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1. Introduction In the present Note we shall be concerned with a simply
connected, homogeneous and isotropic elastic body into which distortions (we denote
them by &) are introduced. These distortions will be considered as functions of
position and time, continuous and differentiable.

The distortions (initial deformations) &) may arise in various ways. Thus, they
may be plastic strains formed in the body under the effect of previous loading or
else alterations due to plastic hot working or, finally, deformations resulting from
errors in assembling (as, e. g., in plates or shells).

Would the disto. ions verify the equation of compatibility, there should be
no reason for stresses to be induced in the body. If, on the contrary, the distortions
do not comply with the conditions of compatibility, then in an elastic body the
stresses, oy, and temperature, 0 will appear.

We shall attempt in this paper to establish a linear theory of thermoelasticity
distortional effects being taken into account, a theory based on thermodynamics
of irreversible processes. Thus, we shall derive constitutive relations, a formula
for free energy and entropy, we shall give a complete set of differential equations of
the distortion problem and, finally, formulate the variation principle and derive
the theorem on reciprocity.

2. Considerations on thermodynamics. The starting point for our considera-
tions will be:
a) equation of motion

(2.1) ou, 1+ Xi = out,
b) equation of energy
(2.2) TS = — g1,

c) differential equation derived from the second law of thermodynamics

2.3) dU = oy dey+TdS .
213—{273]
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In the above equations following notations were used: ¢y denotes the tensor of the
state of stress, ey — that of the state of strain, X — the vector of body forces, § —
the vector of heat flux, u — the vector of displacement, U — internal energy, S —
entropy, g — density and 7" — absolute temperature. The point above the symbol
of a function denotes its time derivative.

Eq. (2.2) may be presented in the form

qi T, i
T2

; i _
(2.4) S= = (7)_1_}_0’ o=

The first term on the right-hand side of Eq. (2.4) refers to the exchange of entropy
between the body and its surroundings, while ¢ denotes the production of entropy
due to heat conductivity. In conformity with the postulate of thermodynamics
of irreversible processes there should be ¢ Z 0. This inequality — Onsager’s theo-
rem being applied — will be verified by the Fourier conduction law

2.5) qo=— kT4

Let us introduce the expression for the Helmholtz’s free energy F= U — ST,
where F = F(ey, T) and expand it — in the vicinity of natural state (where &y =
= &), T'=Ty) — into Taylor series with respect to the powers &y — ey and 7' — T = 0.
Discarding the terms of third (and higher) order, we obtain

A m
F(sis, T) = py(e15 — &) (855 — £3p) + —2?' (e—p—yrle—~e) e — 0,

2.6
( ) € = Exk e“:e%k,
whence
oF .
2.7 W= 2ug (et — egg)+[Ar(e — €0) — 7 0] 6ys.

Linear terms do not appear in formula (2.6), since the free energy, entropy and
tensor of the state of stress should vanish in the natural state. The symbols up
and A; appearing in relation (2.6) denote Lamé constants; the quantities y, and
m will be defined in subsequent paragraphs.

Solving the constitutive relations (2.7) with respect to strains, we get

I

Y ' ' ! :
&y = 8?_.,4" '3—!??— b1 02y 045+ Ap okx 845, Br = A’
2.8) ’ g
1 52 R i
T G#TKT 3 I L 3 M

To determine the quantity y, we have to consider the free dilatation of a volume
element assuming the distortion and stresses are none. It results from (2.8) that
— for & = 0, ;7 = 0 — there is

2.9) el = —;’K—” Y= asdi b
T
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Here the symbol a; stands for the coefficient of linear thermal dilatation and the
relation (2.9) expresses the property of an isotropic body consisting in that with
the rise of temperature only the elementary volume of body changes. Consequently,.
yr = 3Kpap.

Let us now determine the entropy §. Introducing

oS oS

(2.10) das = (0—%{-)1‘ degy+ (E)Ecﬂ"

into (2.3) and taking advantage of the condition that dU should be an exact differ-
ential, we obtain

211) (aS) (()O'fj) 5
2. 0€yy T-— or E_}’T L
Thus,
e
(2.12) dS = ypde + T dr,
oS .
where ¢, =T 57/ means the specific heat of the body under constant strain. In-

tegrating (2.12) — assuming that for natural state $ =0 — we get
5
(2.13) S=ypr(e—e+c, log}— :
0

Assuming

0
F‘ < | and expanding log 7/Tj into a series (only its first term will
0

be retained), we obtain
0
(2.14) S = yprle—e)te—.
Ty
Now, introducing (2.12) into (2.3) and performing integration, we obtain
A

The value of U being known, we obtain the formula determining the free energy.
It reads

: r
(2.16) F=U—ST=L— vy (e—e%0+c0—c log},—.
0

Expanding log T/T, into a series and retaining two first terms of this series, we
obtain the following expression for the free energy

Ce
=] — — g0 _—02
@2.17) F=L—yr(e—e)0— 5002,

Ce
Comparing formulae (2.6) and (2.17), we conclude that m = T
0
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Combining Eqgs. (2.3), (2.5) and (2.13), we obtain the equation for heat conduc-
tivity
(2.18) kT st = Tyr(e —ed)+c. T,

or

e - 0
_ —0f — — gl — =
Op=—0—1rle—e )(H" Tn) 0,
(2.19)
_k _ yrTo
H= o’ T T

T =1Ty+06.

Eq. (2.19) may be linearized under the assumption < 1. Taking into account

the sources of heat we get finally To
220 d—— ity =2 -l
(2.20) g~ 0—mple—e)=—", Q0=

The symbol W denotes the quantity of heat produced in time and volume unit.

3. Differential equations of thermoelasticity with distortions. Introducing consti-
tutive equations (2.7) into the equation of motion (2.1), we obtain the following
set of equations

(3.1) pr i, 13+ (ppr) w5+ Xo = ety 0,444,
where
(3.2) Ay =2uey ;4H-2p €%  or Ay =2ugpef+Kp ey,

provided we denote by e the following relation
0 0 1
Eqgs. (3.1) together with the equation of heat conductivity

1. . 0 .
. ——f— == — 0
(3.3) b0 = 0—mre ., e,

form a set of differential equations of thermoelasticity, the effect of distortion a?,
being accounted for. For &} = 0. Egs. (3.1) and (3.3) reduce to the known equa-
tions of thermoelasticity [1].

Eqgs. (3.1) and (3.3) forming this set may be separated if we introduce the vec-
tor function f;ﬁ and the scalar one, {. These functions are connected with the
displacements u#; and temperature 6 by the following relations [2]

(3.4) uy = (264 — I'0: 05) ps+70 0: L,
(3.5) 0 = np 0 0y O3 y+(1+a) O} C,
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where
Q= (1+a) [lfD—yoa;er,eVZ, I'=aD — yy ny 04,

| 1 1
D%zvz_;%_dgs D§=V2-?§-531 D=V2—:aﬂs

prtAp Yr Art+2up 12 M i
=z Vo= glE=ilem—re—s Car= kvt
Hr Hr (] e

Introducing Eqgs. (3.4) and (3.5) into Egs. (3.1) and (3.3), respectwaly, we obtain
a system of wave equations as below:

(3.6) D23 D — myng 0 V2) pit—~ (Xg A) =0,
2 Hr . Yr
(3?) (DID—anngvz) C+ —— (Q—'rh,.eo)=0, My=—73—.
cie e

The solution of Eqs. (3.1) and (3.3) become markedly simplified for the particular
1

case &y = ?5;; éo,

Assuming

(3.8) u=grad @+roty, X =op (grad #+roty),

we reduce the set of Egs. (3.1) and (3.3) to the following system of wave equa-
tions

2 myQ 3 1
(3.9) (QiD—npmp 0 V) @ = — = Deo_?}rmrea—?ﬂ,
1
K
3.10 2y — Y
G0 s gr Fr=a,

It is evident that in an unbounded medium the longitudinal waves are caused
by: sources of heat Q, distortions €0 and body forces p grad ¥

The temperature induced by the action of these causes may be determined
from the following formula
(3.11) 6= (Dzﬁﬁ Bre®+—% 2 19)

My

From Egs. (3.1) and (3.3) we may pass to the limit case, that is to elastokinetics,
when no sources of heat exist, motion is assumed to proceed under conditions of
adiabatic thermodynamic process (S = 0, $ = const).

It results from Eq. (21.4) that, for § =0, there is

§ =0.

?'r.
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Integrating the above expression with respect to time under the assumption that
for the initial state there is 0 (x,0) =0, e(x,0) = 0, €0 (x, 0) =0, we obtain the
following relation

(3.12) 0= — xnp(e—ev).

Eq. (3.12) takes the place of equation of heat conductivity (3.3). Introducing
Eq. (3.12) into Eq. (3.1), we obtain

(3.13) s s, g+ (Ast-ps) wy, s+ Xe = pti+2us €5y ;445 €.

The symbols ps = py, As = Aptuny myp stand for Lamé constants for the adia-
batic state.

4. Variational theorem. The starting point for our considerations is the prin-
ciple of virtual work accompanying the variation of displacements, [3]

(4.1 j (Xi — o) dug dV+ j P duy dA = j ayy Oeyy AV,
v A v

This principle holds true for all the relations between the state of stress and that
of strain.

Introducing into (4.1) the constitutive relations (2.7)

(4.2) o1 = 2up(ey— 3?;)"‘[27"(9 — e0) — yp 0] by,
we obtain

(4.3) f (X: — o) Ouy dV+ f i dug dA+yy f 0dedV +
Vv A v
+ [ 267 6% deyy+2r €0 Se] AV = OW.
V
Here
Ap
W = ppeyey+ “2-'62 :

Following Biot, [1], we introduce the vector function H. This function is related
to the vector of heat flux ¢ and the entropy S by the following formulae

(4.4) G=ToH=—kgad0, S§=—div(#H).
Comparing formulae (2.14) and (4.4), we get

. = i Cy
(45} T{)SZ—H}’#TU"_—T“}/TE—I_C:B, 6Hi,£=?rae+}_aﬂ.
0

Let us now multiply the first of the equation group (4.4) by dH; and integrate it
over the region V. Taking advantage of the second of the equation set (4.5), we obtain

Ci Ti
“4.6) yr {OéedV—!—F f@ﬁ@dV—f— fﬂéffndA-i— —kg fﬁ; dH; dV =0,
v <l A 7
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After eliminating from Egs. (4.3) and (4.6) the integral [ 6dedV and introducing
the function of dissipation and the heat potential 3

Tof . Tuf
_ZkV (H)2dv, D= » . HNSH@V, P= Tu 02dv,

we obtain the following two forms of the variational theorem
4.7) O6(W+P+D)= f(X{ ouy) Ouy dV -+ fp; Sup dA-+
v A

or
(47") . S(W+P+D) = [ (Xi—oit) budV+ [ pidudA+
v A
+ [T deydv — [ 06H.dA,
V. A
where
6&” = 2l éﬁfj‘l‘;LT di; de, .Fg = 2up E?j'{';{i" 3;; e,
From the variational prmmple (4.7) and (4.7"") we can derive the theorem on energy,
putting u;-+ 6w = w;+ ——dt and considering the actual motion of the body at
the same point after a time lag dt. Introducing into (4.7"') the following nota-

tions:

ou . k
Bus = T; di=vidi, O9=Ddt, OH = Hdt=——0,udt, and so on,
()

we obtain the equation

d
(4.8) W(K‘i‘P'i"W)—FZg: th vy dV+ fpf v dA+-
v A f

c k
+ frf? Efy dV+ ? J.GB,”dA .
0
=i

V
where

1 k
K=— f‘ﬂ;mrﬂ/, Yo = T 04,0:dV=>0,
0 =
4

P e
Vv
Proceeding similarly to the methods described in [4] we may derive from the
equation of energy the theorem on uniqueness of the solution of differential equa-
tions of thermoelasticity. We shall now consider a particular case, namely the tran-
sition from Egs. (4.7") and (4.7"") to classical elastokinetics. Assuming that the
sources of heat are lacking and bearing in mind the basic assumption of elastoki-
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netics, i.e., that the motion proceeds in adiabatic conditions ($ =0, S = const),
we obtain from (4.5):

yrTo
49) 0= —rnpe—e), pp="%

Introducing (4.9) into Eq. (4.3), we get
(4.10) [ X — i) bwi v+ [ piduda+ [ & 607V = 6w,
L A ¥

Following notations have been introduced in (4.10):

Oay = 2us Oeiy+2s 0y 0o, OW* = [ (2us £1j Oery+As ede) AV,
v

Us = lpy As = Aptounpmy being Lamé constants for adiabatic conditions. Now,
the basic equation of energy for elastokinetics will take the form:

d
4.11") o (KW= f Xivi dV+ fp; 01 dA-+ f &y oy dv,
vV A v
or
d
(4.11") Z(K-}—W*)=fX,“‘UfdV+fpfwsdA+fP§‘£ﬁdV,
v A v

where
F?; = 2,1'.!.3 E?j"l'ls (S{j e{l.

The displacements u; appearing in equations and relations (4.9)—(4.11"") have
a different meaning than in formulae (4.1)—(4.8). We determine them solving the
following set of equations:

(4.12) s tt, 5+ (Ast-pas) g, g1+ Xy = our+-Ay
where
A; = 2#3 E?,—i" /13 e?i “

5. Theorem on reciprocity. In this paragraph we shall consider two systems
of causes and effects. As causes provoking the motion we consider body forees,
surface forces, sources®f heat, surface heating and distortions, while displacements
ug and temperature ¢ will be considered as effects. The second system of causes
and effects will be distinguished from the first by primes.

As a starting point for our considerations we take the equations of motion and
of heat conductivity after the inverse Laplace transformation has been performed
on them. Initial conditions are assumed to be homogeneous.

We have then

(CR)) ou,s+Xi =p2u, Oy, +Xi=p2ui,
= P _ = .
0.0 = 0—trpe=—"—-0 —nrpe,
(52

' 2 nt — 1 ' =
B =0 —ppe = —— 0~ pe'%
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where

oo

o5 (%, p) = L [o45(x, 1)] = f oy(x,)e=2tdt, and so on.
0

We multiply the first of Eqs. (5.1) by uj, and the second — by .

We subtract the second from the first and integrate the resulting formula over
the volume of the body. After simple transformations we obtain

63 [ Kg—Xiu)dv+ [ piws—piu) dd = [ (Guey—ayyen)dv.
¥ A v

Making use of constitution equations (2.7),we reduce (5.3) to the form
54) [ ig—Xiw) av+ [ (posiy—pu) dd+yr [ @' —0' ) dv+
vV A v
+ [ 2urEy el —zif ) +ip(@0e —202)] dV = 0.
vV

Similar operations will be performed on the group of equations (5.2): we multiply
the first equation by 6’ and the second — by . We subtract then the second
from the first and integrate the resulting formula over the volume of the body V.
After simple transformations we get

(5.5) f(é’é,,,—ﬁﬁj,,)dA—pnrf(éf}'+é'é) dv+
A vV

s = 1 e
+P??rf(e°9'—8’°ﬂ)dV+‘;f(QO’—Q'B)dV=0.
¥ v

Eliminating from (5.4) and (5.5) the term common to both, we obtain the following
equation

(5.6) m.xp{ [ Ritiy— Xia) dv+ [ (il — by ) dA+ f(gg;a;,_zgaﬁ)dv}=
Y A 1 4

=uyr [ @'0,0—00.,) dd+yr [(Q0'—0'0)dV.
A Vv
Here:
0ij = 2urey+(Are—yr0) 0y, oy =2ureyt+(Are —yrd’) dy.

Performing on (5.6) the inverse Laplace transformation, we obtain the theorem on
reciprocity in its final form, the effect of distortion being taken into account.

: oy (x, t — 1) ) our(x, 7)
G e { f dV(x)j dTle (x, 1) ———— Xi(x,t— 1’)—5;‘—"] o
7

0 3 B
fdA(T)fd'r[pi(x T)"_ﬁix__r—)"pi(x f—-t_} i (x, I)]+

o0t
A
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¢
dog; (x, t — 0 ;

= de(x) [dr[e%(x, ‘r)-—aﬁ(%—i)'— &y (X, 1 —7) ﬂ;_:_ﬂ“___
Vv 0 ' ‘

t
= wyp f dA (x) f de[0' (x, t—7) 0, m(x,7) — 0, (x, t—7) 0(x, D]+
0

A

I
+vr de(x) f dr[0(x, D)0 (x, 1 — 1) — Q' (x, t — 1) O(x, 7)].
Vv 0

For &) = 0, &;) = 0 the above theorem reduces to the theorem given by V. Jonescu-
-Cazimir in [5].

In a particular case of an unbounded region Eq. (5.7) becomes markedly simpli-
fied. If, namely, the body forces, sources of heat and distortions act in a bounded
region, the surface integrals in (5.7) vanish.

Let us consider now the transition from the coupled problem of thermoelasti-
city with distortions to the elastokinetic problem. The adiabacity of the process
being assumed following relations hold true

(5.8) 0=—unle—ed), 0 =—unp(e’—e).
They take place of the equations of heat conductivity. We perform on (5.8) the
inverse Laplace transformation and then introduce the formula obtained into Eq.
(5.4). After simple transformations, we obtain the theorem on reciprocity for elasto-
kinetics
(5.9 f (Xe 1y — X ¢ ug) dV+ _]' (pt.uty — py us) dA+ f (e o3y — €55 o1s) AV = 0.
; v c A V
The functions us, ug, 61, oy appearing in (5.9) have a different meaning than those
in Eq. (5.6). The displacements u; and u; may be determined from the differential
equations

s ui, 1+ (As+ps) wg, 51+Xi = p2 ui+As,

Hs a;,jj‘i‘(j-s“!‘ﬂs) E;, j;“"i}r = p? E’r"ﬂ;a
R Y YO W D R W, PN
while the stresses oy and oy; from the relations
(5.11) oy = 2us eij+As Oy e, E;j = 2us g;,—Fl,; dige’ .
s = fips As = Ap+uny my are here Lamé constants for adiabatic state. Performing
on (5.9) the inverse Laplace transformation, we obtain

(5.10)

where

i
(5.12) f av(x) f dr [Xi(x, ©) g (x, t — 1) — X, (x, 1 — 7) s (x, ©)]+
1 0
t
+ f dA (x) J‘ dr [pi(x, T) u; (x, t —7) — py(x, t — 7) ug (x, 7))+
A 0

t
+ f dV(x)f dr [e3 (x, 7) oy (x, t — 7) — & (x, t — 1) 09 (x, 7)] = 0.
v 0
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From the theorem on reciprocity (5.7),we can derive formulae similar to the known
formulae of Somigliano and Green for elastostatics [3], [3], as well as formulae simi-
lar to those of Meysel [6] in the theory of thermal stresses.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF FUNDAMENTAL
TECHNICAL PROBLEMS, POLISH ACADEMY OF SCIENCES

(ZAKLAD MECHANIKI OSRODKOW CIAGLYCH, INSTYTUT PODSTAWOWYCH PROBLEMOW
TECHNIKI, PAN)
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B. HOBALIKUIA, JUCTOPCHUOHHBIE 3AJJAYM TEPMOVYIIPYT'OCTH.

B paGote BbiBEICHEI KOHCTHTYTHBHBIE YPABHEHUA W OCHOBHBIC Ju(depeHLIHATBHBIE YPABHEHNS.

ChopMyTHPOBaH BAPHALMOHHBI MPHHIMI W BHIBEIEHA TEOPEMa B3AHMHOCTH AMA [QUCTOPCHOH-
HOIf 337AYH TEPMOYMPYTOCTH,



