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1. Introduction

The present author has examined in his previous papers [1], [2] the basic relations
as well as the nonstationary asymmetric linear thermoelasticity equations. Tn this
Note we are going to deal with the steady-state problems. We intend, namely,
to derive variational theorems and theorems on the minimum of potential energy,
as well as on minimum of the complementary work, and to extend the Reissner
variational theorem on the problems of asymmetric thermoelasticity.

Let us recall briefly the basic relations and equations derived in [1] and [2].
The free energy F referred to the Volume unit has the following form

(1.1) F =

c,
tk 0 — " ™ 02,

27 o
where

(1.2) y;i = Ui,j — ekji cot,, «« = mj,

yu denotes the asymmetric strain tensor and xtj stands for the asymmetric torsion-
-flexure tensor. The symbols ( ) and < > refer to the symmetric and skew-symmetric
parts of the tensor, respectively, ut stands for the components of displacement
vector, and an — for those of rotation vector. In the relation (1.1) the notation
0 — T — TQ, is introduced, T denoting the absolute temperature, and TQ — the
temperature of the body in its natural state, [i, 1 are Lame's constants, while a,
}', e, fi are material constants related to the isothermal state, e^- is the well known
Cartesian alternator.

There is v = 3Kat, where K is the modulus of compressibility, and at is the
coefficient of the linear thermal expansion. The free energy is the quadratic form
of its own arguments, positive definite. Its differential is the exact differential. The
material constants have to satisfy the following inequalities

(1.3) fi>0, A>0, /j,-a>0, a<0, 2y+3fl>0, y > 0, e >0
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Taking into account
dF dF dF

we obtain from (1.1) the following system of constitutive relations

(1.4) ai} = 2fj,yW) + 2 a y < w > + ( t y M - vO) 8i},

(1.5) Htj = 2pxm +2ex<ii>+Pxkk 8l},

(1.6) S=vykk+zr
7o

Here ajt denotes the asymmetric stress tensor and jujt — the asymmetric couple-
-stresses tensor. S is the entropy referred to the volume unit.

Substituting a^ and fijt from (1.4) and (1.5) into the equilibrium equations

(1.7) O)i, j+Xi = 0, em Ojk+Uji, ]+ Yi = 0

and expressing the quantities yn and Xji in terms of Ui, on, we obtain a system of
equations in vector form

(A+2/J) grad div u — (/x+a) rot rot u+2a rot eo+X = v grad 0,
(1.8) ._

(/5+2y) grad div cu — (y+e) rot rot m+2a rot M — 4aco+ Y = 0.

The temperature 6 appearing in the first equation of (1.8) is determined from the
equation of the conduction of heat

(1.9) Wd=-W/k.

Herein W is the source of heat, the quantity of heat generated per volume and time
unit, and k — the coefficient of thermal conductivity

We have to supplement Eqs. (1.8) and (1.9) with boundary conditions. Let us
assume namely that on a part of the surface A. (denoted by Au) displacements in
and rotations mi are prescribed. Moreover, on the remaining part of the surface,
Aa = A — Au, the tensions pi and moments mi be prescribed. Thus we have

W (*) = Ui (X), COt (X) = ODi (X) , XCAu,

pi (x) = Oji (x) it] (x) = pi (x), m% (x) = fxji (x) n-j (x) = rhi (x), x e Aa.
Here nt denotes the components of the unit normal vector to the surface A, its
components being directed outwards. Boundary condition of the equation of heat
conduction may take also a different form. Most frequently it is assumed that the

dO
temperature 0 or the heat flux — k' — are given on the surface A.

dn
2. Theorem on minimum of the potential energy

Let the body be in the state of static equilibrium under the action of external
forces and raising temperature. Let the components of the displacement vector u
and of the rotation vector w be given on the surface Au, and tensions pt and moments
mi — on Aa.
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Let us assume that there exists a system of displacements m and rotations OH
satisfying the equilibrium Eq. (1.10). We shall consider the displacements m+dm
and rotations ot+dcot consistent with the constraints imposed on the body.
Virtual displacements <5t/< and rotations don ought to be the functions of the class
C<3> taking zero values on Au and arbitrary values on Aa.

The virtual work principle takes now the form, [1], [2]

(2.1) J (X, dm+ Yi dwi) dv+ } (Pi dut+m dan) dA= J (an yn+M *n) dV.
V A V

This equation may be transformed — taking into account (1.4) and (1.5) — as follows:

(2.2) J (Xt dut+ Yt da>i) dV+ j {pi dut+m don) dA=dHe~v J ddykkdV.
v A v

Here

6He = J [2f*ym dyitj)+2ay<ij> dym+2yxm 8xm +
v

+2ex<ti> dx<t)>+fykk dynn+^xkk dxnn] dV.

Since the body forces and the body couples as well as the tensions and moments
of surface do not vary, we may write Eq. (2.2) in the following form

(2.3) dr = 0,

where

r = H. - J (Xt m+ Yt OH) dV- f (pt Ui+mi wt) dA-v j dyk!c dV,
V V V

(24)

The quantity F called the potential energy is extremum. Proceeding in an analogous
way as for symmetric thermoelasticity we arrive at the conclusion that F is minimum.
The theorem on potential energy states that from among all the displacements u<
and rotations OH which satisfy the given boundary conditions only those fulfilling
at the same time the equilibrium equations load to the minimum of potential energy.

Let us go back to Eq. (2.2) and transform the last integral appearing in the
right-hand part of this equation to the form

(2.5) v j 66ykk dV=v J 6 dukl k dV = v j Qnk duk dA-v j 0,k 6uk dV:
V V A V

After substituting (2.5) into (2.2) we obtain

(2.6) 6HS = J [(Xt - yd, t) dm+Yt dan] dV+ f [(/n+vflm) dm+mi dco(] dA.
V A

f
Aa

Now, we shall consider an identical body (i.e., of the same form and material),
but be placed under isothermal conditions. Let the body forces X* and the body
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couples Y* act on the body. The tensions pi and moments m* are assumed to be
given on the surface Aa, while displacements u* and rotations ro* — on Au. We
ask the following question: What should be the quantities X*, Y* — expressing
forces and couples acting inside the body — and, on the other hand, the quantities
p* and m* — expressing the tensions and moments acting on the surface An —
with identical boundary conditions for Au in order to obtain the same field of
displacements ui and rotations on in both viz., thermoelastic and isothermal problems.
To get the answer, we shall compare (2.6) with the virtual work equation

(2.7) 6He = f (X* 8Ui+ Y* da>t) c/V+ J (p* dm+m* doH) dA.
V A

In view of the identity of m and w* fields, the left-hand parts of Eqs. (2.6) and (2.7)
are identical, too. Thus, we obtain the following relations

X^Xi-vd.i, Y*=Y{, xeV,

(2.8) p* *

ui == Ui, cot = u>i, x e Au•

Relations (2.8) represent the body forces analogy by means of which each
steady-state problem can be reduced to the isothermal problem of the theory of
asymmetric thermoelasticity.

3. Theorem on minimum of complementary energy

Let us solve Eq. (1.4) with respect to y^ and Eq. (1.5) with respect to xij. We
have

(3.1) ytj = 2,u' am+2a' ff^+A' &t} <rtt-+«« 0 <5W,

(3-2) % - 2y' /M(W+2e' nm +fr &0 ixkk.

We introduced here the following notations

1 1 1 1
2 ' 2 ' '

It is easy to check that

dF OF
(3.3) • yn =

ajt

if F is expressed as the function of stresses an, couple-stresses /J,JI and temperature
0. We introduce the notation

(3.4) Wa = fi' am
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Then '

dWa ' dWa

(3.5) yu = — 1- at 0 6{j, xt} = ——.
Odji OfA,ji

We shall consider the integral

(3.6) / = J (yjido-ji+xjidfiji) dV.
v

In this expression (5o% 3/j.ji denote the virtual increments of stresses and couple-
-stresses. These increments are regarded as functions of class Ca\ as very small and
arbitrary quantities. Taking into consideration (3.5) we have

(3.7) J (yn dffjt+Hji dfiji) dV - 6Ha+ at f 0 5au dV.
v v

where

Transforming the left-hand side of Eq. (3.7), taking into account the relation (1.2)
and introducing notations dpi — doji Hj, dnn = dfiji tij, we obtain

(3.8) j (m d pt+CDt dmi) dA — j [m dan, 1+<°i lem tokj+dun, j]] dV =

] OdakkdV.
v

We require the stresses ctjt+daji and couple-stresses pji+dfAjt to be statically possible.
It means that the equilibrium conditions

(3.9) 0fi,i+d0jt,]+Xt+dXt - 0,

(3.10) ewe (<Jjk+8cjk)+/J'Si, j+&Mt, j+ Yi+dYi = 0

have to be satisfied inside the volume V and the boundary conditions

(3.11) pt+Spi = {an-\-5an) nj, rrn+dmi == (/

on the surface Aa.
The quantities 8a^ and d/nji on Au may be arbitrary. In view of the equilibrium

equations (1.7) and boundary conditions (1.10) we have

6aji, j+dXt = 0, eijk dajk+S/ijt,]+dYt = 0, xeV,

and

dpi = daji ri], 6mi = dfin nj, x e Aa.

As we want to compare all the, fields of stresses and c juple-stresses satisfying the
equilibrium equations, but not necessarily the comptability equation, it should
be assumed that dXt = 0, dYt = 0 inside the volume V, and dpi = 0, Srm = 0 on
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the surface Aa, leaving the increments dpi, dim on the Au surface arbitrary. Under
these restrictions Eq. (3.8) takes the form

{3.12) J (ut dpi+cot drrti) dA - 6Ha+at j Bdffkk dV.

Because displacements m, rotations an and temperature 0 do not vary, we have

(3.13) dF* = 0,

where

(3.14) F* = Ha+ at J aklc dV - j (pi w+nn m) dA, Ha= j Wa dV.
V Au V

The expression F* is said to represent the complementary work. Similarly as in
the theory of symmetric thermoelasticity, it can be proved here that F* becomes
minimum. Eq. (3.13) is the theorem on minimum of the complementary work
•extended to the problem of the theory of asymmetric thermoelasticity. This
theorem says that from among all the tensor fields ff#, /ijt satisfying the equilibrium
equations and the boundary conditions given by the tensions pi and moments mt
only those actually occur which reduce the functional F* to minimum.

4. The extended Reissner's theorem

Thus, the Reissner's variational theorem [3] formulated in most general terms
can be easily extended so as to include the problems of the theory of asymmetric
thermoelasticity.

Let us consider now the following functional I =

<4.1) / = J { W, — vByjcjc — Xim— Yi a>i — an [yn — (iii, j — Ekji «*)] —
v

— pn(x]i — cot, j)} dV— j (pi Ui+rki cot) dA —
Aa

— J [pi (ui — iii)-\-nn (cot — wi)] dA,
Au

"where

<4.2)

~T ykk ynn + y Mick Hnn •

Here pi and nn are forces and moments given on Aa, in, an — components of the
•displacement vector u and of the rotation vector on co, respectively. Let us seek
for the conditions necessary for / to be stationary. Equalling the first variation /
to zero and taking into account that functions ya, K]t, ut, cot, a^, fiji show virtual
increments inside the volume V, while the virtual increments of functions M<, cot
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can be arbitrary on Aa, and the virtual increments of functions p%, mt — arbitrary
on Au we obtain

C\dWB dWe
(4.3) dl = 0 = I \—— 8y^ -\—r • dxji — vOdtj dyji — Xi din — Yi dan —

J I dyji OKji
v

- Oji [dyji — (duit j — Etjic «H)] —

— I (pi dut+nn Scot) dA
Aa

[(iH — m) dpi-{-(coi — coi) dmt] dA .

Integrating by parts, making use of Gauss' transformation and arranging the results
in groups, we obtain

C\ldWe \ IdWe \
(4.4) I ~r Oij — d{j vdl (5V,Y 4- I~T Mji) dxji — (Xi~\-ffji j) dlli —

J l\ Oyji I n \ OKji I
— (^ijic ffjk-\-{Aji,;+ Yt) dcc>i-\-(yji — tii, j-\-£kji ^k) 8ffji-\-

I f '
• «>i,j) SfijiidV— I [(pi — pi) dui-\-{mi — mi) dcoi] dA —

A

~ I l(ui — Ut) 8pi-\-(cot — toi) dmi\ dA = 0.

As result of independence of particular increments 8yn, 8xji, dm, 8m, dan,
from each other, we obtain from Eq. (4.4) the following system of Euler equations
of variational problem

o-ji, j+X

yn = m,

dWe

dyji

i = 0 , 3tjie C

j-emcoi,

Ojt+dii vO,

Pi=pt,

in = in

Hit = COt,

=^: /

mt = mt,

mi = cot

-Yi = 0,

u

lit)

xeAa,

x eAu-

xe

xe

xe

V,

v,

(4.6)

This is the basic system of equations of the theory of asymmetric thermoelasticity.
The theorem of E. Reissner extended to the problems of asymmetric thermoelasticity
states that from among all the stress states c% couple-stresses states na, displacement
states ut and rotation states on, satisfying the boundary conditions (4.6) and
equilibrium equations (4.5) — only those actually appear which reduce the functional
/ to a minimum.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF FUNDAMENTAL
TECHNICAL PROBLEMS, POLISH ACADEMY OF SCIENCES

(ZAKLAD MECHANIKI O£RODK6W CIAGLYCH, INSTYTUT PODSTAWOWYCH PR0BLEM6W
TECHNIKI, PAN)
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B. HOBAU,KHK, HEKOTOPblE TEOPEMbI, KACAlOllJHECfl HECHMMETPHHE-
cicofii TEPMoynpyrocTH

B HacTOsimeii pa6oTe BiiBeflemi cxteflyioiL(He BapifaujiOHHMe TeopeMti necHMMeTpMtecKoft
TepMoynpyrocTH, a HMOHHO: TeopeMa o MHHHMyMe noTeiiLniajiuHoii 3neprnn, TcopeMa o MMHM-

flonojimrrejibHoft paSoTti, a Taxace pacuiMpeHHaji TeopeMa E. PeficcHepa.


