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Summary. Static and dynamic equations in displacements and rotations are transformed into
equations comprising only displacements or rotations. The differential equations of the title problem
derived in such a way are particularly convenient when we try to obtain singular solutions. The
effect of the temperature field on deformation of the body in question is considered.

1. Static problem. The point of departure of our considerations are equilibrium
equations in displacements and rotations [1, 2]

(1.2) [(? + s) V2— 4a] cp+ (/?+? — e) graddiv q> + 2ocrot u+Y=0

where u is the displacement vector, tp, the rotational vector, X, the vector of body
forces and Y, the vector of body couples.

Quantities n, X, a, fl, y, e are material constants of the micropolar medium.
Let us perform divergence operation on Eqs. (1.1) and (1.2). Thus we obtain

two relations:
1

(1.3) V 2 d i v u = — — — d i v X ,
A + Zfl

1

P
where

(1.4) HdivV=-—— divY,

v 4a

It should be noted that when the body force (X—0) is missing the dilatation e=div v
is the harmonic function, and function / = div <p satisfies the Helmholtz equation,
forY=0.

Let us perform then a rotation operation on Eqs. (1.1) and (1.2). Hence we obtain
two other relations, viz.

(1.5) O+«) V2 rot u+2a rot rot cj> = - ro t X,

(1.6) ((y + fi)V2-4a)rotcp+2ocrotrot u= - ro tY.

225-[363]
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Proceeding we carry out the operation V2 £&, where 0=(y+e) V2—4a. Making
use of the relations (1.3) and (1.6), we arrive after a circuit of transformations at
the equation in which only the displacements take place

1 /
(1.7) Z)V2 V2 u = -—TJl2aV

4a2

grad div XH :— G grad div X

We have introduced further notations, namely

1 1 («+a)(y +
n —V2 G-V2 I2-G V I - K

P K1 4a.fi 4a

Again, perform the operation V2 H on Eq. (1.2), by help of the relations (1.4)
and (1.5). In result of omitting function u, we derive the differential equation for
the rotation <p:

i r
(1.8) V2 HDq> = -^~j 2ai7rotX-(,u + a)#V2 Y~

4a2

Consider now two limit cases. For Hooke's body Eq. (1.7) takes the form

X+u
(1.9) V 2 V 2 U = - V 2 X + T — ~ - grad div X.

If body forces are not coming into play, then the displacements are harmonic
functions.

The second limit case concerns a body in which only rotations may be expected.
The deformations occurring in this body are described by Eq. (1.2), into which
we have to insert a = 0. In virtue of (1.8) we get

P+y-s
(1.10) ( y + e ) V 2 V 2 c p = - V 2 Y + grad div Y.

If the body couples are missing, then function cp becomes the biharmonic function.
Eqs. (1.7) and (1.8) may be suitable to determine singular solutions of the system

of Eqs. (1.1) and (1.2), that is the solutions dependent on the distance between two
points x and x'.

We now consider the elementary case when X=0. Then Eq. (1.7) reduces in the
case of an infinite region which is considered in this note to the equation

(1.11) V2X>u = ^
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This equation is expressed in terms of the components of the displacement ut and
the body couple Yt. We obtain

(1.12) ^

Solution of the above-written equation is possible via the Fourier integral transform.
It will take the form

_ euk o r r r
'4lS*2»l2W> Bxj J J J

- c o t U T „

For a concentrated body couple, applied to the origin of the coordinate system
and directed towards the xp-axis, we obtain the following

(1.14) Yk=6(x)6kp, Yk= (27i)3/2 Skr.

Putting (1.14) into (1.13), we have, on carrying out the integration:

1 8
5 " )

in agreement with the result obtained in [3] by another method.
Analogically to the case Y=0, X#0 is to be derived by the use of (1.8):

(1.16) V2Dcp= — r o t X ,
1

2 >

which, for Xk = 6(x)3kp, yields

1 8 (e-R'l-l

(1.17) ^ " - R I T %P T T I F~

which is compatible with the theorem on the reciprocity of works.
In turn, consider the case when body forces and body couples are missing, X=0 ,

Y=0. In this case we can obtain the homogeneous equations

(1.18) V2V2Z>u=0, V2Di/cp = O.

Solution of these equations may, according to Boggio's theorems, be expressed
in the form of the sum of partial solutions

(1.19) u=u'+u", tp = ep' + <p" + <p'",

where now

V 2 V 2 u '=0 , Du"=0,
(1.20)

V2cp'=0, D<p"=0,
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These equations find practical application for solving the boundary problems,
For instance, they may be used in a case considering the elastic half-space x3^0,
and when Fourier's exponential integral transform is applied

(1.21)

J v<i) C25 X3)— -, / (Xi> ^25^3
lit J J

— CO

Eq. (1.20) may be read as follows

(dl-£2)zu'-=0, (<93-;72)u"=0,

(d2-£2)<P' = 0 (<3?-?72)cp" = 0, (8i-T2) cp"' = 0
(1-22)

1 2 !

1 2> / 2 ' V2 '

Eqs. (1.19) being set in the terms of Fourier's transform will take the form

(1.23)

We have obtained here eighteen integration constants. Twelve additional relations
can be obtained if we substitute functions u and <p, on which we applied the Fourier
transform before, into Eqs. (1.1), (1.2). By equating the relevant coefficients at the
same exponential function we get the sought-for relations occurring among the
coefficients A, ..., F.

2. Dynamic problem. We adopt here similar reasoning as before and employ
the same procedure with reference to the dynamic problem. Equations of motion
in displacements and rotations have the form:

(2.1) D 2 u + (A + / i -«) grad div u + 2a rot

(2.2) Ottp + ifi+y-E) grad div tp + 2a rot u + Y = 0.

Here we introduce the following notation:

in which p denotes density, while / is rotational inertia. Perform now the divergence
operation on Eqs. (2.1) and (2.2). Hence we obtain

(2.3) Di divu=— divX,

(2.4) Q3div<p=-divY.

We have set up here the wave operators:
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Further, perform the rotation operation on Eqs. (2.1) and (2.2). Thereupon we
obtain two other relations, viz.

(2.5) D2 rotu + 2arotrot<p=-rotX,

(2.6) D4r

Carrying out the operation Di CU on (2.1), and bearing in mind the relations (2.3)
and (2.6), we arrive at the equation which contains the displacement only

(2.7) D i ( n 2 D4+4«2 V2)u = 2(xDiro tY-D l D 4 X - 4 a 2 grad div X+
OL) CU grad div X.

Eq. (2.2) is acted on analogically with the operator Q3 D4> and the relations
(2.4) and (2.5) are taken into account; this operation leads to the equation in which
only the rotations can occur

(2.8) D 3 (D 2 n4 + 4a2V2)tp = 2 a D 3 r o t X - D 2 D3 Y-4a 2 grad div Y +

£) U2 grad div

Consider now some special cases. For Hooke's body (a = 0) we have

(2.9) Di n 2 u = - D i X + (A + /i) grad div X, n 2 = /<V2-M2.

When body forces are absent we can obtain the well-known wave equation (cf. [5])

(2.10)

The other special case in question is the wave motion in a medium in which only
rotations are possible. Assuming <x = 0 in Eq. (2.8), we derive the equations which
become

(2.11) n 3 n 4 < p = - n 3 K+Gff + y-e) grad div Y.

Here

If the body couples are missing, Eq. (2.11) becomes the biwave equation

)
/ 1

(2.12) ( v ~ a ?

of the same character of propagation of elastic waves as Eq. (2.10).
Eqs. (2.7) and (2.8) may readily be adapted to determine the required singular

solutions. Consider now an elementary case, i.e. the solution of Eq. (2.7), assuming
that X=0. It remains'merely to consider the equation:

(2.13) ( p 2 D4 + 4a2 V2) u = 2a rot Y.
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In the case of occurrence of forced harmonic vibrations, when F = Y (x) eimt

and n = n + (x )e"" ' , Eq. (2.13) becomes the elliptic differential equation

(2.14) (V' + * ; ) ( V ' + * 3 . . * - { f l + l + e) r o t Y * .

Here k\, k\ are the roots of the equation:

(2.15) k*-k2(cl + al+p{s-2))+ol(Gl-2p) = 0,

where

co co la. 2a
a* = T " ' 'v = ~~,— > P

c2 c4 ^ + a y + e

The roots

k\\ 1

are the real values, because the discriminant is positive.
The integral Fourier transform is applied to Eq. (2.14); we obtain thus the

following amplitude

2ap

pc\

For the concentrated moment, placed at the origin of the coordinate system
and directed towards the x,-axis, we obtain

,,, pent d leiklR-eu

(2.17) u9~- Anclp{k\-kl) dxk\ R

in conformity to the well-known result (cf. [5]).
Consider, finally, the case of homogeneous equations (2.7) and (2.8). We have

(2.18) Di (D 2 D4+4a2 V2)u = 0,

Following the Boggie theorem, the solution of these wave equations will be arranged
as a pair, viz.

(2.20) u = u' + u", tp = tfl' + u)",

where the components of these solutions satisfy the wave equations

(2.21) D i u ' = 0 , ( D 2 D 4 + 4 « 2 V 2 ) u " = 0,

as well as

(2.22) D3<p'=0, (D2 C
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In the case of occurrence of harmonic vibrations, Eqs. (2.18), (2.19) take the form

(2.24) (V2+/c2) (V2 + A:2) (V2+£2) <p* = 0,

in which

a> Ico2 — coiy12 4a lfi + 2y\l/2

These give

\2.ZJ) u ==u + u +u , tpJ" = q> *+cp *+ <p *,

where

(2.26) (V2 + /c2)u'* = 0, (V2+yt2)u"*=0, (V2 + o-2) u ' " * = 0 ,

and

(2.27) (V2+A;2)cp'* = 0, (V2 + it2)tp"* = 0, (V2+/c2) tp" '*=O.

Solution of such a type is convenient for us if we want to investigate the problem
of the elastic half-space x3^0. In agreement with (2.25) we assume

(2.28) i* = Ae-"

(2.29) cp* = D<T

where

/?=(C2-/c2)1/2, C2=f2 + ^ .

In these solutions, written up in the Fourier transforms, eighteen constants occur.
We eliminate them by help of Eqs. (2.1) and (2.2). Finally, we obtain six independent
constants which correspond to as many boundary conditions.

3. Problem of thermoelasticity. Let us consider the effect of temperature upon
deformation process of the body in question. Equations governing the thermo-
elasticity problems for the stationary flow of heat have the following form [2]

(3.1) (j" + a) V2
 U + (X + /I-OL) graddivu + 2arot<p = ^ grad 6,

(3.2) [(y + e) V2-4oc] cp + (/?+y-s) grad div <p+2arot u = 0.

Here 6=T-T0 denotes temperature increment; T, absolute temperature at the
point x and instant t; To, temperature of the natural state of the body. The thermal
term r\ grad 8 appears only in the first equation.

We may use here of the equations derived at the point 1, for u and cp, taking
advantage of the analogy of forces and body couples. This gives

(3.3) X = - v grade, Y=0 .
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Introducing the latter into Eq. (1.7), we get

(3.4) V2u ^

This equation, of course, holds for the infinite elastic space, for only in this case
are we allowed to shorten bilaterally the differential operators.

If we introduce the elastic potential of displacement u = grad tf>, then Eq. (3.4)
becomes the Poisson equation for the functions:

(3.5) V2<£=w0, <p=0,

n

It is interesting to take note of the fact that the temperature field does not induce
any rotations in the infinite elastic region.

In the case of the dynamic problem we have to make use of the system of
equations given in [2]:

(3.6) D2 u + (A + ^ - a ) grad div u + 2arot (p = rj grad 0,

(3.7) IZUtp + OS+y-e) grad div tp+2oc rot u=0 ,

and the equation of thermal conductivity

(3.8) I V 2 - — , 9 , 1 0 - * div u=0 .

Here K=A0/
c« where Ao is the coefficient of thermal conductivity, while cc — specific

heat at constant deformation. After introduction of the following equation

(3.9) X=-ri grad 6, Y=0,

into Eqs. (2.7) and (2.8), we may write

(3.10) • i i i= , 7 grad0 ,

1
(3.11) ^ 0 = ^ d i v u , <p = 0, ^ f=V 2 dt.

Elimination of temperature from Eqs. (3.10) and (3.11) gives rise to the equation

(3.12) (Di^-^3tV
2)u=

If we set up, as in the stationary problem, the potential of thermoelastic displace-
ment u = grad<P, we can re-write Eq. (3.12) in the form

(3.13) (Di.^->/;^V2)(Z>=>/0, cp = O.

It can readily be seen that the shape of this equation coincides with that for Hooke's
body.
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B. llonauKM, TpexMepnan .'.uwvui MmcpoiiojinpHOH TeopitH ynpyrocm

e. IJenbro pa6oTbi flBJiaexcH Taxoe npeo6pa3OBaHne
MHKpononapHOft ynpyrocTH, HTO6M nonyiKTb ypaBHeHHn, B KOTOPWX BbiCTynaioT TontKO nepe-
MemeHHa JIH6O TOJQ.KO noBopoTbi (BpameHHa). TaK«e pemeHHM MoryT OKa3aTbca noJie3HtiMH
npH onpeflejieHHH oco6bix peineHHM B eecKOHe-iHOM ynpyroM npocTpaHCTBe, a TaK>Ke npH pemeHHH

3aflan. AHanorH4Hbie ypaBHeroja nnn nepeMemeHtrtt H noBopoTOB (BpameHHft)
xaKHe no OTHOOteHHio K 3aflane TepMoynpyroCTH B MHKponojisipHOit cpefle.


