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Summary. This note is concerned with the so-called "second" axial-symmetric problem in micro-
polar elasticity, expressed by a displacement vector u=(0, u0, 0) and the rotation vector p=
=(<pr, 0, <px). The above-mentioned components of vectors u and cp should satisfy the system of
Eqs. (1.4). Introduction of elastic potentials $ and W permits to reduce the solution of this system
of Eqs. (1.4) to the solution of ordinary elliptic equations (2.4). Functions <£ and Vare not indepen-
dent of each other; they have to fulfil additional relations (2.3). Practical application of elastic
potentials is exemplified by means of the semi-infinite elastic space which is loaded by moments.

1. Introduction

The state of deformation of micropolar body is described in the form of the
system of six equations. These equations having vectorial form are constructed as
follows [1—4]

O + ) V2u+(A+ /M-a)graddivu+2arotcp+X=0,

(y+e) V2 <p-4acp+(/H-y-£) grad div cp+2a rot u+Y=0.

Let u be here a displacement vector, cp a rotation vector. Let X stand for a vector
of body forces and Y a body couple vector. Quantities a, /?, y, E, fi, X denote material
constants.

After introducing Eqs. (1.1) into the system of cylindrical coordinates, and taking
the problem as the axial-symmetric problem, we may derive from Eq. (1) two
independent of each other systems of equations. In the first take place the following
components of vector u, cp, X, Y:

(1.2) u=(Wr,0,Wz), <p = (0 ,^ ,0) , X=(XnQ,Xz), Y=(0, YB,0),

In the second system of equations the remaining components of vectors u, cp, X, Y
occur

(1.3) u = (0,H())0), cp = (r/>r,O, cp2), X=(0,X0,0), Y = (7r,0, Yx).
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518 W. Nowacki [952]

Equations expressing displacements and rotations related with this state of
deformation take the form:

(1.4)

1

(y+e) V2 <p.-

die

die 2a d

dz r dr

8u0

Introduce here the notations:

r or

d<pz

'Hz~'
82 1 d 82

r dr dz28r

In the "second" axial-symmetric problem the following components of stress tensor
take place

/ 0 ar9 0 \ lnrr 0
(1.5) a = L , r 0 aOz , (*= 0 /%

\ 0 cr20 0 / \//zr 0

These stresses are given by the following equations [4]:

' 8u0 uo\ ad

(1.6)

dr r I r dr

due i<o\ ad

as well as

(1.7)

8u0

8(Pr <Pr
Mrr = 2y -r- +PK, fjoo = 2y

Ol V

dz ' '

8<Pz 8(pr\ ^ i^Vr__ S(Pz

d(pz d(pr\ ld<pr d(p2

In turn, let us consider a homogeneous system of Eqs. (1.4).
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2. Elastic potentials

Two functions 0, W related to ratotions cpt, cp2 and displacement w3 are now
introduced in the following manner:

80 82 80 2a 8W
" * =

i a •
/.i-\-a or

Substituting (2.1) into homogeneous equations into displacement and rotations
(1.4) and using of the identity

(2.2)
1 \ 80 8

h2 / 9 3

permit for derivation, from Eqs. (1.4)Jj2) the relations

, , „ , . . . t* 3 ,.„„

(2.3)
8

~dz

Further, we introduce the notations:

,,2 =

1-^TI( /2V2-1)!P.

(fi+a)(y-{-E)

4a 4/.ia

Substitution of relations (2.1) into Eqs. (1.4)3 fulfils this equation in identical way.
Relations (2.3) yield, for functions 0 and V, the following equation

V2(v2 V 2 - 1 ) 0 = O,

V 2 ( / 2 V 2 -1 ) !F=O.

Insertion of (2.1) into the equations for stresses enables us to express these stresses-
by functions 0 and V\

(2.4)

(2.5)

and

O~r0:

1 8W 80

a r 8r

82

(2.6)

dzdr

d2 I 8¥

-2a-

8z '

80

dr

O~0r - ~ '

a,n — 2a

4a^i 82 V

H+a dr2

80

1 8_

r dr

80

dz

8

8

82

8
Hrz=-
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Observe that
(2.7) / i r r +/%+ f e =(2H-3 /? )V 2 0 , A r - ^ , = 2 e V 2 ! F .

The procedure for solving the "second" axial-symmetric problem will be investigated
by virtue of exampled a semi-infinite elastic body, which is loaded by moments
m (r). In this case we are dealing with the following conditions

(2.8) <rIJ(r,0) = 0, ftr(r,0)=0, p»(r,0)=-m(r).

Here the moment vector m is oriented in the direction of the positive z-axis. Suppose
now that, for \r2+z2\->oo both the displacements, the rotations and the stresses
should disappear.

We start from differential equations (2.4). Performing on these equations
Hankel's transformation, which is defined by the relations:

)=J rf(r,z)J0(Cr)dr,
0

oo

f(r 7\-=n \ F f(T r̂  7 ('Kr\ ///*
o

and
00

/(f,z)= / rf(r,z)J1(Cr)dr,
(2.10)

0

we arrive v/a (2.4) at the ordinary differential equations

(2.11)

We have introduced here the notations:

The functions quoted below constitute the solutions of Eqs. (2.11)

(2.12) W^Ae-^+Be-"2, ^>=Ce~iT+De-nz.

Functions W and 0 being not independent functions of each other, they have
to fulfil relations (2.3). Carrying out of Hankel's transformations on these relations
brings us to

d2 \ V I* d (d* •

d{d2 \ I2 Id2



[955] The "Second" Axial-symmetric Problem in Micropolar Elasticity 521

Both the relations may be satisfied by means of the solutions (2.12) only then when

(2.14) C =
H+a

Proceeding we havei to determine still three remaining constants of integration.
We can obtain them on making use of boundary conditions (2.8).

By taking advantage of relations (2.5), (2.6), expressing boundary conditions
by functions (t> and W, and, finally, drawing on the boundary conditions the Hankel
transformation, we get three equations

(2.15)

From Eqs. (2.15) follow the constants of integration

m(C)(C2+a0)

(2.16)

A. *~~

D ^ >_

Now, we introduce the notations

/;-|-a

')]•
In tarn, let us perform, on relations (2.1) the Hankel transformation. Accordingly,

we obtain here:

(2.17)
2a

dz

Performation of the inverse transformation and introduction of constants of
integration lead to equations in the form

(2.18)

1 in f a
f2 I —ff2ln



522 W. Nowacki [956]

(218)

The stresses sought for will be determined on taking into account (2.5), (2.6).

Furthermore, the stresses occurring in the boundary conditions (2.8) are given:

(2.19)
o

•-I ^ { - ^ r"•

It is easy to prove from (2.18) that the boundary conditions (2.8) are satisfied.
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B. HoiiauKK, Hropaii occ-ciiMMcrpiiHCCKau 3a,nalia II rcopim MHKponojinpHoii ynpyrocTH

B HacTosaiieii pa6oTe paccMaTpHBaeTca TaK Ha3HBaeiviasi ,,BTopaa"
necKaaa 3aflaia MHKpononapHofi ynpyrocTH xapaKTepH3OBaHHaH BCKTOPOM CMemeinw u==(0, ug, 0)
H BeKTopoM BpameHKK cp = (rpr, 0, pz). BbimenpHBefleHiiwe cocTaBJiKiomne BCKTOPOB u H cp #OJI>KHH
yflOBJieTBopaTb cHCTeMy ypaBHeHHii (1.4). BBeflemie ynpyrax noTenuiiajioB <P, V rro3BOJiHeT
CBecTH pemeHHe CHCTCMLI ypaBHemri} (1.4) K pemeHHio npocTtix 3nmfnTHiiecKnx ypaBnenKit (1.4).

0 H V He OTJifflOTCfl ne3aBHcKMi>iMH flpyr OT rtpyra H flon>Kiiw BhinojiiiflTb flonojinn-
CBJI3H (2.3). Cnoco6 ncnojib30BaHHa ynpyrax noTeniiHajioB oS-bstcmrcTC}! na npHMepe

ynpyroro nojiynpocTpaHCTBa narpyacenHoro


