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Summary. This note is concerned with the so-called “second” axial-symmetric problem in micro-
polar elasticity, expressed by a displacement vector u=(0, 1, 0) and the rotation vector p=
=(¢p,, 0, p:). The above-mentioned components of vectors u and ¢ should satisfy the system of
Egs. (1.4). Introduction of elastic potentials & and ¥ permits to reduce the solution of this system
of Egs. (1.4) to the solution of ordinary elliptic equations (2.4). Functions @ and ¥ are not indepen-
dent of each other; they have to fulfil additional relations (2.3). Practical application of eclastic
potentials is exemplified by means of the semi-infinite elastic space which is loaded by moments,

1. Introduction

The state of deformation of micropolar body is described in the form of the
system of six equations. These equations having vectorial form are constructed as
follows [1—4]

(u+a) V*u+-(2+pu—a) grad div u--2a rot +X=0,

1.1
(-1 (y+e) V? ep—4dacp+-(fi+y—¢) grad div qp--2a rotu+Y=0,

Let u be here a displacement vector, ¢ a rotation vector. Let X stand for a vector
of body forces and Y a body couple vector. Quantities a, f, y, &, i, 4 denote material
constants,

After introducing Eqgs. (1.1) into the system of cylindrical coordinates, and taking
the problem as the axial-symmetric problem, we may derive from Eq. (1) two
independent of each other systems of equations. In the first take place the following
components of vector u, ¢, X, ¥Y:

(12) ll=(£(,., 0‘) ldllz)) (P:(O, Pas 0): x-=(Xn 0: Xz): Y'_“(01 YG- 0)

In the second system of equations the remaining components of vectors u, ¢, X, Y
occur

(13) “=(0| Upg, 0)3 (P=((Pr: 0; {8:)! X':(O’ Xaa 0)9 Y=(Yr: 0, Yz)
517—1951)
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Equations expressing displacements and rotations related with this state of
deformation take the form:

1 dic Aty
-+ |V~ 7| ee—dap+(B+y—8) 5 -~ 20—~ +Y,=0,
ar oz

d
(1.4) (y+e) V2 p.—dap.+ (f+y— e)—+~ 5 i)+ Y2 =0,

1 99, 9.
(p+a) V’——- Upyt2a|—=——=+X,=0.

Introduce here the notations:

1 d 29, - 2% | a2
LA roar (W')_I“_('}hz_’ vim or? +_r_ or o9z’

In the “second” axial-symmetric problem the following components of stress tensor
take place

0 Tro 0 Her 0 Hrz
(1.5) o=|0o 0 0o, @=[0 e O
0 g4 0 Her O oz

These stresses are given by the following equations [4]:

auy 1y a d
ara=#( o “;")4“; —3‘;(%)—2&402,
duy Uy a d
Gor= (E—' —T) s (-' Up)+20.9.,
09 iy
Go=(it—a) —é;-—2arp,,
auy
o= (pt+a) E——l—hrp,,
as well as
dp,
#rr—ZP p +/frf ;:ga-Zy—~f-[3n
(1.7)
dp.  Op, dp,  9p.
== (W‘F 0z )-E( oz or )’
(3?: ap, dp, .
et

In turn, let us consider a homogeneous system of Egs. (1.4).



[953] The *"Secomd” Axial-symmetric Problem in Micropolar Elasticity 519

2. Elastic potentials

Two functions @, ¥ related to ratotions g,, ¢, and displacement u; are now
introduced in the following manner:

9 el 4 _ 09 (z 62); B 2 ¥
CU or +3rc?z’ =0z V-5 W= pta or

Substituting (2.1) into homogeneous equations into displacement and rotations
(1.4) and using of the identity

2.2 (Vz I)aqj~3V2¢
(2:2) r2| or  or
permit for derivation, from Eqgs. (1.4), ,, the relations
V-1 d=— i i{fzvz—l)'}'
p+a 0z ?
(2.3)
—Cl(vzvz—!)d§= c (VZ— i )(FW—I)‘P
oz uta oz? -
Further, we introduce the notations:
,_2rt+p (uta) (y+e)
v:i= , P=—
4a 4ua

Substitution of relations (2.1) into Egs. (1.4); fulfils this equation in identical way.
Relations (2.3) yield, for functions @ and ¥, the following equation

V2 (12 V2 —1) 6 =0,
V2(I2V2—1) ¥=0.

Insertion of (2.1) into the equations for stresses enables us to express these stresses
by functions & and ¥:

24

qap 1 OV db dap o*V ad
i P L
23) dap  O*W P P
05;=‘-”+a H—ZGF, ngf—‘?a—aT,
and
2 v 1 @ av .
,u,,,=2y-§2—(¢ +-5-z—)+;’)’V2§0, ﬂsa'_‘z}’T E;(Gﬁ -i—g)—l-ﬁ?"fﬁ,
b 4 0%
Jp =2y [W = (Vz 32 ) W]+IIV2 @,
(2.6)

al (3¢’+325") qu}]
her =7 |2\ 3zt a7 |~ 0OV

3[2 (3@ 625”) V“}’]
te=gr |1\ og T o | OOV
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Observe that
(2.7) Fort oo+ Hzz=Qy+3B) V2P, po— piyy=2e V2 Y.
The procedure for solving the “second” axial-symmetric problem will be investigated

by virtue of exampled a semi-infinite elastic body, which is loaded by moments
m(r). In this case we are dealing with the following conditions
(2.8) Uzﬂ(r: 0)=0: ;‘J,,.(!‘, 0)=0, #zz(r’ 0)=—m(r).
Here the moment vector m is oriented in the direction of the positive z-axis. Suppose
now that, for |r2+2z%|—oco both the displacements, the rotations and the stresses
should disappear.

We start from differential equations (2.4). Performing on these equations
Hankel’s transformation, which is defined by the relations:

o

[& 2= tf(r, ) To(Crydr,

0

2.9) .
[, = [ L& DI End,
and ’
F&a= [ oft, 2, ¢r) dr,
(2.10) g

f2)= [ LN ¢nad,

we arrive via (2.4) at the ordinary differential equations

(¢ (-2
o) la-r)e-o,

@ d? -
(E‘C’)(F" Z)H-

We have introduced here the notations:

2.11D

1 1
?I=C2+v_2, P2=C2+}T.

The functions quoted below constitute the solutions of Eqgs. (2.11)
(2.12) P=Ae %+Be="*, P=Ce **+De~ ",

Functions ¥ and & being not independent functions of each other, they have
to fulfil relations (2.3). Carrying out of Hankel’s transformations on these relations

brings us to

d? )_ w12 d | a2

e — e — el \
(2.13) (dzz ? pta v odz (dz‘ # 2)5”’
' i(‘i_ z)~_ L G,
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Both the relations may be satisfied by means of the solutions (2.12) only then when

H
2 = %
(2.14) C=rtd

Proceeding we have to determine still three remaining constants of integration.
We can obtain them on making use of boundary conditions (2.8).

By taking advantage of relations (2.5), (2.6), expressing boundary conditions
by functions @ and ¥, and, finally, drawing on the boundary conditions the Hankel
transformation, we get three equations

6:0(6,0)=[—2alD).=o=0,

uco={=t {5+ ) -0-0lg v )#]
4 = 2k ) IS RO || e =
(2.15} lu".l'((a! 0) Q 2} iz | O’ZZ ) (n‘ ) d.. L !'-U }:=0 O,I
B o dy d? _
I Y e R et S ] [ (5}
=0
From Eqs. (2.15) follow the cons tants of integration

_ m () (£ +ay)

PRGN
o [ It (,, B )]
(2.16) B= 245 1+ e Ne 1)1,
1 o
—“;T‘F;;CA, C_ﬂ‘l‘ﬂ LA
Now, we introduce the notations
R
0= ” =[L"— — % 1 i —_1 .
ey 4o(O)=(E+ae)*—Lpl?| 1+ L

In turn, let us perform, on relations (2.1) the Hankel transformation. Accordingly,
we obtain here:

. (. dv _dd . 2a
(21?]‘ Q’rz_i P—— s w:zra;‘f-‘:—z ¥, Uy = ‘;'y}

Performation of the inverse transformation and introduction of constants of
integration lead to equations in the form

. 1 TCZ m
[ gor_z}' Ag

n
—(z L a—lE
,u—l—a(g -!-a)[ ae !]+

.0 —pc[1+ ;:ia (%—1)]e-“}h ©dt,
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(2.18) 1 7 2:}:3_{

2 -z ,(_E_“
= | #3 ¢ +ao)[e‘+ae ]+

S G vl e GRS

ag [ W . S5 n i
u,=5;! C‘—d:{(C+ao)e‘ c[l+n+a(‘;’ l)]e }Jufir)di'-

The stresses sought for will be determined on taking into account (2.5), (2.6).
Furthermore, the stresses occurring in the boundary conditions (2.8) are given:

pt-a

G==" f I () (e =) 0, (@) L,

> -{z i =Nz
Ta [e 'I-ae ]-I—
et lleors
;t-{-a C 1 »
= [ ¢l e et £ (T )]+

+ Lot [1 o (%—1)]9‘“}.}0 ) de.

It is easy to prove from (2.18) that the boundary conditions (2.8) are satisfied.

{m
Hep == f C:zd_o(gl"_aﬂ){‘u
(2.19) 0
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B. Hopauxku, Bropas oce-cHMMeTpHYCCKAR 3aJa%a B TEOPHH MMKPONOJNPHOI YNpyrocTn

Conepanne. B nacrostreif paGoTe paccMaTpWBaeTCs Tak HA3bIBaeMas ,,BTopas’ Oce-CHMMETpH-
yeckasa 3a7a4a MUKPOOIAPHOM YIPYTOCTH XapakTepH3OBaHHAA BeKTOPOM cmettenys u=(0, uy, 0)
¥ BEKTOpOM Bpatenus ¢ = (¢, 0, p.). Beruenpuseaensie COCTABMAIONME BEKTOPOB U ¥ ¢ JOJKHbL
YHOBJIETROPATE cHcTeMy ypaBuewwit (1.4), Bmefienue ympyrux mnorenumanos @, ¥ nossonser
CBECTH peleHHe CHCTeMBI ypasHenni (1.4) K pemeHHio MPOCTRIX HIUIMITTHYECKHX ypapHenwit (1.4).
Dynkupy @ w ¥ ne ABIMOTCA HEIABMCHMEIMH JDYT OT HPYra W JIOJIKHBL BBIMTONHATL HOMOJIHN-
TenbHeie cBA3M (2.3). Crmoco® MCIONB3OBAHMA YNPYTHX IMOTEHLUMAIOB OOBLACHSETCA HA MpUMEpe
YOPYroTo TONYMPOCTPAHCTBA HATPYKEHHOTO MOMEHTAMM,



