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1. Introduction

The present author has examined in his previous papers [1], [2] the basic relations
as well as the nonstationary asymmetric linear thermoelasticity equations. In this
Note we are going to deal with the steady-state problems. We intend, namely,
to derive variational theorems and theorems on the minimum of potential energy,
as well as on minimum of the complementary work, and to extend the Reissner
variational theorem on the problems of asymmetric thermoelasticity.

Let us recall briefly the basic relations and equations derived in [1] and [2].

The free energy F referred to the volume unit has the following form

(1.1) F= wyanYant s Yoz +7%an *ante%ap *ap -+
A B ¢
+ 7 Vkk Y < T Hkk o — VYkk 0~ 2T, 02,
where

(1.2) Vit = Wi, §— €kt Ok, *ji = W4, ],

yiy denotes the asymmetric strain tensor and »x;; stands for the asymmetric torsion-
-flexure tensor. The symbols () and { ) refer to the symmetric and skew-symmetric
parts of the tensor, respectively, u; stands for the components of displacement
vector, and wi — for those of rotation vector. In the relation (1.1) the notation
0) =T — Ty, is introduced, 7 denoting the absolute temperature, and T — the
temperature of the body in its natural state, x4, A are Lamé's constants, while «,
¥, &, i are material constants related to the isothermal state. ¢ is the well known
Cartesian alternator.

There is » = 3Kay, where K is the modulus of compressibility, and «; is the
coefficient of the linear thermal expansion. The free energy is the quadratic form
of its own arguments, positive definite. Its differential is the exact differential. The
material constants have to satisfy the following inequalities

(1.3) u>0, i>0, p—ae>0, a<O0, 2+38>0, >0, &>0
289-—[381]
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Taking into account
oF oF oF

Uﬁ:m—’ P!i:"‘;’;;: =_F

we obtain from (1.1) the following system of constitutive relations

(1.4) Oy = 25y 20y gy +(Ayrr — v0) Oy,
(1.5) Mg = Zlux(u,-i—stw}—J-ﬁx,m LS

Ce
(1.6) S =wmrt 0.

Here oj denotes the asymmetric stress tensor and uj — the asymmetric couple-
-stresses tensor. S is the entropy referred to the volume unit.
Substituting o and uy from (1.4) and (1.5) into the equilibrium equations

.7 oji,1+Xi =0, ek otpg, +Yi=0

and expressing the quantities y4 and sy in terms of uy, wy, we obtain a system of
equations in vector form

(A-+2u) grad div 2 — (p-+a) rot rot u-+2a ot w+-X = » grad 0,
(B+-2y) grad div @ — (y+¢) rot rot w-+2a rot u —4aw+¥ = 0.

The temperature 0 appearing in the first equation of (1.8) is determined from the
equation of the conduction of heat

(1.9) V20 = —Wjk.

Herein W is the source of heat, the quantity of heat generated per volume and time
unit, and k& — the coefficient of thermal conductivity

We have to supplement Eqs. (1.8) and (1.9) with boundary conditions. Let us
assume namely that on a part of the surface 4 (denoted by A,) displacements
and rotations @ are prescribed. Moreover, on the remaining part of the surface,
As = A — Aq, the tensions p; and moments my be prescribed. Thus we have
T w (X)) = u (x), oi(x)=awi(x), x¢Au,

) =o0n()ng () =pe(x), mi(x) = pu () n;(x) =mi(x), x€ed,.

Here n; denotes the components of the unit normal vector to the surface A, its
components being directed outwards. Boundary condition of the equation of heat
conduction may take also a different form. Most frequently it is assumed that the

().
temperature f or the heat flux — k’;);are given on the surface A.

2, Theorem on minimum of the potential energy

Let the body be in the state of static equilibrium under the action of external
forces and raising temperature. Let the components of the displacement vector i
and of the rotation vector o be given on the surface 44, and tensions p; and moments
mi — on Ag.
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Let us assume that there exists a system of displacements u; and rotations w4
satisfying the equilibrium Eq. (1.10). We shall consider the displacements ;- duq
and rotations w¢+dw; consistent with the constraints imposed on the body.
Virtual displacements du; and rotations dw¢ ought to be the functions of the class
C® taking zero values on A, and arbitrary values on A,.

The virtual work principle takes now the form, [1], [2]

@0 f (Xi Sui+ Yy Swi) dV+ f (Pt Our+-my Savg) dA = J’ (g1 pgi+pge %) AV .
Vv A Vv

This equation may be transformed — taking into account (1.4) and (1.5) — as follows:
22 f (Xt S+ Y3 b)) dV+ f (pi Sus-+my Sewy) dA = 6H, — v _f 00y dV .
Here ’ ’ '
0H, = J Ruyap van 20y sy 0% sy +2v%ap O%ap+
128x% 4y 0%ygy+ Yk Y ontBrexr Otpn] dV.

Since the body forces and the body couples as well as the tensions and moments
of surface do not vary, we may write Eq. (2.2) in the following form

(2.3) éI'=0,
where

I'=H— [ Xut+Yio)dV— [ (piutmo)dd—y [ OydV,
v v 14
24)

Ce
H, J (F+vyuﬂ+ﬁgz) av.
The quantity " called the potential energy is extremum. Proceeding in an analogous
way as for symmetric thermoelasticity we arrive at the conclusion that I" is minimum.
The theorem on potential energy states that from among all the displacements uq
and rotations w; which satisfy the given boundary conditions only those fulfilling
at the same time the equilibrium equations load to the minimum of potential energy.

Let us go back to Eq. (2.2) and transform the last integral appearing in the
right-hand part of this equation to the form

(2.5) vff)éym;dV=v fﬂéuk,de=v j Ony, Suz dd — v j 0, & Sug dV-.
v V A ¥
After substituting (2.5) into (2.2) we obtain
(2.6) 0H, = f [(X: —yﬁ', {) Sui+ Yy dew(] dV+ f [( pi-+v0nq) Sus-+my dovg] dA .
¥ Aa

Now, we shall consider an identical body (i.e., of the same form and material),
but be placed under isothermal conditions. Let the body forces X} and the body
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couples Y} act on the body. The tensions p; and moments m; are assumed to be
given on the surface A,, while displacements #; and rotations ®; — on Au. We
ask the following question: What should be the quantities X;', Y7 — expressing
forces and couples acting inside the body — and, on the other hand, the quantities
pi and m; — expressing the tensions and moments acting on the surface A4, —
with identical boundary conditions for A, in order to obtain the same field of
displacements u; and rotations w; in both viz., thermoelastic and isothermal problems.

To get the answer, we shall compare (2.6) with the virtual work equation
@2.7) OH, = [ (X duit- Y dwi) dV+ [ (p} Suit-m] dwn)dA.
| 4 A

In view of the identity of u; and w; fields, the left-hand parts of Egs. (2.6) and (2.7)
are identical, too. Thus, we obtain the following relations

X=Xi—v,, Yi=Y, xeV,
(2.8) pi = pi+r0ng, mi=my, xecdhs,

. »
u; = u, m; = Wi, X6€EAy.

Relations (2.8) represent the body forces analogy by means of which each
steady-state problem can be reduced to the isothermal problem of the theory of
asymmetric thermoelasticity.

3. Theorem on minimum of complementary energy

Let us solve Eq. (1.4) with respect to yi; and Eq. (1.5) with respect to x;. We
have

(3-[) 'y.‘} = Zlu’ U(‘J]+2L{' (T(”./—i—;.’ lsu (Tkk'[‘-ﬂt /] du,
(3:2) #ip = 29" Wiy 26" pigy +0" 04y e -
We introduced here the following notations

1 1 Y st I

W=y Bl e 2 g Relimigs
;_r'=_i r=_..f__ K=Z-’——2-- = i
6uk’ P 62 Eh B Sk
It is easy to check that
(33) Vit = —{E Hji = dF-
doyi opg’

if Fis expressed as the function of stresses oy;, couple-stresses uy and temperature
0. We introduce the notation

G4 Wo=p"oup oupn+a’ 04y 0+ Bag Bap e lags Bapt

’ ’

T _2"‘ Okk Onnt "2" Hkk fnn -
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Then
(3.5) M= by, sl
We shall consider the integral

(3.6) I= [ (i dop-tny du) av.
v

In this expression doyi, duy denote the virtual increments of stresses and couple-
-stresses. These increments are regarded as functions of class C2), as very small and
arbitrary quantities. Taking into consideration (3.5) we have

(3.7) f (yji 0ogi-+ i Spp) dV = OH -y f 0 dopp dV .
v v
where
SH f(aw‘, T oW, A )
= ; YT aji s Opgi) dV.

Transforming the left-hand side of Eq. (3.7), taking into account the relation (1.2)
and introducing notations dp; = dojinj, dmy = dpji nj, we obtain

(3.8) f (i 0 pit+-oi omp) dA — J‘ [t dogt, g+ [etge Sors+duy, 51] dV =
A v
- j 08oikdV.
e

We require the stresses a;--d0j; and couple-stresses pji-+0u4: to be statically possible.
It means that the equilibrium conditions

(3.9 oy, j+00 i, 7+ Xi+0X; = 0,

(3.10) €ik (0i-+00 1)+ pg, j+0pge, j+Yi+0Yy = 0

have to be satisfied inside the volume F and the boundary conditions
(3.11) Pit-0pi = (o5-+005) ny,  m-+0my = (uje+0pg) ny

on the surface A4,.
The quantities doy; and duj; on 4, may be arbitrary. In view of the equilibrium
equations (1.7) and boundary conditions (1.10) we have

doji, - +0Xi =0, ek Ooje+0up, j+0Y; =0, xeV,
and
Ops = dajny, Omy=dujin;, X€A.

As we want to compare all the fields of stresses and couple-stresses satisfying the
equilibrium equations, but not necessarily the comptability equation, it should
be assumed that 6X; = 0, 6¥; = 0 inside the volume ¥, and dp; = 0, émy =0 on
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the surface A,, leaving the increments dps, m; on the Ay surface arbitrary. Under
these restrictions Eq. (3.8) takes the form

(3.12) [t Opit-eri Smi) dA = OHy+-a f 0d0xr dV .
’ Au ¥

Because displacements u;, rotations o; and temperature 6 do not vary, we have
(3.13) daIr* =0,

where

@14 I'*=Hto [owdV— [(poutmo)dd, Hy= [ WodV.
¥ Ay ¥

The expression I'* is said to represent the complementary work. Similarly as in
the theory of symmetric thermoelasticity, it can be proved here that I'™* becomes
minimum. Eq. (3.13) is the theorem on minimum of the complementary work
extended to the problem of the theory of asymmetric thermoelasticity. This
theorem says that from among all the tensor fields oy, uj: satisfying the equilibrium
equations and the boundary conditions given by the tensions p; and moments my
only those actually occur which reduce the functional I™* to minimum.

4, The extended Reissner’s theorem
7

Thus, the Reissner’s variational theorem [3] formulated in most general terms
-can be easily extended so as to include the problems of the theory of asymmetric
thermoelasticity.

Let us consider now the following functional I = I (yys, %su, Ui, Wi, Oty f41)

“.1) I= f {We—v0yix — Xy g — Yy 0y — 045 [yji — (i, 1 — €xgt 0x)] —
Vv
— pgi (g — w1, 1)} AV — f ( pi wi-+-me 1) dd —
Aag

i f [ pt (s — 1) +mq (0 — wi)] dA,
Ay
‘where

@42) W= mwyan Yan+®ar Y V% apt+exeagy %ap

A p
+ ??H: Yan =+ ? Hkk Hnn -

Here p; and my are forces and moments given on Aq, 4, @i — components of the
displacement vector u and of the rotation vector on w, respectively. Let us seek
for the conditions necessary for I to be stationary. Equalling the first variation I
1.0 zero and taking into account that functions yij, %y, us, wy, o5, uu show virtual
increments inside the volume ¥, while the virtual increments of functions u, g
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can be arbitrary on A4,, and the virtual increments of functions pi, n; — arbitrary
on A, we obtain

oW, oW,
(4.3) 8 =0= i Oy + e Ougi — 0045 Sy 50 — Xy dug — ¥y Oy —
7
v

— 80y,¢ [ysi — W, §— 6k 00)] — 041 [0y 5 — (Butg, 1 — €agz wr)] —

— Opgi [#51 — 4, 51— pgi (S3eg0 — by, ,)} dv— f(pt Suy-+my Swi) dA —

f [(ui — ) Spi+t(ews — i) Smg] dA .

Integrating by parts, making use of Gauss’ transformation and arranging the results
in groups, we obtain

¢4 ”(ay

oW,

— (€igx 01+ ps, J‘l’ Yf) dawi+(y s — i, j+-€xqi o) dogjit

+ (250 — ay, 5) 5#1:] dv — f[([)t — p1) Sy (mg — my) dw] dA —
A

- f [Gtr — ) Spi-(evs — @) dSmi] dA = 0.

As result of independence of particular increments dyji, 0xj, dui, dwi, dosi, Oy
from each other, we obtain from Eq. (4.4) the following system of Euler equations
of variational problem

o5, i +Xi =0, 9y ogptun, 1 +Yi=0, xeV,

(4.5) Vit = Ui, j — €ijk Of,  Hji = D4, xeV,
oW, o v oW, 2
o oji+04 20, B Jdis xel,

6 Pi ={5;, my = :j‘u, xeds,
Mg = ug, W= wi, X€e€Ay.

This is the basic system of equations of the theory of asymmetric thermoelasticity.
The theorem of E. Reissner extended to the problems of asymmetric thermoelasticity
states that from among all the stress states oy, couple-stresses states p, displacement
states w; and rotation states wy, satisfying the boundary conditions (4.6) and
equilibrium equations (4.5) — only those actually appear which reduce the functional
1 to a minimum.
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B. HOBALIKUM, HEKOTOPBIE TEOPEMBI, KACAIONUECA HECUMMETPHUYE-
CKOW TEPMOYIIPYT'OCTH

B nacrtoseii paGoTe BeIBENEHBI CHEXYIONUME BAPHALMOHHBIE TEOPEMbI HECHMMETPUYECKO T
TEPMOYNPYTOCTH, @ UMEHHO: TEOPEMA O MHHHMYME MOTCHLMANBHON YHEPIHM, TCOPEMA O MHHM-
MyME HONONHHTENbHOH paBoTsl, a TAKke pacumpedHas teopema E. Peitccuepa.



