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1. Introduction

In this paper we shall be concerned with the plane state of strain induced in an
elastic micropolar medium (Cosserat’s medium) by the action of temperature.

We confine ourselves to the problem of stationary flow of heat.

However, prior to discussion of the plane problem, we shall dwell briefly on
the general state of stress in a micropolar body.

The action of temperature gives rise to the formation in the body of displace-
ments u (x, t) and of rotations ¢ (x, 7). The state of deformation of the body is
described by two asymmetric tensors: The tensor of deformation y;, and the curva-
ture-twist tensor x ;. Both these tensors are connected with the quantities u andep by
the following relations [1]—[3]

(1.1) Yiu=Ui, ;= Exnt Pics Kji=®i, 15 L, k=1,2,3.

The state of stress is characterized by two asymmetric tensors: the tensor of force
stresses o and that of couple stresses s;. They are connected with the tensors
Y K and oy, Ky by the following constitutive equations [4]:

an=(u+a) yu+(u—a) yi+Cyw—v0) dyy,

(1.2) -
Juﬂ=(y+£) KJ[+()’-8) KIJ+ﬁKkk51Ja 1,/ k=], 2, 3.

The above equations should be regarded as Duhamel—Neumann equations extended
on a micropolar body. In the relations (1.2) the symbols x and 1 are Lamé’s
constants, while a, f, y, ¢ denote other material constants. There is v=31+2) a,,
where @, stands for the coefficient of thermal expansion. Substituting Egs. (1.2)
and (1.1) into the equations of equilibrium

(1.3) 05, 5=0, ey Ot =0, ijk=1,2,3.
89—[117]
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we obtain a system of equations in displacements and rotations expressed as
follows '

(u+a) V2 u+(A+ p—a) grad div u-2a rot qp=v grad 0,

a 0
(14 (y+e) V2 —dap+(f+y—¢) grad dive+2a rot u=0, V2=Ex—g.
i i 4

The term 0 representing the increase of temperature (the increase with respect to
the temperature of the body being in natural state) may be determined from the
equation of heat conductivity

1.5 V2= i
(1.5) "
Here the symbol W denotes the quantity of heat produced per time and volume
unit, while 1, is the coefficient of heat conductivity. Eqgs. (1.4) and (1.5) should be
supplemented with boundary conditions. They take the following form:

pi=0;n=0,  my=p; n=0,

(1.6) a0
Jvo'a'=lll_(|9—9), xed.

The first two conditions refer to the absence of loading (forces and moments) on
the surface 4 bounding the body. The symbol & denotes here the temperature of
the medium surrounding the body considered, 1, and A, denote, respectively, the
coefficients of internal and external heat conductivity.

In the sequel we shall consider the plane state od strain.

2. The plane state of strain. Differential equations and their solutions

In the plane state of strain all the causes and effects depend on two variables
only. Assuming that the displacements and rotations do not depend on the variable
X we have:

(21) I.IE(H!I, U, 0)7 (PE(Os Oa 993)!

where u,, u,, @5 are functions of the variables x,. x,. In accordance with definition
(1.1) we obtain for the plane state of strain the following components of the tensors
}'J; and Kyt

Y11=0y Uy, Y22=0; Uz, Y12=0; U2 — 3,
(2.2

P21=0; Uy+ps3, K13=0; @3, Ka3=0; ¢3.

The remaining values y;; and x;; are equal to zero. From the relations (1.2) we get

cu=(u+a) y;+(u—a) yi;4+Ay—0) 45,

(2.3) .
O33=7Y A—V0, ﬂJ3=()’+3) Kj3, ﬂ31=(7""'5) Kpa, j=1,2.
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Here yy=79:1-+722. The state of stress o;; and the state of couple-stress y;, are
characterized by the following matrices

g1y 013 0 0 0 Uis
(2.4) 0=|05; 03 0 |, p=|0 0 Haz |-
0 0 Oa3 M3y Maz O

The equations of equilibrium (1.3) for the plane state of strain are thus limited to
the three following equations

51 0'“+(32 021=0,
(2.5) 0y 012+0; 03,=0,
G12—02110; fy3+0; pz3=0.

Eliminating the stress from Eqs. (2.5), we arrive, on taking into consideration Egs.
(2.2) and (2.3), at the following set of three equations

(u+a) Viu+(u+i—a)d, e+2ad, p3=vd, 0,
(2.6) (u+a) V2 uy+-(ut+i—a) 8, e—2a @, p3=vd,0,

(y-+¢) Vi p3—4aps+2a (8, uy— 3, u,)=0.
We have '
Vf:ﬁf—i—ai, e=8; u;+0; u,.

Within the system of polar coordinates we have to deal with the following vectors
of displacements and rotations

(2.7) u=(uuy, 0),  ¢=(0,0,0.).
In polar coordinates Eqs. (2.6) obtain the following forms:

(2 2& ) g de 2a0p, 00
(uta) V2 u, rr r* a9 g oy )a'--i-r 28 or’

- (V2 u, o 2 2 ) " de dp, 90
( . ) (.ﬂ‘i‘ﬂ) Up— rz 29 +( —I_-” a) 2a or =) o9’
v 2a ( d 6::,.)
[(y+e) V2—da] p.+— | == (ru)) = 50| =
In the above equations there is
V2_61+13+102 | lc'}u,,
o rar a2 T ror (rud roor’

For the uni-dimensional problem, referred to the space, half-space and an elastic
layer, i.e. u,=u, (x,), u,=0 what remains from the set of equations (2.6) is the
equation:

(2.9) (A+2p) 2 uy=v8, 0,  u;=0, 3=0.
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In the case of axi-symmetric deformations, i.e. for u=(x,, 0, 0) the system of Eqgs.
(2.8) reduces to the form
i O a0

(2.10) (A+2p) F+T'}%_F Up=v—".

As is seen, Egs. (2.9) and (2.10) derived above coincide with the equations of classi-
cal thermoelasticity for the case of uni-dimensional problems. The stress tensor
6,; is symmetric, the couple stress tensor is equal to zero. Let us return now to
Egs. (2.6). We shall introduce therein the vector
C=4rtotu—cp
C]=03 C2=05 CE='}‘: (al ”2—32 ”l)_‘?l'

Eqgs. (2.6) will now take the form

@.11)

uViu+(A-+p) o, e—2a 0, L3=vd, 0,
(2.12) 1 V3 ty+(t-p) 0, e4-20.0y {3=v0, 0,
[(y+e) V2—4a] {3—% (7€) V2 (85 u,— 0, u,)=0.
The solution of this system of equations will consists of the two parts
wy=uytuy,  wy=uytu, ,
L=+, (=0,

The functions marked with a single “prime” should be particular integrals of non-
-homogeneous equations (2.12), while the functions with two “primes” should stand
for the general solutions of homogeneous equations (2.12). Introducing (2.13) into
(2.12), we get

(2.13)

1 VT ui+QA4-p) 0y €'=v0, 0,
(2.14) 1V Uy (A+p) 0, e =vd, 0,
V2 (@ uy—0,u))=0, {3=0.
and
1V} uy+(A-p) 8y €' —2a 8, {5 =0,
(2.15) 1 V2uy+-(4-p1) 9, e +2a 0, £ =0,
[(r-+e) Vi—dal &5 —4 (y+6) V3 (8, u; — 8, u})=0.

Thus we get Egs. (2.14), , identical with equations of classical thermoelasticity
[5]. The condition {;=0 leads to the relation @;=% (9, uy—0a, u;) which holds
true for the classical theory of thermoelasticity. The condition (2.14); will be satis-
fied if we assume the displacements w;, u; in the form

(2.16) uy=0, @, uy=0,d.
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Substituting (2.16) into Eqs. (2.14); ,, we obtain — after integration — the Pois-
son’s equation for the function @:

2.17) Vid=mb, m=

v
A2u°

The function @ is the particular integral of the system of Egs. (2.14) and, by
the same, it is the particular integral of differential equations (2.12).

The stresses and strain marked with primes will be expressed by means of the
function @ as follows

V=P, 1y k=0,
(=19 ";1=2H (D, =9, Vi @), !":u=0-
In the case of an infinite region the function @ will be expressed by the formula [5]:
m 6 (xy, x3) dx, dx,

(2.19) P (1, 62)= Cdn ) RGuyxiln )’

where
.R=[(x1—51)2—}—(x2-§2)2]”2.
For a bounded region we have to solve Eq. (2.17) under the boundary condition ®=0.
Thus we have to solve only the system of Egs. (2.15) which refers to the isothermic
problem (0=0). This is a typical boundary problem of the theory of elasticity of
micropolar medium. If we assume the boundary to be free of loading, we may
write the boundary conditions for the system of equations in the following form

(2.20) (0y+o)m=0, uym=0, ij=1,2.

In this way, the displacements u), u, and the rotation ¢, being known, we may
determine the stresses ¢, and 45 from Egs. (2.3) (obviously we have to put therein
0=0).

In the next paragraph we shall advance a somewhat different procedure of
determining the stresses ¢, and 4, using the functions of stresses, a procedure
which seems particularly convenient in cases, where the boundary of the body
should be free of loadings.

3. The functions of stresses of the thermoelastic problem

Let us return to formulae (2.2). It is easily seen that the quantities appearing in
these formulae are connected to each other by the following relations

3.1) 01 72102 P11—K13=0, 0 Y22—0; V12— K23=0,
0y Ky3—0; Kk13=0.
These relations may be written also as below
0} y22+03 711=01 02 (y12+721),
(3.2) ai ?12—‘3? Y21=04 02 (¥22—711)— (01 K13+0; K23)

0y K33—0; K13=0.
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They are equations of compatibility for the bi-dimensional problem in a micropolar
medium. Solving the relations (2.3) with respect to the quantities y;; and s
(i, j=1, 2), and substituting the results into Egs. (3.2), we obtain three equations
in stresses [6]

v
V} (51:+0'22)+7r V? 0=0, 0, (glz‘l‘ﬂ'u) s

2 2 _ -
C Ty “

7
(3.3) (52—6‘3} (0'|z+0'2|)+'; Vf (012—031)=
4u
=20, 0, (0'22—0'11)"m (@1 p13+0; fz23),
0y f23—05 p1,3=0.

We shall now introduce the function of stresses F and ¥ and connect them with
the stresses by the following relations [7]

U|]=a§ F_a| 32 q’, 0-22=a% F‘[_a] 32 y’,
(3.4) 0’12=-—51 32 F—(}i W. 62|='—ax 62 F+ai ?,
a=0,¥, py3=0, .

Substituting the relations (3.4) into Egs. (2.5), we see that the equations are
identically satisfied. Substituting, in turn, (3.4) into the equations of compactness
(3.3);,., we get the following equations

3.9 = 5
Vi(—-12v)) ¥=0,
where
PO o) Cln,) _ 2w
4au 1 T A2

The functions F and ¥ are not mutually independent. They are connected by the
relations (3.2); ,. Consequently, we obtain

—3,(1-1? V3) ¥=Ad, V2 F+Bd, 0,

_ (+2p) (rte) et (y+e)
du (A4p) Ap

We have still to set the boundary conditions for Eqs. (3.5).
Let us assume that on the boundary s are prescribed the loadings p=(p,. p,, 0)
and moments m=(0, 0, m,). Expressing the boundary conditions

(3.7) PL=0yny, niz3= 3 Ny, i, j=1,2
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by means of the functions F and ¥, we obtain the following equations

d(aF a'P)__ d(0F+f)'}’)
ds \ox, ox; ] v ds\ox, | ox,) P
(3.8)

c i d

Ny = ”2_=”13.
0x, 0x,

Integrating over the boundary of the cylinder cross-section we get

> oF v oF v av
(39 ox, LT ax, 8.\'2ﬂf" on

=ns.

In the above equations the following notations have been introduced
¥ ¥
fi== [p2()ds, fr= [pi(s)ds.
50 S0

The relations (3.9) are equivalent to the equations

oF 0¥ ik d

3.10 oF % lil'd . 1 ~
(3.10) on o5 =fin+fin,, s o =fany—finy, n =m;.

Let us now consider a simply connected cylinder, the boundary of which is free
of loadings. The temperature field satisfies the equation

W
(3.11) V20=——,
Ao

with the boundary condition (1.6)
A 60—/1 B,—0
(3.12) 0y =*1(00=0).

In order to determine the stresses, we have to solve the following system of
equations

(.13) vy =" ypyiogyweo
. 1 Y1 s ’ 1 1 ,

with homogeneous boundary conditions
oF ¥ oF oY oV
(3.14) W-F—g;—:(), — —me—mil)s =0
Moreover, the following relations should be verified
' —8,(1—=12 V?) ¥=A40,V? F+Bd, 0,
(3.13) 0, (1 =12 V?) ¥=A40,V? F+Bd, 0.

Let us consider a particular case, where the heat sources are absent (W'=0),
the temperature being constant (@=const). In this case Egs. (3.13) become homo-
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geneous, and in relations (3.15) the terms expressing the temperature —
vanish.

If we assume, however, that within the region of the cylinder cross-section there
is F=0 and ¥=0, then the homogeneous system of Egs. (3.13), , with homogeneous
boundary conditions (3.14) as well as the relations (3.15) will be satisfied. From
(3.4) we have that the stresses o,; i,; are equal to zero. Only the stress o3 as given
by the formula (2.3) differs from zero. There is

1G22 ”
e A

Thus, it is seen that in the particular case f#=const an infinite cylinder under-
goes deformation with no stresses in the x,, x, plane. Let us remind that in the
classical thermoelasticity such a state appears —in conformity with the known
theorem of Muskhelishvili [8] — for the temperature field 8 (x,, x,), verifying the
equation V2 §=0 under the boundary condition (3.12). In a cylinder made of micro-
polar material the temperature field @ (x,, x,) verifying the homogeneous Eq. (3.11)
leads to stresses ¢;; and p;3 (4, j=1, 2) differing from zero.

A more ample discussion of bi-dimensional stationary problems of thermoelasti-
city with some examples will be published in “Archiwum Mechaniki Stosowanej“.

(3.]6) 033~
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B. HOBAIIKWW, TLIOCKASI TIPOBJIEMA MHKPOIIOJISIPHOM TEPMOYIIPY-
rocru

B Hacrosueit pabore npuBoaATCS COOTHOILEHUA H AuddepeHLManbHbIe YpaBHEHHA A5 MIIOCKOI
3afiauy TEPMOYIIPYTOCTH B MHKpononsapuoit cpeae (8 cpeae Koccepatos). Briseneus Takxe audupe-
PeHIHATLHBIE YPABHEHUA B NepeMelIeHHAX H BPAILEHHAX PABHO Kak M audipepeHunansHble ypas-
Hemus s QyRKimil HADpsDKEHi.



