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SOME STABILITY PROBLEMS OF CYLINDRICAL SHELLS

W. Nowacki,
Prof., D. of Eng. Sc, Warsaw

1. A cylindrical shell of constant curvature,
supported along all its four edges

Let the forces qx = axh, qy = aji, qxy = rji
(where /; is the plate thickness) which are functions
of the variables x, y independent of z, act on the
shell. We assume that these forces are known and
have been determined by solving the corresponding
membrane problem. Our problem is that of solving
in an accurate manner the problem of stability of
a cylindrical shell of constant curvature.

The deflection of a cylindrical shell is described
in the engineer's theory of shells developed by V. Z.
Vlasov [1], by the following system of differential
equations:

R
Eli

= 0

(1.1)

I

R 9x*
\-q.

3y* ' dxdy'

In these equations w denotes the deflection of the
shell, <p — the stress function, N — the flexural
rigidity of the shell, E — Young's modulus. The
assumed reference frame and the load are shown in
Fig. 1.

Using Vlasov's substitution,

Eli
w = V 4 F, <P =

we reduce the system of equations (1.1) to one
differential equation

Eh

3x*
(1.2)

Fig. 1.

The solution of this differential equation can be
represented in the form of the integral relation

(1.3)

The function F(x, y; £, rj) is Green's function for
the non-homogeneous differential equation (1.2) in
the case of concentrated load P = 1 acting at the
point (£, rj) in the z-direction.

Performing the operation

3* 3* 3*

Stj* 9^23rj2 t)rf

on both members of equation (1.3) and remembering
that

V4 F (x, y) •= w (x, y)

v4 F (x, y; i, i]) = w (x, y; £, rj)
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Some Stability Problems of Cylindrical Shells

we reduce equation (1.3) to the form Since the equilibrium equations for plane stress
have the form

w(x, y) = ~ffw(x, y; £, rj) [
** (1.4) = 0,

(1.8)

3% 3rjThrough application of Green's transformation on
a plane, equation (1.4) takes the form equation (1.7) may be considerably simplified if

~~ , ; there arc no mass forces (X — 0, Y = 0).
— - Q ) — Then, we have

W(x, y) = - —

3s

+

(1.5) (1.9)

where the following notations have been introduced:

Qn ~ W1n ~ w(it; c o s 2 a + ly s'n 2«
_ _ _

= Q£ cos2a + Qv sin2a + Q sin 2a

sin 2a
)

c o s

The problem of stability of a cylindrical shell with
simply supported edges is then reduced to the solu-

sin 2a) = tion of a Fredholm integral equation of the second
type (equation (1.9)) with an asymmetric kernel (in
the most general case of load).

. A cylindrical shell simply supported at the edges

First, let us determine Green's function w (x, y;
, TJ) for the case of free support along the edges.
The following differential equation should be

, 3iF . Eh
+ A — - P. A = — (2.1)

We confine our considerations to the problem of cO|ved-
stability of cylindrical shells simply supported or
rigidly clamped along all edges.

In both cases the curvilinear integral in equation
(1.5) is equal to zero, w and w being both equal to
zero at the edges. Thus equation (1.5) reduces to where p denotes the load of the shell, reduced here

to the concentrated force P = 1 acting at the point
(£> •>?)• Assuming thatw(x,y) - - / /

Q

+ 2
(1.6)

n, m

mr

or

rrrn

b

= ~M w
which enables the satisfaction of any boundary condi-
tions for equation (2.1), and representing the con-
centrated load by the trigonometric series

+ 2(-
dw 3w

3rj 3TJ +
(1.7)

= ~r~ Z Sin
r n,

3w
+ —^r- 3-q 3rj •) +

we obtain the solution of equation (2.1) in the form:

F(x,y,Z,r))= (2.2)

4 ^ sin an $ sin fi

ab
n,

N (a2 4- + Aa4 sin a,,x sin 8 v
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In view of the relation V4.F — w, we find

w (*> y;

oft <?!S

4 », sin an £ sin /? rj
= -T- 2 7 - - ~ s i n *nx sin 0m )

«, TO ^ m m

where

(2.3)

0 0

ab
Inimk =ffs

s i n s i n s i n

c o s cos

Sin

sin

the quantity Gnimk can be expressed by the relation

nimk ~ a

(o)

We assume further that the solution of the integral
equation (1.9) can be represented in the form of the
trigonometric series:

)
dmmk —

nimk

1 ^

k nimk ^£ nimk

— 2aiPk
(o)

1 (2"7)

(x, y) = sin a,, x sin (2.4)

Taking the determinant of the system (2.5) equal
to zero, and assuming two of the three parameters,

(0) (0) (0)

qt-, <7,j, qgy, to be constants, we have the buckling
condition of the cylindrical shell.

It should be noted that the system of equations
(2.5) is identical with that obtained using the Ritz-
Timoshenko energy method, assuming that the

Thus,"we "substitute the "expressions"(2.3) and (2.4) d e f l e c t i o n of t h e P l a t e i s expressed by the series (2.4).
in ea at"on (\ 9̂  T n e s y s t e m o f equations (2.6) holds also for the

After integration and rearrangement, we obtain l o a d <*> distributed in a non-uniform manner over
the plate region. If q acts over a region ii, con-
stituting part of the shell, the coefficients animk,

This assumption satisfies the boundary conditions
of the problem, and the coefficients Aik will be
chosen to satisfy the integral equation (1.9).

the infinite system of equations

4 a Immk c

2 An m Gnimk, '» k = ] >2> • • • • °° (2-5) the region Q.
Immk c a n b e determined by integrating over

Q
ik n, m

By introducing the notations

it \ ( 0 ) it

Qv (^ 17) = qv t U

We use the system of equations (2.5) to determine
the critical load in an approximate manner in the
case when the shell is acted upon by a load qg(rj)
constituting a function of the variable r, only. Con-
sider first an auxiliary problem (Fig. 2). Let the
shell be loaded by a concentrated force which will
be defined as

P = lim qf- 2e

and substitution

ab
a

mmk
0 0

ab

sin a{$ sin fa sin aJ

Cnimk
«6

00

ab

sin a.j£ sin j8kij sin an£
sin pmy

nimk = II S in aii S i n PkV s i n aJ
0 0 drr sin

dr,

bnimk = If* (£- V) s i n ai£ sin Pkrj sin aJ
00

sin pmr] dt; drj

(2.6)

dv Fig. 2.
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Sonic Stability Problems of Cylindrical Shells

where animk takes the form

a -q+e
animh=fftinc

0 -q-E
i,.£ sin a^ sin /3 knq Sin /Jm11 d£ d-q =

(2.8)

= ae sin flk-q sin pm i = n

The other integrals (2.6) are equal to zero.
We reduce the system of equations (2.5) to the form

IP a2

s i n

converging series. It is sufficient, therefore, without
impairing the accuracy of the calculation, to take
only a few terms of the avj series.
W e assume therefore that

k-t sin

, let us write the system of equations in the

C)
Let us replace the load q^ (rf) by a system of forces
P1( . . . . Pr. Then we can express the system of
equations (2.5) in the form

(2.10)
m = 1

= 1,2

We introduce the notations

6
/c = 2a2 -. u =

where Po is any of the forces Pi and / = 1, r
We multiply the system of equations (2.10) by
sin f5kr)v and perform summation with respect to k.
Introducing the notation

(2.12)

P = 1,2, ,r

and multiply the above system by fTs'm j3y-rjp (v =
= 1,2,...., s).
Let us perform summation of both members from
p = 1 to r. After some simple transformations we
obtain the following system of equations

(2.13)

v = 1,2,

where

bvk = s i n

we reduce the infinite system of equations (2.10) to
r equations

2,
7 = 1 (2.11)

P = 1,2,

where S^. is Kronnecker's delta and

sin sin
- .2

The buckling condition of the shell is that the deter-
minant of the system of equations (2.11) should be
equal to zero. With greater numbers of concentrated
forces assumed, the critical load is determined
accurately. However, as the number of forces in-
creases, the difficulties of determining the elements
of the system of equations (2.11) increase also. These
difficulties may be avoided in the following manner.
Note that the quantity api is expressed by a rapidly

The determinant set equal to zero constitutes the
buckling condition of the shell

I I & » * - 8 » I K | | - 0

3. A cylindrical shell with simply supported and
rigidly clamped edges

Consider a shell simply supported along all edges
and subjected to the action of normal and tangential
forces qx, qy, qxy and bending moments

at the edge x — 0. The deflection of the plate takes
the form

3%w
(X, y) = — / / w (qg -jp- -I- . . . +

(3.1)

+ 2w d£ dr, + wM (x, y)
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where iv.r(x, y) is the deflection of the shell due to The determinant of this system taken equal to
the moment M(y) at the edge x — 0, assuming that zero constitutes the buckling condition of a shell

_ 0 rigidly clamped at the edge x = 0, and simply
^ V si supported along the remaining edges.

This deflection will take the form [2]1 j he system of equations (3.7) may be obtained in
m M another way. As the starting point of our considera-

w,v (x, y) = - 2L—~—'~ s m aix s m ftk y (3-2) tions let us assume the homogeneous integral

By substituting (2.4) and (3.2) we obtain, after
integration and rearrangement, the following system
of equations:

4 A 2 M, a-
A \ A n 4- — l (^ ^ i

J-\ , , / J~\ in\* I) iff} If l" \ **- ' /

&v A (fc m, n ® ^ ik

i,lc = 1,2, . . ., a,

Now let us choose the function M(y) to satisfy the
condition of rigid clamping along the edge x = 0,
i. e., the condition

equation

W (x, y) = ~ ffw (qg
Q

+ Ir, - y r -r > • • +

(3.8)

dw (0,
(3-4)

In this equation w (x, y; £, -q) denotes the deflec-
tion of the shell at the point (x, y) due to the action
of the concentrated force P = 1 applied at the point
(£> •*?) where the function w should be selected in
such a way that the conditions of rigid clamping
along the edge x = 0 and free support along the
edges x = a, y, 0, y = b are satisfied.

The function if should be written in the form (3.9)
By use of the series (2.4), this can be written as

00

Since this sum should be equal to zero for any y, X sin fim y + -

sin sin
anx X

n, m "

2, Mm a» sin
-sin j8m y$inanx

the condition of rigid clamping will be expressed as n,m

a, = 0 (3.5)

Multiplying (3.3) by at and summing up with
respect to i, we obtain

H-
,̂ m

(3-6)

Here, Mm is the Fourier coefficient of the clamping
moment of the shell along the edge x = 0:

M()') = y M sin B y

From the condition of rigid clamping of the shell
along the edge we find

2 °s <xTsinaT£

y _2_L = o
^ w A

From the last equation, let us determine Mk and
sum up with respect to p instead of /'. Substituting
Mk in the system of equations (3.3) and rearranging, o b t a j n f i n a , ,
we obtain the system of equations:

Substituting this value in the equation (3.9) we

n, m

1, /c = 1 ,2 , . . ., co
(3.7)

See equation (1.8) of the paper mentioned.

A,
(3.10)

a T s in a T | -

T = 1
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Some Stability Problems of Cylindrical Shells

Substituting the series (2.4) and the function (3.10) if n ± i, m ± k are odd
in the integral equation (3.8) we obtain the system Gnimk = 0 when n -)-_ i, m ± k arc even.
of equations (3.7) after performing the integrations Then, the system of equations (3.7) takes the form
prescribed.

Returning to the system of equations (3.3) and
(3.6) we observe that if Gntmk = 0 for n + l, m*k
(a has a finite value for i = n, m = k), we can eli-
minate the coefficients Aik from the above equations
and reduce the systems of equations to the simple
form

'ik
A»*

»• = ! Arfc (a' „ a

» _ g

4
Aik ~aY ii'kk

(3.11)

( « , * » 1,2, , o o )

( A - 1,2 , oo) This procedure for a shell rigidly clamped along
one edge can be generalised and applied to the case

It is easy to show, in view of the equation (2.5), of rigid clamping along two, three and four edges,
that the form (3.11) is obtained only in the case Consider first the case of two opposite edges
where r = const, t = const. Then, (x = 0 and x = a, for instance) clamped. Let

~£f °u, kk = qfa-2i + ?5J<Pk M (y) = 2 M f c s in^fc3' and M\y) = ^M'k s[nP*y

For example, let us consider two special cases of denote the clamping moments along the edges x = 0
the system of equations (3.7): and x = a due to forces exceeding their critical
a) Let the shell be acted on by a unique load value and acting in the shell.

The integral equation of the problem will assume

Then

G
ab ab n= i

4 rn = k

t h e f o r m

wl +••• +

The system of equations (3.7) will assume the form

(o)
<l &

+ wM(x,y) +wM'(x,y)

and the boundary conditions are

(3.13)

(0, y) dw (a, y)
v ' y> = 0, \J-lL = o (3.14)

( i ' , / C = 1 ,2 , , oo)

Using equation (3.11) we can replace this system
by the sum, [2],

2- - ^

The following notations are introduced in equation
(3.13)

w
2 >̂ Mtaf

M = - Z ^ — ^ s i n a ^ x s i n

^M'j.a,

z —iA
s i n a i x s i n

ik

b) Let the shell be acted on by tangential forces

Q£T) = Qtjl) = const. In this case we find

Substituting in equation (3.13) the expressions (2.4),
(2.3) wM and wM, we obtain the system of equations

4
: m H

z- p k g fnimk —

c n,m

a{ — M'k at cos iV)

(3.15)
a n— ai I \P m—P * ('',/<= 1,2, , »)
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Taking the expressions (2.4) into consideration we Consider the case of a shell rigidly clamped along
rewrite the boundary conditions (3.14) in the form the edges x = 0, y = 0. The integral of the problem

will take the form

2 2
Substituting in the equations (3.16) the value of

Aik we obtain from the system of equations (3.15)
the system of equations

w (x, y) = — JJ xv
Q

3*w

— T

2 w .] d£ dv + wM (x, y) + wM, (x, y)

4
Anm Gni mk

(3.19)

n,m 3w (0, y)

dx dy

(3.17)
where

4 ", a,- cos iv
lkm

sin

nt m

COS2/T7

A,-ik Uk

) = 0
- 1 1 ̂  sin

sin

s i n

(3.20)

Eliminating from the equations (3.17) the coefficients Introducing (2.4), (2.3) and (3.20) in the integral
Mk, M'k we obtain a unique system of equations. equation (3.19), we obtain, after integration, the
The determinant of this system set equal to zero system of equations
constitutes the buckling condition of the shell.

If the forces acting on the shell are symmetrical
in relation to the line x = a/2 (the forces qx and
qy for qxy — 0 are the only ones remaining) assume

CO

2 j 4«m Gni

(3.21)
Mk = M\ for symmetric and Mk = — M'k for
asymmetric buckling.

In the special case where qg — q^and q~ = ^0)we
can, by eliminating Aik, reduce the systems of
equations (3.15) and (3.17) to the simple relation

2-
i - l

a 2 i (Mk — M'k c o s '•
= 0 ,3 1 8 )

a Aik b Aik

i k = 1 oo

From the boundary conditions, which reduce to
the relations

(3.22)

( * - 1,2, , co)

For symmetric buckling of the shell with Mk = we obtain two systems of equations:

4 ", af A 2

I — X ^ ft TV, 7ft

= M'k the buckling condition will be given by the
expression:

i - l '

1=1,3,5,...

(k= 1,2, ,

= 0

For asymmetric buckling with Mfc = — M\ the
buckling condition is

co 2

( * - 1,2,

(3.23)

4 „ 2 A« m Gm,nk ~ ai
a

i = o

I- Mk h
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Some Stability Problems of Cylindrical Shells

In the general case, the systems of equations The deflection of the shell with a rib due to the
(3.21) and (3.23) cannot be reduced to one system. action of a force exceeding its critical value can be
This can be done in the special case described by the non-homogeneous integral equation

(») (o)

where we have

Onlmk = ^ for n =-. i, m = k

w (x, y) =

+ 2 w-

(4.1)

The system of equations (3.21) takes the form

2 , a
t,k-.l,2...,co

In this equation wp (x, y) denotes the shell deflection
due to the action of the rib on the shell. This force

where

(o)

Substituting Aik in equations (3.23), we obtain

CO ~2 h co \A> n

acts along the line y = y and the corresponding
deflection of the shell will be equal to (see [2])

. S in ai x
b

( 4 .2 )

ik

r = 1

where

and

Ek =

= 0

Eliminating M'{ we obtain finally

Mk •— "V MT K%T = 0 k = 1,2,..., oo (3.24)

The determinant of the system of equations (3.24)
taken equal to zero is the buckling condition of the
shell.

Introducing (2.4), (2.3) and (4.2) in equation
(4.1), we transform this equation into the system
of linear equations

r
n m unimk

i,k= 1,2,...,

2p' sinP*y

(4.3)

The deflection of the rib is expressed by the
differential equation

El
yR

dx* +
VR = -P (4.4)

El denoting the flexural rigidity of the rib, A —
the cross-section of the rib. The solution of equation
(4.4) can be expressed in the form of the trigono-
metric series

wit

CO

y
pt sin at- x

El (4.5)

4. A cylindrical shell with ribs

Consider a cylindrical shell simply supported along
the edges, subjected to the action of the force qx,
qv, qxy and having a rib parallel to the x-axis at the
distance y from that axis. We assume that the rib
is symmetric in relation to the shell and that its
torsional rigidity is very small.

The deflection of the shell and of the rib along
the line y = y being the same, we have

w (x, y) = \vR (x)

or

•^ _ A p{ sin c
2 Aik sina.xsin $ky = £ ^y—;
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This being valid for any x, we have

f Aik sin pky + h
El af

Substituting Aik from equation (4.3) we obtain

H A l f A G +

Substituting the series (2.4) and (4.10) in equation
(4.9) we obtain, after integration, the system of

= 0 (4.6) equations (4.8).
Let us consider two special problems.
a) Let the shell be acted on by a unique load

± V il
nh Z

2 S-, sin2 j3ky

(4.7)

pi

=

Eliminating the coefficient pi from (4.3) and
(4.7), we obtain the system of equations:

"*m

G

• s i n Pr y

i,k=\,2,...,

_92w

a 3s

2 w <7* q(i} .

where the Green's function takes the form

rv (Xj y; f, ) = 1 J sina-xsin^
aft H

( 4 - 9 )

A n

X sin anf; (sin j3m-

i sin B.

_ (°)= cons t

Then,

(0 ) 2 06 (o ) 2 ab n = I

4 4 m = /c

The system of equations (4.8) takes the form

(4.11)

A* =

This system may be transformed.
From equation (4.3) we obtain

The above system of equations can be obtained 2
in another way. If the Green's function for a shell ~b
simply supported and stiffened by a rib is denoted
by w(x, y; ^, rj) the stability problem reduces to the
solution of the homogeneous integral equation

" Att - 8? qf

and substituting Aik in the relation (4.6) we have,

v lsin2

'
o?

(i = \ 2

b) Consider a load

In this case we have

a
G,.

= ?*_ = const., ot =

Va n a i> \P m P k>

if n ± /, m ± k are odd and Gnimk •= 0 if n ± f';

We find in a similar manner

Q _

sin

A

r 5

a i n - a \ ) ( j 8 V - j B V * ™

if n ± l, m ± r are odd and Gnlmr = 0; if n ± i,
) (4-10) m _[. r are even. Substituting the above values in

the system of equations (4.8) we obtain
a n

I, k = 1 , 2 , . . . ,
i) See equation (8.11) in Ref. [3] and equation (1.31)

in Ref. [2],
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;.-i £'/ \ « ^fl

— (4.13)

I , A = 1 , 2 , . . . , OD

Let us substitute £ / = m, ,4 = co in the system
of equations (4.8).

In this case we are concerned with a rigid rib.
If we take the determinant of the system (4.8)
(with El = co A = co) equal to zero, we obtain
the buckling condition for a two-span cylindrical
shell with the intermediate support at the distance
y = y from the x-axis.

In the special case of load distribution symmetrical
in relation to the axis y = b/2 and for a symmetrical
form of buckling, we have, on the axis of symmetry,
w = 0 and dw/?y = 0. We are concerned, therefore,
with buckling of a shell with the sides equal to a
and b/2, simply supported along the edges x = 0,
x = a, y = 0, and rigidly fixed along the edge b/2.

Let us note, in addition, that in the case of a
shell with a rib we can pass to the case of a shell
rigidly clamped along the liney = 0. Putting El = co,
A = oo in the system of equations (4.8), we move
the rib to the support y = 0.

For small values of y we can take sin/3,,v->- fiky.
The system of equations (4.8) will take the form

A , unimr

i,k— 1,2,...,

This formula is analogous to equation (3.7) derived
in the case of a shell rigidly clamped at the edge
x = 0.

The above considerations for one rib can be genera-
lised to the case of more longitudinal and transversal
ribs.

Summary

The object of this paper was an accurate solution
of the buckling problem of a cylindrical shell simply
supported or rigidly clamped along the edges and
having ribs. This aim has been attained by reducing
the solution of an integral equation to an infinite
system of secular equations. Our results are also
applicable to rectangular plates. The passage from
a shell to a plate can be effected by putting

equal to zero in the expression Ai&.
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