [j=0

3. A cylindrical shell with simply supported and
rigidly clamped edges

Consider a shell simply supported along all edges
and subjected to the action of normal and tangential
forces ¢,, q,, ¢,, and bending moments

M (y) :Lsz sin B,y
=1

at the edge x = 0. The deflection of the plate takes
the form

P>w
W (x, y) = —é/w(qg—az“;’f+...+
(3.1)
P4y

+ 2w 9537}

) dtf dn + wyy (x, ¥)
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where wy,(x, ) is the deflection of the shell due to
the moment M(y) at the edge x = 0, assuming that

G =0y =10 =0
This deflection will take the form [2]

(3.2)

wy (X, y) = Lsin a;x sin By

ik
By substituting (2.4) and (3.2) we obtain, after
integration and rearrangement, the following system
of equations:

4 =, 2 M, a,
A = A G A — ——L (3.3)
ik ﬂb&“{ n%’& nam nimk a &i'
Lk=12 .../

Now let us choose the function M(y) to satisfy the
condition of rigid clamping along the edge x =0,
i. e., the condition
aw (0, y)
ay

=0 (3.4)

By use of the series (2.4), this can be written as

ZA“‘ a; sin B,y =0
i,k

Since this sum should be equal to zero for any y,
the condition of rigid clamping will be expressed as

@
ZAfka,-zo

i=1

(3.5)

Multiplying (3.3) by a; and summing up with
respect to i, we obtain

42 g 2=
_b z'_"_ Z An.m Gn.i-mk e
a ik“ik n,m
(3.6)
2 2 ok
Lo My, St
a i=1 Dk

From the last equation, let us determine M, and
sum up with respect to p instead of i. Substituting
M, in the system of equations (3.3) and rearranging,
we obtain the system of equations:

o
>0
npml

4 = p=1 Apk

A = BA DBl Cims— T
ik n,m 2 oy
=18

3.7
Lile=1,2:n 00 (&5}

1) See equation (1.8) of the paper mentioned.
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The determinant of this system taken equal to
zero constitutes the buckling condition of a shell
rigidly clamped at the edge x =0, and simply
supported along the remaining edges.

The system of equations (3.7) may be obtained in
another way. As the starting point of our considera-

tions let us assume the homogeneous integral
equation
P P
w(x, =—[[w iyt
( y) [[ (qf )52 +q7? ()7?2
(3.8)

ly
2 i ) d¢ dy

In this equation W (x, y; & 7) denotes the deflec-
tion of the shell at the point (x, y) due to the action
of the concentrated force P = 1 applied at the point
(€,m) where the function w should be selected in
such a way that the conditions of rigid clamping
along the edge x =0 and free support along the
edges x = a, v, 0, y = b are satisfied.

The function w should be written in the form (3.9)

4 i sin a,£ sin B,n
ab.

i, m Ari. m

+ 2w

M
sin B,y + - z G BID ﬁ"‘nsm B, vsina,x

?l m A nom

Here, Mm is the Fourier coefficient of the clamping

moment of the shell along the edge x = O:
= ®
M(y) = > M, sin B,y
m=1

From the condition of rigid clamping of the shell
along the edge we find

A—!‘f T=1 A‘rm,
m - Zﬂ 0-2-;
T=1 A‘-"m

Substituting this value in the equation (3.9) we
obtain finally

2, sin 3,71

W(x)’f??) o ——sma XX
av pm nm
(3.10)

< a'rSi'_l_arg

- . T=1 £k‘l‘m
x sin Bmy Sman‘f—-a" o ?

_—_T—_.
=1 Lorm
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Substituting the series (2.4) and the function (3.10)
in the integral equation (3.8) we obtain the system
of equations (3.7) after performing the integrations
prescribed.

Returning to the system of equations (3.3) and
(3.6) we observe that if G, =0 for n#i, m=k
(a has a finite value for { = n, m = k), we can eli-
minate the coefficients A, from the above equations
and reduce the systems of equations to the simple
form

B
Q

i =13 (3.11)
i=1 4
Bygp—= “ap it kk
(s 125 svsars o)

It is easy to show, in view of the equation (2.5),
that the form (3.11) is obtained only in the case
where r = const, { = const. Then,

4 3
“ab Giiy ke =

‘??}azi + G'S;]Bkz

For example, let us consider two special cases of
the system of equations (3.7):

a) Let the shell be acted on by a unique load
q¢ = q‘;’: const.

Then

n=i
m==k

(0) ab

ab
— q(g) 9-23‘ =) Gn'rmk — qf Cl.s.r‘z-

G
4

nimk

The system of equations (3.7) will assume the form

I .
(0) Z Ay
a; q¢ =1 D1y
Ags = n &
O T
Ay — % ¢ Z

=1 D1k

(k=12 ..... )

Using equation (3.11) we can replace this system
by the sum, [2],

P
i = 0
= = aziq(f)

=0

b) Let the shell be acted on by tangential forces

G¢q = 4%y = const. In this case we find

0
Gnimk = 2(:[,‘- ﬁk q(f% l’m’mk =

4 a B
= 9. B (0) n Pm
a; ﬁk qf’? (azn_ a£2) (Bam_ﬁ2k)

if n4-1, m - k are odd
Gime=0 when n |- i, m 4 k are cven.
Then, the system of equations (3.7) takes the form

7 (n)
A o 32(1!_6,&?7? }mj A @y Bm
ik - n P
ab 1k n,om & (ﬁzm_ sz)
@, o
1 re=1 t/—\rk (azn Ty azr)
- == o= (3.12)
a* — a? 2 wah
1 t Z r
r=1 /—\‘rk
(k= b2 , @)

This procedure for a shell rigidly clamped along
one edge can be generalised and applied to the case
of rigid clamping along two, three and four edges.

Consider first the case of two opposite edges
(x =0 and x = a, for instance) clamped. Let

M (y) Z;Z M, sin By and M’(y) =£2‘ M sin By
r=1 =1

denote the clamping moments along the edges x = 0
and x =a due to forces exceeding their critical
value and acting in the shell.

The integral equation of the problem will assume
the form

1w ~ PGty

wx, ) =—/[/wlgt—— +... +2w——)d&dn -}

3.13

+ war (%, ¥) + wa' (%, ¥) &
and the boundary conditions are
aw (0, Vi !

WON _ o ®@ oy
Ix ax

The following notations are introduced in equation
(3.13)

2 & M,a,
— Rl P i
War =— sin a, xsin B, y
i=1 D
2 &M a;cosim
st < 3
"'v’M,r-——a- z—————sm a; xsinf, y
i=1 ik

Substifuting in equation (3.13) the expressions (2.4),
(2.3) wy, and w,, we obtain the system of equations

4 =]
Ay = A .
ik abé\m n,zm nm nimk T
L M a, — M, a, cos i
aﬂ;‘k ( ke @i PRRLY T'r)

(3.15)
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Taking the expressions (2.4) into consideration we
rewrite the boundary conditions (3.14) in the form

ZALU';_D ZAka cos i =0 (3.16)

i=]
Substituting in the equations (3.16) the value of
A, we obtain from the system of equations (3.15)
the system of equations

& 2, Aﬂﬂ‘l.

abz—lazk i, m

m’mk 1

= at a®; cos i

2 ; .
+ TE=t M L Ml — 0
el kt_ﬁzlrm kD, = )
(3.17)
4 2. a;co08im 2
ab Z A 2 A Gy F
=] ik 7, m
0 @, a?, cos?i
42 (M za ;COSiTr M,kza, 17):0

i=1 i=1 é‘ﬁc

Eliminating from the equations (3.17) the coefficients
M,, M', we obtain a unique system of equations.
The determinant of this system set equal to zero
constitutes the buckling condition of the shell.

If the forces acting on the shell are symmetrical
in relation to the line x = a/2 (the forces ¢, and
q, for g,, = 0 are the only ones remaining) assume
M, = M, for symmetric and M, =— M’ for
asymmetric buckling.

In the special case where q¢ = q(gjand Iy = q(,;')we

can, by eliminating A, reduce the systems of
equations (3.15) and (3.17) to the simple relation

& a®, (M, — M’ cos im)
=0 (3.18
g (0) (0) 2 ( )
— (9% ﬁ %)
(k=12,....., ®)

For symmetric buckling of the shell with M, =

= M’ the buckling condition will be given by the
expression:
=] a‘!‘_ _ 0
i=1,8,5,... (q(ﬂ) (")Bz
(k = 1,2, . 0000 , @)
For asymmetric buckling with M, = — M’ the
buckling condition is
=] 0-2{ 20
i=2,4,... A (0

- (q avz,; + QS;]) ,82;;)
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Consider the casc of a shell rigidly clamped along
the edges x = 0, y = 0. The integral of the problem
will take the form

w(x,y) =— [[fw]q L +
’ 5 £ 97}3
-} 213’ fq]dfd‘r}-r“"u(x ¥) 4wy, (x,¥)
(3.19)
aw(0,y) 0 w(x,0)
x dy
where
2 58 Mo
= 2 52 o g,y
ik ik
(3.20)
2 &M
Wy =— > B"sm a;x sin B,y
b i,k ik

Introducing (2.4), (2.3) and (3.20) in the integral
equation (3.19), we obtain, after integration, the
system of equations

4 =]
= G 2,
ik ﬂbﬁﬂ: e nm nimk +
(3.21)
- i 2 M,a, + 2 M B
a A b A
k=1 ™

From the boundary conditions, which reduce to
the relations

DAga; =0, DA, B,=0 (322
i=1 F=1
we obtain two systems of equations:
4= g o5 S5 oty
g R A k + +
abt=1A|k uz?;‘ nm nim. 151&5;‘-
2 M,
i Bi Z s S
b iSi Da
(3.23)
4 & B & @ M, By
abtslﬂ-lk m.}s‘; m ﬂ " .l 1 TAVT
2M'
A

ik
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In the general case, the systems of equations
(3.21) and (3.23) cannot be reduced to one system.
This can be done in the special case

q¢ = fig: q = Qq. Ge¢n =

where we have

Grime = —(Q(n)a-”, + q‘"’ 2) for n=i,m=k

The system of equations (3.21) takes the form

a . )
A = aD,, (M, a; +FM‘B"') iJe=12.., 0

where

(0) (0)
Dy = Ay — (¢ a?; + 4q B

Substituting Aik in equations (3.23), we obtain

%
M Z + Bk Z iy

3.-1 f=1 Dl'k

b & P
+ o

ik a k=1 Pik

= 0

iMkBk

k=1

Eliminating M’, we obtain finally

oo
= le,. Ky, =0 k=12,...,o (3.24)
=
where
Kk = B’C ﬁf < aﬂa
i Ek .",mlF Dtr ‘Dt.k
and
@ a!ﬁ @ 2
E = F =
k R’
agl Dy ﬁgl Dg,

The determinant of the system of equations (3.24)
taken equal to zero is the buckling condition of the
shell.

4. A cylindrical shell with ribs

Consider a cylindrical shell simply supported along
the edges, subjected to the action of the force ¢,
4, G, and having a rib parallel to the x-axis at the
distance ¥ from that axis. We assume that the rib
is symmetric in relation to the shell and that its
torsional rigidity is very small.

The deflection of the shell with a rib due to the
action of a force exceeding its critical value can be
described by the non-homogeneous integral equation

, B >w
u(x,))—H—‘fsz(q;:F+...m

4.1
o ()2‘?5"? (4.1)

w(?.faq

In this equation w (x, y) denotes the shell deflection
due to the action of the rib on the shell. This force

) d€ dn + w(x, y)

o
z sin a; X

acts along the line y =; and the corresponding
deflection of the shell will be equal to (see [2])

i ;sin By

ik Dig

2 ;
w,(x,y) = ; sina, xsin B,y (4.2)

Introducing (2.4), (2.3) and (4.2) in equation
(4.1), we transform this equation into the system
of linear equations

4
ab A

2.9!’ Sill ﬁnp
D

(4.3)

Z Aﬂm nimk +

ik n=m

Aik=

The deflection of the rib is expressed by the
differential equation
datw ’Fwp

El—8 1 A -
= T 4 —a P

(4.4)

EI denoting the flexural rigidity of the rib, A —
the cross-section of the rib. The solution of equation
(4.4) can be expressed in the form of the trigono-
metric series

[=2]
Wgi=i— Z

i=1

p;sina; x
El’ a“_Aq (I.!‘

(4.5)

The deflection of the shell and of the rib along
the line y = y being the same, we have

W (X, y) = Wg (%)

or
i A sina;xsin B,y i e aox

ik . — =
= g 7 & Elaf— Aga
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This being valid for any x, we have

P;
at — Ag a?

=0 (4.6)

Ay sin By + —
}.Z] k ﬁk El

Substituting A, from equation (4.3) we obtain

4 2 sin .y &
e A g
ab 1§=:k &” ﬁ,;: nm niml =t
(4.7)
2 e 5in% B P;
i s =0
il Pt 2 A T Elat,—Ager,

Eliminating the coefficient p, from (4.3) and
(4.7), we obtain the system of equations:

4 H
A, = X
1% nm
ab A pom
@ . _
Z NI ¥ oin ﬁr y
r=1 ir

isin’ B,y i 1
Dy Elaf—Aqa}
(4.8)

r=1

15k ='1;2)c0000
The above system of equations can be obtained
in another way. If the Green’s function for a shell
simply supported and stiffened by a rib is denoted
by w(x, y; €&,m) the stability problem reduces to the
solution of the homogeneous integral equation

2w W
W (X, y) :_éfw(f?fjf‘? + fiqg—n;—f-----F-
2w QE.,J
St S 4.9
ontn) ag an 59

where the Green's function takes the form

= 4 = sina, xsin
W,y €)= — —ﬁ’—‘A—E-’“—y %
nm

n,m

x sina, £ (sin B,,n —

e. sin B, 7 sin B,y

r=1 Dy oy

@ sin? B,y !
r_Z’l Ko Ela—Aqa?,

—sinf,, ¥ ) (4.10)
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Substituting the series (2.4) and (4.10) in equation
(4.9) we obtain, after integration, the system of
equations (4.8).

Let us consider two special problems.

a) Let the shell be acted on by a unique load

(0)
g¢ = q¢ = const.
Then,

(0) 2 ab n=i

nimr = 964 _4_ m

ab
(0) 2 G

nimk — qf C.L‘- _4_:

G

I

The system of equations (4.8) takes the form

©, ,— ,&sinf,y
g¢sin By,ad Sbel »

. 4.11)
=1 Dgr "’ (
A=
© S sin® B,y ! )
—_— -2 z
o ifen (B oo

This system may be transformed.
From equation (4.3) we obtain

sin By

)
Ky — o ‘?{Eu'

2
Aip =7

and substituting A, in the relation (4.6) we have,
(21, 13p,

22 sin2B.y 1

- in? B,y " _—
knlﬁ”‘_a,i Q(? Ela';— Aqa?;

(4.12)

(i=12,..., »)

(0)
b) Consider a load gg, = q¢q = const,, g¢ =
In this case we have

8 ap Bm o ;Bk ??)
(a2 —at ) (B'%— B% "

if n i, m+4k are odd and G, =0 if n 41,
m -+ k are even.
We find in a similar manner

6 _ 8 @y Bm @y Bi" qm)
nimr (32“—-(121-) (1921;1__ Bxk) i

if n+i, m+r are odd and G,;,,, = 0; if n 41,
m + r are even. Substituting the above values in
the system of equations (4.8) we obtain

G =

nimk

1) See equation (8.11) in Ref, [3] and equation (1.31)
in Ref, [2].
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Let us substitute Ef = o, A = o in the system
of equations (4.8).

In this case we are concerned with a rigid rib.
If we take the determinant of the system (4.8)
(with El = @ A = o) equal to zero, we obtain
the buckling condition for a two-span cylindrical
shell with the intermediate support at the distance
y =¥ from the x-axis.

In the special case of load distribution symmetrical
in relation to the axis y = /2 and for a symmetrical
form of buckling, we have, on the axis of symmetry,
w =0 and dw/dy = 0. We are concerned, therefore,
with buckling of a shell with the sides equal to a
and b/2, simply supported along the edges x =0,

=a, y =0, and rigidly fixed along the edge b/2.

Let us note, in addition, that in the case of a
shell with a rib we can pass to the case of a shell
rigidly clamped along the liney = 0. Putting EJ = o,
A = o in the system of equations (4.8), we move
the rib to the support y = 0.

16

For small values of y we can take sin B,y — B,V
The system of equations (4.8) will take the form

m

>' r
== ity s A
2o nimr
4 =8 . r=14 ir
3 ab Ay | Crime "FBF.—__‘,,—'_'E'__
ik n,m ] il
r=18

Gl = 120050500

This formula is analogous to equation (3.7) derived
in the case of a shell rigidly clamped at the edge
x ==,

The above considerations for one rib can be genera-
lised to the case of more longitudinal and transversal
ribs.

Summary

The object of this paper was an accurate solution
of the buckling problem of a cylindrical shell simply
supported or rigidly clamped along the edges and
having ribs. This aim has been attained by reducing
the solution of an integral equation to an infinite
system of secular equations. Our results arc also
applicable to rectangular plates. The passage from
a shell to a plate can be effected by putting

Al— Ef (R~ =)

R
equal to zero in the expression A .
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