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1. Introduction

In [1] we derived constitutive equations of thermoelasticity for the Cossérat
medium and gave basic displacement differential equations as well as an extended
equation of heat conduction. Finally, we gave a system of wave equations obtained
from separation of basic equations of thermoelasticity. In the present paper we
give the virtual woik principle, extended to the pioblem of thermoelasticity for
the Cossérat medium as well as the energetic theorem, uniqueness of solutions, and
the theorem on reciprocity and its consequences. We shall use here the notations
of [1] and will add some new ones.

2. Virtual work principle

The virtual work principle for isothermic and static problem was given by
W. T. Koiter [2]. For dynamic problems considered here this principle has the
form:

@1 [ (X — eiis) Sui+Yi deoil dV+ [ (pi du-tge Seoi) dA =
Vv A
= f (547 Opag-+-myq Snay) AV
1 4
The left-hand side of this equation denotes variation of work of external forces,

whereas the right — the variation of internal forces.
Inserting into (2.1) the constitutional relations

2.2) si5 = 2 Yy+(Ayex — B0) 04,
(2.3) mye = Aul? (ig-+n2egs)

we express the right-hand side of (2.1) by the components of strain tensor yi, com-
ponents of torsion-flexure tensor i and temperature 0:

@4) [ (X — oits) Sur+ Yy Seor] dV+ [ (i Su+gu 8ar) dA =
g ! = W —B [ Obyeea,
v
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where
W= f Ruyiy Oyis+Ayer Oyirt-4ul2 (s Oxig+nxsi dng0)] AV
v

Eq. (2.4) should be supplemented by further equation, since only four causes,
namely X;, Y3, pi, g appear in this equation in explicit form.
We have adjoined to Eq. (2.4) the relation

(2.5) — ﬂf 0dyir dV = f On; OH;
v A

% (pspav+ 2 ( dyom av
T { & f i i 3
V

0y
V

derived from the equation of heat conduction by M. A. Biot [3]. The vector H
in (2.5) is connected with the vector of heat flow ¢ and the entropy S by following
relations

(2.6) g=TyH, S=—div(H).

Taking into account the Fourier law of heat conduction

2.7 q= — kgrad 0

and the relation for the entropy rate [3]

(2.8) —divg =Ty S = Byux To+c, 6

we obtain the following connection of the vector H with temperature 0 and di-

latation yrx

2.9 Y= ko H, o—ﬁ
(2.9 Hi= Ty i 1= Ty Vkk-

Introducing (2.5) into Eq. (2.4) we have
(2.10) & (W+P+D) = f [(X; — otts) Sui+Yi dog] dV +
+ j (ps dui+gi dog) dA — f Ony 6Hy dA .

We have applied here the heat potential P and the dissipation functlon D, introduc-
ed already by M. A. Biot [3]

Ty : To I 5
@1y P= 62 v, D=—2-k-f(m2 av, 6D=—k-JH, SHy av .
¥V

270
V

For Y; =0, g¢ =0, »#; =0 Eq. (2.10) reduces to the variational equation of
coupled thermoelastic medium without couple-stresses. The variational princi-
ple — Eq. (2.10) — may serve to derive the energetic theorem, if we compare the
functions s, w;, 0 in the point x at the moment ¢ with those actually appearing
in the same point after a time lapse df. Thus, introducing into Eq. (2.10)

b=l i 8 o i
g = ——at=wval, wr*— = Wi
2.12) ot . ot
80 = Odt, OH; = Hydy = — =0, OW= Wt
0

and so on.
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We obtain the following formula

d
(2.13) o K+ W+P)+y, = f (Xivi+Yi wy) dV+-
V

k
o f (pivi-+giwy) dA+ T f&&m; da,
A A

where

e 1 i dD k 5
= zgfmvi y ZG_W_?{J[(E'O dv >0,
Vv

4

Here K denotes kinetic energy, and y, is proportional to the source of entropy
which is always a positive quantity.

3. Uniqueness theorem

The demonstration of the uniqueness of solutions of thermoelasticity equations
may be derived basing on the energetic theorem, Eq. (2.13). Assume that there are
two solutions, one characterized by the functions uy, 6 and the other — by u,", 6"".
Denoting the difference between these two solutions by

(3.1) u=u—u, 6*=0—0"

it is easily seen that the functions u, 6™ satisfy homogeneous differential equations,
homogeneous boundary conditions and initial conditions. Thus, the solutions
uy, 0* refer to a body wherein body forces, body couples and heat sources inside
the body are lacking. At the same time, there are no foree vectors and couple vectors
transmitted through the surface A.

Thus, it remains to prove that inside the body the values for the stresses o;',,
deformations yz, #y and temperature 6* are zero-values.

The entropy equation (3.13) for the functions u;, 6* will assume the following
form

7
(3.2) — (KW PY) = — 5 <0,
or
d 1 * ok % A -u % ok
(3.3) 7 | | 7% + uyy vy t+ bY (Vir)? + 2012 (g 2y + oy %5) +
v _,‘5; bt )
+ 2 © )-] dv £0.

Consequently, we infer from the inequality (3.3) that the integral cannot rise for
t > 0. Since the initial conditions for the integrand functions are homogeneous,
the integral itself at the initial moment should be equal to zero. Its values cannot
be negative as the integrand expression is a sum of squares with positive coefficients.
Thus, the value of the integrand appearing in (3.3) is necessarily zero for ¢ = 0.
This leads to the following equalities

(3.4 v =0, py=0, x3=0, 0°=0
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or
GBS G=os y=vi =ty =07 for 130

in the region V.
Making use of relations (2.2) and (2.3), we see that

Sy=Sys My=my, Fyg=ry,
too.
Thus we may conclude on the uniqueness of the solutions of thermoelasticity
as regards the deformations, stresses and temperature. For the displacements we
obtain

(3.6) u; = uy + linear term.

The linear term describes here the rotation and translation of the body consid-
ered as perfectly rigid. In the case of displacements prescribed on A, the
linear term vanishes.

4. Theorem on reciprocity

Consider two sets of causes and effects acting upon an elastic body contained
in the region ¥ and bounded by the surface 4. We number among causes the body
forces Xi, body couples ¥;, heat sources Q, loads p; and g; on the surface 4 and
heating of the surface -4 (given the temperature 6 or flow of heat — kf,, on A).
The effects are the displacements u;, rotations w; and temperature 0. The second
set of causes and effects will be distinguished from the first by adding the sign ““prime”.

Consider the expression
@y I= [ (X — X w)dv+ [(Yiw;— ¥ w)dvV+
v 14
+ [ (et — P dA+ [ (g, — g0 dA.
A A
Here the functions

Xi(r,p) = L [Xi(x, 0] = [ Xi(x,0) e dt,
42) §

ui (%, p) = L [ug (x, 1) = f uy(x, 1) e~ dt, and so on,
0

are Laplace transforms of the function Xi, u; ..., etc. Transform the surface inte-
grals appearing in the expression (4.1) making use of the known dependencies

4.3) Pi=0un;, g = myny
and applying the divergence theorem. Thus we obtain the expression

@44 I= f [(Xi+07i,9) up — (X +ay1.4) i+ (Fitmy,g) oy — (¥ —i—mﬂ 5) wi+
+aji u” — O, j+myg g g — my wi,g] dV.
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Exploit the equations of motion for both sets of causes and effects. Applying to
them Laplace transforms and assuming that the initial conditions are homogeneous,
we have:

(4.5) ou,9+X1 — p2us = 0, E;M-I-I’; — p? a; =0,

It is evident that, taking into account Egs. (4.5), the first two terms under the inte-
gral in expression (4.4) vanish. Further, we decompose the force-stress tensor oy
into symmetric part s;; and asymmetric part ry and exploit the formulae for ri;:

(4‘6) ;mﬂ =i 'k Eimn (Eﬂ,ﬂ“ ]_’rf) 3 ;;m; = % E{mn (ﬁ;t_j—f— _I‘-’;) .

After simple transformations the expression I assumes the form
@7 1= f (S8 15 — Sy Yig+myi iy — myg i) dV .
4
Finally, making use of relations (2.2) and (2.3), we get
“38) 1= Vj @ yiw — 071 AV

Comparing the expressions (4.1) and (4.8), we obtain the first part of the theo-
Tem on reciprocity

@9) [ (it — X ut Yooy — Vi o) dv+ [ (ot — pria+
V A
+gi w; — g w1) dA+p f Oy — 6" yar) dV =0.
V

The second part of the theorem on reciprocity is obtained by taking account
of the heat conductivity equations for both sets. We apply to these equations Laplace
transform assuming that the initial conditions for the temperature are homoge-
neous.

= P = g ot . 0'
@10)  Oy——0—mpyer=—""s 05— 0 —MmPrw=""/r:

x|

Multiplying the first of Eqs. (4.10) by @’, the second by 6, subtracting
one from another, integrating over the region ¥ and making use of Green’s trans-
formation, we get

Ny o 1 Ao e
4.11) p?}of(?kicﬂ!—?kkﬂ)dV+ ?I(Q 6 —08)dV—
v v

—f(é'ﬁ,ﬂ—é,’,,é)dAﬂ.
A
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Eliminating from (4.9) and (4.11) the common term, we obtain the final form
of the theorem on reciprocity for the Cossérat medium

Mo #p

@.12) [ f Fid — Tt Ta— Tm) av+

f(p;zq 2 Ui+gi wp — g;wt)dA—l—xf(Qf}ﬁ
—Buﬁ)dA—I—f(Q §—068)av =0.

It is obvious that in this relation appear all the causes and effects. Applying the
inverse Laplace transformation to Eq. (4.12) we have

770 {fdy(a)flxi(x T)EEL\_:__)__X; (x’t_.r)_chi;:_’g+

B
dul(x, ;

LYi(x, I)L(xat—f)—v Y! (%, t—'.*:)ﬂ—ai&(_;x—-]dr—l—

0 oug (x,
4.13) fdA(A)flp;(x, z)—”ﬁ’——l 2 (x,z_z)lg:—2+

A

()J Xy a ]

S ,)U_r{\o{_i_g;(x,,ﬂ)_w%fg

+x (0 (x, 7) ﬂ:n (e, t—71) — 0" (x,t — 1) 0,0 (x, 'r))] dr 4
= f dV(x) f BrQ (xt—1)—0(x1t—17)0(, 1')]} dr =0.
v 0

The theorem on reciprocity (4.13), at ¥;= ¥, =0, gi= g; = 0 passes into
the theorem on reciprocity for an elastic medium without couple-stresses, given
by V. Cazimir-Ionescu [4].

For static loads and for stationary heat flow we get the system of equations

(4.14) I(Xr uy— X, w+Yi0; — Y o)) dV+ f(p;, Uy — pru+gr o) — g o)) dA -
! +ﬁf(9m-0 yir) dV =0,

(4.15) [©'6—goYav+x [(00), — 0'0,4) dd=0.
v Vv

In the reciprocity equation (4.14) the temperature @ and 6’ is treated as known
functions, obtained from solution of the heat conductivity equations
0 i o'
(4.16) 9,1_1 A :, B'ﬂ e

*

Solution (4.15) may be treated as a theorem on reciprocity for the problem of
heat conductivity.
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5. Conclusions from the theorem on reciprocity

Let us consider first an infinite Cossérat medium. Let a concentrated and
instantancous force X; =0 (x — &) 6(?) di directed along the axis x; be acting
in the point & of this medium. Denote by U (x, & 7) the displacement caused
by this force. Further, let a concentrated and instantaneous force X; =
=4 (x — ) 6 (f) dy, directed along the axis xy, be acting at the point 7. Denote the
displacement caused by this force by U (x,#,#). From the theorem on re-
ciprocity (4.13) formulated for an infinite region we have

6U§” (x,n,t—1)
ot

t
(5.1) [dV(x) f dr [6 (x— & 6(7) du
v 0 -

UM (x, &, 7)
. 6(1‘—:7)6(!—1:)6;;——1%—:-]:

hence
UPEn)=UP®m&0.

After integration with respect to time, we finally get
(52) UP (&, m,0) = U (n, &, 1).

Let a concentrated and instantaneous force X3 =& (x — &) 8 (¢) dix be acting
at the point £ of infinite medium, and at the point 97 — concentrated and instantaneous
source of heat Q' = § (x — #) d (¢). Denote by O (x, &, 1) the temperature caused
by the action of force Xj, and by Uj (x, n, ) the displacement caused by the action
of the source Q'. From Eq. (4.13) we obtain the following relation

00 (x, &, 7)
(5.3) de(.l)fd’t [6 (x — 97)6(?—1’)—
v

+—6(x—5)6(1:)6w

. oU; (x, ??,I—T)l=0,

ot
wherefrom

nox OUk (&m0
B ot ’

Let a concentrated and instantaneous force X; = & (x — &) 6 (¢) 8 be acting
at the point £ of infinite medium, and at the point 5 the concentrated and instan-
taneous body couple ¥; = & (x — n) & (f) 8. Denote by ¥ (x, &, £) the angular
vector caused by the action of force X, and by V{? (x,#,1) the displacement
caused by the body couple ¥;. Fiom Eq. (4.12) we get

(55) (” (E s ‘) i (k) (?L & I)

Finally, let a body couple ¥Y; = (x — &) & (f) dix be acting at the point £,
and a source of heat Q' = (x — #) 6 (f) at the point ». Denote the temperature
caused by the action of body couple by 9% (x, &, t) and the angular vector caus-

(54) O® (n, &,1) = —




9210 W. Nowacki [270]

ed by the action of the source Q' by £ (x, 1, t). From the theorem on reciprocity
(4.13) we obtain the following relation

o # ko (E! 1?’ t)
Vi o

It can be shown that the relations (5.2), (5.4)—(5.6) hold for a finite body at
homogeneous boundary conditions. Let us consider a finite body V" and assume that
the causes which set the medium in motion are defined by the boundary conditions.
We shall seek to find the expression for the displacements u;, angular vectors w; and
temperature  at an internal point xe¥ by means of integrals on the surface A which
bounds the region V. These functions should satisfy the equations of motion, the
extended equation of heat conductivity and the boundary conditions.

When deriving the formulae for the functions u; (x, 1) w; (x, ¢), 0(x,t) we shall
use the theorem on reciprocity (4.13). Assume, first, that quantities marked with
primes refer to displacements u; = U™ (x, &, £), angular vector cw; = 2% (x, &, £)
and temperature 0 = @® (x, £, 1) caused in an infinite medium by a concentrated
and instantaneous force X, = & (x — &) 8 (¢) dix, applied at the point & and direct-
ed along the axis xz. Assuming non-existence of the body forces (X; = 0), body
couples (¥; = ¥; = 0) and heat sources (Q' = Q = 0) we obtain from (4.13) the
following expression for the function ux (x, )

(5.6) I® (, &, 1) = —

: QUP (£, t —
I By e
A 0

aQ(k} y Ny b T
— P (& t—7) -J—(E—l +gi(67) l@axr —
T
0
— P (& x, t— )M+£I0(e, DO (E Xt —7)—

ot
—O® (& x,t— 1) 0,n (&, r)]}, xeV, Eed.
Here we have introduced the following notations:
= EDmG), &P =mp(x, & 0)m ),

where by of we understand stresses, by ) — couple-stresses caused by a con-
centrated forcc X =0(x=& () dy. The integration operations under the
sign of surface integrals are carried out with respect to the variable £ The formula
(5.7) gives us the relation between the function ux (x, f), x €V, ¢ > 0 and functions
i, piy i, g1, 0,0, on the surface A.

Now let us assume in the system with “primes” the action of a concentrated
and instantaneous body couple ¥; = & (x — &) 6 (¢) du acting along the axis xy.
The body couple will cause in an infinite medium the displacement u; = V? (x, &, 1),
vector wy; = AM® (x, & 1) and temperature 6’ = 9® (x, £ 7). From the theorem
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on reciprocity (4.13), at X; = X; =0, ¥; =0, Q = Q' = 0 we obtain the following
formula:

oVEI (& x, t —
58) op(x, ’)_fdA(‘E)de{m(E ?) i (Eo;ft 7) 3
A

x ()AU:}I NN -
”'Fft“(f. X, 1—7) if % +gi1(&,7) : (‘Edl i) -
T
owy (&,
—&" (&, f—r)_w—’(é-—Jr %{0(5 T]ﬂm({: Fotig) =

A ﬂ(ﬁ') (E, x; 1 — I’) 0,?}. (fa T)]} ] XE V, 56 A‘
Here

P =0 ( E0m (), &P = mi (x, & Dmy(x).

We denote by a‘“ and m}f) the force-stress tensor and the couple-stress tensor.

Also here the Functlon wr(x, 1), xeV, t>01is expressed by the functions ui, pi,
w4, gi, 0, 00/on on the surface A. Let now the system with “primes” in an infinite
medium be limited to the action of a concentrated and instantaneous heat source
Q' = 6 (x — & 6 (?) causing displacements u; = U (x, &, 1), rotation vector w; =
= 0 (x, & 1) and temperature 0’ = @ (x, & 1).

From (4.13), assuming that X; =X, =0, Y; =Y, =0, 0 =0, we get the
formula for temperature at the point x e V.

i
(5-9} ﬂ ()\', ") = xfdA (E)fdt {0,?2(5, T)@(fs X, 1 — 1’-) - 0(5; T) 9.9! (E! X, I— T)_‘
0

A
o (&, x,t —1) oug (x, 7)
—%[m@ P i — )
02 (&, x, 1 — 1) . dwq (x, 1)
+gi (& 1) *"L‘E':*r— — g %t —1) —far-—]}
xeV, €EeA.

Here
pi=o0y(x &0 ), g =my;@EDn(x).

We denote by oj; and my; the force-stress tensor and couple-stress tensor caus-
ed by the action of an instantaneous and concentrated heat source Q'.

The formulae (5.7)—(5,9) may be treated as an extension of Somiglian’s for-
mulae [5], to the problems of thermoelasticity. Some simplifications of these for-
mulae can be obtained by taking into account the reciprocity relation (5.4)—(5.6).

If the Green functions U®, QP, OW, etc. are selected in such a way as to
satisfy on the surface 4 the homogeneous boundary conditions for displacements
angular vector and temperature, then the formulae (5.7)—(5.9) will yield the so-
lution of the first boundary problem, when at the boundary there are given func-
tions pi, g¢ and 0.
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Similarly, if we select the Green functions U™, Q% @®, etc., in such a way
that the border is free from loads and temperature, then the formulae (5.7)—(5.9)
will yield the solution of the second boundary problem, when on A are given loads
Pi, gi and temperature 0. Let us consider still the stationary problems. Let the body
contained within the region ¥ and bounded by the surface 4 be subjected to the
action of heating. Let on the part 4y of the surface A4, equalling zero appear dis-
placements u; and vector of rotation angle w;, and on the part 4, of the sur-
face A, equal to "zero, appear functions p; and g;. Moreover, let X; = 0.

For determining the displacement u; (x), x €V consider a body of the same
shape and the same boundary conditions. Let in this body 6’ =0 and let at the
point & be acting a concentrated force X ; = 0 (x — &) d; which is, consequently,
directed along the axis xx. This force will cause displacements U (x, &) assuming
that the functions U,m (x, &) are so selected as to satisfy homogeneous boundary
conditions on 4y and A,.

Making use of the formula (4.14), we obtain

(5.10) w()=p [0 UREx)av, xeV, k=123
4

Here UM (&, x) should be treated as a dilatation caused at the point & by a con-
centrated force Xj applied at the point x. The formula (5.10) may be treated as a gen-
eralization of known W. M. Maysel’s formula [6], for the problem of thermoelas-
ticity in the Cossérat medium.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF FUNDAMENTAL
TECHNICAL PROBLEMS, POLISH ACADEMY OF SCIENCES

 (ZAKLAD MECHANIKI OSRODKOW CIAGLYCH, INSTYTUT PODSTAWOWYCH PROBLEMOW
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B. HOBALIKHMI, MOMEHTOBBIE HAIIPSUKEHHUSI B TEOPUM TEPMOYIIPYIO-
CTH. II.

B pafote paioTcs: OCHOBA BHPTYanbHEIX paGor, sHepreTHveckas Teopema, Teopema o6 of-
HO3HAYHOCTH PEIIEHHH, a4 TaKke TeopeMa B3AMMHOCTH JUIf TepMOYNPYrux mnpobieM B cpene
Koccepara,

Kpome Toro ofcyxgatoTcsi BEIBOME!, BHITCKAIONME M3 TEOPEMBI BIAMMHOCTH, NpPHBOHNALINE
K MeTomy pemeHus mudipepenMansaeX YpaBHEHHE TEPMOYNPYTOCTH IIPH HCIIONBL3IOBAHMME (yHK-
miit Tpuua,



