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Summary. Static and dynamic equations in displacements and rotations are transformed into
equations comprising only displacements or rotations. The differential equations of the title problem
derived in such a way are particularly convenient when we try to obtain singular solutions. The
effect of the temperature field on deformation of the body in question is considered.

1. Static problem. The point of departure of our considerations are equilibrium
equations in displacements and rotations [1, 2]

(1.1) (+o) V> u+ (A4 pu—e) grad divu+2a rot +X=0,
(1.2) [(y+&) V> —4a] @ +(f+7y—e) grad div ¢p+ 2o rot u+Y=0
where u is the displacement vector, ¢, the rotational vector, X, the vector of body
forces and Y, the vector of body couples.
Quantities g, 4, o, f, y,& are material constants of the micropolar medium.

Let us perform divergence operation on Eqgs. (1.1) and (1.2). Thus we obtain
two relations:

A .
(1.3) V2divu T+ 2 div X,
(1.4) Hdivep=— B2y divy,
where
1 A+2y
=V:—— 2=
H=V s =5

It should be noted that when the body force (X=0) is missing the dilatation e=div v
is the harmonic function, and function f=div ¢ satisfies the Helmholtz equation,
for Y=0.

Let us perform then a rotation operation on Egs. (1.1) and (1.2). Hence we obtain
two other relations, viz.
(1.5) (u+e) V2 rot u+2a rot rot @ = —rot X,
(1.6) ((y +&) V2 —4«) rot ¢ +2a rot rot u= —rot Y.

225—[363]
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Proceeding we carry out the operation V> 2, where 2=(y+e¢) V*—4a. Making
use of the relations (1.3) and (1.6), we arrive after a circuit of transformations at
the equation in which only the displacements take place

(1.7) DV2V?u= (ZaV’* rot Y—(y+¢) V2 G X—

2oyl

4o? . (A+pu—o) (y+e)
~iton grad div X+ T+ 2u

G grad div x) .

We have introduced further notations, namely

D=V2_i G__,vz__.l_ :2=_(£1i%.+_8)

y+e
?? e K=

doupt : 4o

Again, perform the operation V> H on Eq. (1.2), by help of the relations (1.4)
and (1.5). In result of omitting function u, we derive the differential equation for
the rotation <¢:

1
(18) V2 HD¢=W[2aHrot X— (u+o) HV? Y~
402 (B+y—e) (u+o)
_ﬁ+2y grad divY+ ,8+)2? V2 graddivY|-

Consider now two limit cases. For Hooke’s body Eq. (1.7) takes the form

Atpu ¢
grad div X.

LR v P A, )
(1.9) VsVt

If body forces are not coming into play, then the displacements are harmonic
functions.

The second limit case concerns a body in which only rotations may be expected.
The deformations occurring in this body are described by Eq. (1.2), into which
we have to insert a=0. In virtue of (1.8) we get

f+y—e
B+2y

If the body couples are missing, then function ¢ becomes the biharmonic function.
Egs. (1.7) and (1.8) may be suitable to determine singular solutions of the system
of Egs. (1.1) and (1.2), that is the solutions dependent on the distance between two
points x and x'.
We now consider the elementary case when X=0. Then Eq. (1.7) reduces in the
case of an infinite region which is considered in this note to the equation

(1.10) (P+e) V2 V2iep=—-V2Y+ graddivY.

1
2 = —_—
(1.11) V2 Du=— 5ot Y.
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This equation is expressed in terms of the components of the displacement x; and
the body couple ¥;. We obtain

1
(1.12) VZDH;='2.HTGU,‘ g5

Solution of the above-written equation is possible via the Fourier integral transform.
It will take the form

(1.13) = zﬂfziz;)afz ax, f f f (

=& +&3+¢5.

For a concentrated body couple, applied to the origin of the coordinate system
and directed towards the x,-axis, we obtain the following

= [x5d5

d&y dé, dis,
+7)

- 1
(1.14) Yy =0 (X) Oy, Yk=_aﬂ—)3fz—5kn-
Pufting (1.14) into (1.13), we have, on carrying out the integration:
1 a [eR'—1
1) = e (), ReGRaxe,

in agreement with the result obtained in [3] by another method.
Analogically to the case Y=0, X0 is to be derived by the use of (1.8):

(1.16) V2 Dep = 2:“,2 rot X,

which, for X, =4 (x) d,, yields

1.17) =~ ey |
8mu dx; R

which is compatible with the theorem on the reciprocity of works.
In turn, consider the case when body forces and body couples are missing, X =0,
Y=0. In this case we can obtain the homogeneous equations

(1.18) V2V2Du=0, V?DHep=0.

Solution of these equations may, according to Boggio’s theorems, be expressed
in the form of the sum of partial solutions

(1.19) u=u'+u’, @=¢p'+¢@" "+’
where now
V2V32u'=0, Du’=0,

(1.20)
Viep'=0, D¢''=0, He" =0,
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These equations find practical application for solving the boundary problems,
For instance, they may be used in a case considering the elastic half-space x;=>0,
and when Fourier’s exponential integral transform is applied

I o) ~ )
S G x5 =5 [ [T o xg) €7 Crnren) d, de,
(1.21) =2
(A
S, €as 4\'3)=_2? fff(xn X5 X3) e 17t = g, i,

Eq. (1.20) may be read as follows
@3- W—-=0, (@3—n*)uw'=0,
@3-0)§'=0 @-n)¢"=0, (@i-7%)¢""'=0,
2 2 2 2 2 ]' 2 2 l
=+, n*=¢ ‘I‘Tz-*, 2= +p_z'

Eqgs. (1.19) being set in the terms of Fourier’s transform will take the form

(1.22)

U=Ae %4 Bx; Le™ 4 C ™™,
@=De~ >+ Ee " +Fe ™™,

We have obtained here eighteen integration constants. Twelve additional relations
can be obtained if we substitute functions u and ¢, on which we applied the Fourier
transform before, into Egs. (1.1), (1.2). By equating the relevant coefficients at the
same exponential function we get the sought-for relations occurring among the
coefficients A, ..., F.

(1.23)

2. Dynamic problem. We adopt here similar reasoning as before and employ
the same procedure with reference to the dynamic problem. Equations of motion
in displacements and rotations have the form:

2.1) [0, u+(A+ pt—a) grad div u+2« rot  + X =0,
(2.2) Os @+ (f+7—¢) grad divep+2atotu+Y=0.
Here we introduce the following notation:

Oe=(Qu+a) V2 —pd;, Oa=(y+e)V>—4a—18}

in which p denotes density, while I is rotational inertia. Perform now the divergence
operation on Egs. (2.1) and (2.2). Hence we obtain

(2.3) [, divu=—=div X,
2.4 (05 div = —div Y.
We have set up here the wave operators:

Oi=A4+2p) V2=pdl, Os=(f+2y) V2—4a—1Ic}.



[367] Three-dimensional Problem of Micropolar Theory of Elasticity 229

Further, perform the rotation operation on Eqs. (2.1) and (2.2). Thereupon we
obtain two other relations, viz.

(2.5) [, rot u+2a« rot rot ¢ = —rot X,
(2.6) 04 rot p+2a rot rot u=—rot Y.

Carrying out the operation [, [J4 on (2.1), and bearing in mind the relations (2.3)
and (2.6), we arrive at the equation which contains the displacement only

(2.7) Dl (Dz D4+45¢2 VZ) I.l=20ci:i| rot Y — Dl D4 x—4m2 grad div x+
+(A+p—e) 4 grad div X,

Eq. (2.2) is acted on analogically with the operator []; [J4, and the relations
(2.4) and (2.5) are taken into account; this operation leads to the equation in which
only the rotations can occur

(2.8) s (O, Os+4a? V?) =20 [, rot X— [, 3 Y —4a? grad div Y +
+(f+y—e) O, grad div Y.

Consider now some special cases. For Hooke’s body (2=0) we have
(2.9) O, O,u=—0, X+(+p) grad divX, [Io=puV?—pd2.

When body forces are absent we can obtain the well-known wave equation (cf. [5])

1 1 A42pu\ 12
(2.10) (?2——;83)(V2——283)u=0, cl=( J[) ,  cy=pupH2,
€ C3 P

The other special case in question is the wave motion in a medium in which only
rotations are possible. Assuming «=0 in Eq. (2.8), we derive the equations which
become

@.11) s Cla @ = — 15 Y+(B+y—¢) grad div Y.
Here
Oa=(B+2) V2 —102, [Cla=(y+e) V2~ 102
If the body couples are missing, Eq. (2.11) becomes the biwave equation

1 1 . ﬂ+2}a 1/2 y+e 1/2
(212) (Vz_‘—c‘g‘af)(vz“‘;z‘d?)tp=0, 03=( I ) s C4=( 7 s

4

of the same character of propagation of elastic waves as Eq. (2.10).

Egs. (2.7) and (2.8) may readily be adapted to determine the required singular
solutions. Consider now an elementary case, i.e. the solution of Eq. (2.7), assuming
that X=0. It remains merely to consider the equation:

(2.13) (Dz D4+4ﬂ.2 Vz)l;l=205 Tot Y.
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In the case of occurrence of forced harmonic vibrations, when Y=Y (x) ¢'“*
and u=ut (x) ', Eq. (2.13) becomes the elliptic differential equation
(2.149) (V24+k3) (V2 +k2) u* =-—2L— rot Y*,

' : = (u+a) (y+e)

Here ki, k3 are the roots of the equation:

(2.15) k*—k* (o3 +0i+p (s—2))+03 (6;—2p)=0,
where
w w 2o 2o
o‘2=c—2-, 0'4=;:, §= DL p=y+g.
‘The roots
ki

1
K2 }=?(U§+ci+p(s—2)irl/(ai+a§+p(sF2))2+4w°§)
2

are the real values, because the discriminant is positive.
The integral Fourier transform is applied to Eq. (2.14); we obtain thus the
following amplitude

e 20p T i, Bemtus
(2.16) u, = —We”kfj J C—1) -1 df, dg, dls.
C=03+0+E.

For the concentrated moment, placed at the origin of the coordinate system
and directed towards the x,-axis, we obtain

@1 TN Ll
(2.17) “T ety (B —k2) oy R ;

in conformity to the well-known result (cf. [5]).
Consider, finally, the case of homogeneous equations (2.7) and (2.8). We have

(2.18) Oy (02 Oa+4a® V?) u=0,
(2.19) O (02 Os+40 V?) @ =0.

Following the Boggie theorem, the solution of these wave equations will be arranged
as a pair, viz.

(2.20) u=u'+u"’, Q=¢'+o’,

where the components of these solutions satisfy the wave equations
(2.21) O,u'=0, (O Os+4e> V) u''=0,

as well as

2.22) Os'=0, (02 Os+4a® V) "' =0.



{369] Three-dimensional Problem of Micropolar Theory of Elasticity 231

In the case of occurrence of harmonic vibrations, Egs. (2.18), (2.19) take the form

(2.23) (V2+k3) (V2 +k2) (Vi+oH)u*=0,
(2.24) (V2+k}) (V2 +K3) (V2 +k3) @* =0,
in which
o k _(w’-—m% )”2 , 4da (ﬁ+2}')”2
= Cl, 3T c§ E] Wy = T2 C3 i i
These give
(2.25) wr=u*fu*u'¥, e¥=@'* @'t ',
where
(226) (V2+k§) l!'*=0, (vz_,_ki) uu*zo’ (V2+0‘2) I.l'”*=0,
and

@21) (V4K @*=0, (V4K t=0, (V2+kD e+ =0,

Solution of such a type is convenient for us if we want to investigate the problem
of the elastic half-space x32>0. In agreement with (2.25) we assume

(228) ﬁ* =Ae " 4 Be "+ Ce” rxg’
(229) (5*=De"-'3x;+Ee-—zx;+Ff— txl,
where

n=(2=o)?,  x=*—=kD'?, =(*—k)'?,
B=(L2~k)M?, (2=&3+E3.
In these solutions, written up in the Fourier fransforms, eighteen constants occur.

We eliminate them by help of Eqs. (2.1) and (2.2). Finally, we obtain six independent
constants which correspond to as many boundary conditions.

3. Problem of thermoelasticity. Let us consider the effect of temperature upon
deformation process of the body in question. Equations governing the thermo-
elasticity problems for the stationary flow of heat have the following form [2]

(3.1 (u+o) V2 u+(A+ p—e) grad div u+2e rot @ =n grad 6,
(3.2) [(y+&) V2 —du] ¢ +(f+y—e) grad div ¢ + 2arot u=0.

Here 0=T-T, denotes temperature increment; 7, absolute temperature at the
point x and instant ¢; T,, temperature of the natural state of the body. The thermal
term 5 grad @ appears only in the first equation,

We may use here of the equations derived at the point I, for u and ¢, taking
advantage of the analogy of forces and body couples. This gives

(3.3) X=—npgradd, Y=0.
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Introducing the latter into Eq. (1.7), we get

(3.4) Viu grad @, <=0.

H
B A+2pu

This equation, of course, holds for the infinite elastic space, for only in this case
are we allowed to shorten bilaterally the differential operators.
If we introduce the elastic potential of displacement u=grad @, then Eq. (3.4)
becomes the Poisson equation for the functions:
(3.9 VZd=ml, =0,
U
e

N 2

It is interesting to take note of the fact that the temperature field does not induce
any rotations in the infinite elastic region.

In the case of the dynamic problem we have to make use of the system of
equations given in [2]:
(3.6) O, u+ (A+ p—w) grad div u+2e« rot ee=# grad 0,
3.7 e @+ (8+y—e) grad div ¢ +2u rot u=0,
and the equation of thermal conductivity

1
(3.8) (V’—?B,) 0— y divu=0.

Here 1c=Aq/c,, where A, is the coefficient of thermal conductivity, while ¢, — specific
heat at constant deformation. After introduction of the following equation

(3.9) X=—ngradf, Y=0,
into Egs. (2.7) and (2.8), we may write
(3.10) [0, u=ygrad 6,

1
(3.11) HO=ypdiva, ¢=0, ,;{f’-_-v2:_x_ar_

Elimination of temperature from Egs. (3.10) and (3.11) gives rise to the equation
(3.12) (O, # —ny &, V*) u=n grad 0.

If we set up, as in the stationary problem, the potential of thermoelastic displace-
ment u=grad &, we can re-write Eq. (3.12) in the form

(3.13) (O, # —nyd, V*) d=yn0, =0.
It can readily be seen that the shape of this equation coincides with that for Hooke’s
body.
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B. Hosaux#, Tpexmepras 3a4a4a MHUKPONOJNPHOi TEOPHH YNpyrocTu

Copepxanne. Llensio paborsl sisnsercad Takoe npeobpaizosanne nuppepeHUHANBHBIX YPaBHEHHH
MHKPOMNOIISIPHOR YNpPYroCTH, YTOOL! MOMYYHTL YPABHEHHS, B KOTOPBLIX BLICTYNAOT TONLKO Mepe-
MelneHns 60 TOMBEKO MoBopoThl (BpaieHus)., TakHe PpeLUCHHST MOTYT OKA3ATHECH MOJE3HLIMHA
NpH onpeliesieRHH OcobbIX pemenuil B BECKOHEYHOM YNPYTOM MPOCTPAHCTBE, 4 TAKXKE MPH PELICHHR
KpaeBbIX 3afa4. AHaJOrHYHbIC YPABHEHHS [Jis NepeMelleHuii 1 MoBopoToB (Bpallenyit) npencras-
JIeHBl TAKXKE MO OTHOIIGHWIO K 3aJade TEPMOYIPYTOCTH B MHKPONOMAPHOIL cpee.



