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1. Introduction

In the present paper we are concerned with propagation of longitudinal ther-
moelastic waves in an infinite medium. Problems of this kind were already consi-
dered in [1]—[5] with reference to waves induced by the action of heat sources.
Now our attention will be centered on the analysis of the effect of initial conditions
On wave propagation.

To begin with, let us recall the differential equations describing the longitudinal
waves [1]:

5 1 20 y
(1.1) A" —c? W——m.g 2

5 1 06 ZM’H 2_52 az+bz
(1.2) v == noV 0{—0, V-—ax?—i—axg g

The first of these equations is the wave equation for the potential of thermoelastic
displacement @, the second — the generalized equation of heat conduction. We
are not concerned here with transversal waves: in an infinite medium they are
independent of the longitudinal waves and are not related to the generation of heat.

The symbols used in Egs. (1.1)—(1.2) denote: 6 = T — T, the difference between
absolute temperature T and the temperature of natural state Ty, where the stresses

as well as strains are equal to zero. my= glcz , Wherey = (3A42u) a;. In the latter
0€)

expression 4, p are Lamé constants for the isothermic state and «; is the coefficient

A+2u

; %
of linear thermic dilatation; cf = , 0 stands for density. » = o where g

8

denotes the coefficient of the heat conductivity, and ¢, is the specific heat at constant

Toy
6 -

and the temperature increment 0 are functions of the point x and time 2.

deformation referred to the volume unit. Finally 7 = The potential &

409—[657]
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Egs. (1.1) and (1.2) should be supplemented with the initial conditions

0P (x,0)
(1.3) D (x,0) =f(x)=T= 80 (x)’ 6 (x, 0) = A (x).

After solving Egs. (1.1) and (1.2) — the initial conditions (1.3) being taken into
account — we may determine the displacements, deformations and stresses from
the formulae

(14) '1{; = .Qi, fs & = (p, i, gy = 2;1 (@, 4 5;5 @, };,\-) —|— Q(ng é‘)

In the sequel it will be convenient to make use of the following new variables

(4] Cf

(1.5 Ci=73ﬂ, -

With these new variables, Egs. (1.1) and (1.2) transform to

(1.6) (V2 —0) @ (€, 7) = mb (&, v),
(1.7 : (V2 —0) 0 (&, 7) — 10, V2P (§,7) =0,
where '
2 2 2 2 &
V2=a—ﬁ+‘% oE M=Mog, M=

and the initial conditions will be written in the form

(1.8) P2E0=/(C), 02E0)=¢®, 0E0O)=rE), =

b

g ().

2
(&

Let us perform on Egs. (1.6)—(1.8) the one-sided Laplace transformation as defined
by the relation

DEp=[ DE e dr, et
0

Thus, we obtain Eqs. (1.6) and (1.7) transformed to
(1.9) (V2—p) @ =mb —pf — ¢,
(1.10) (V2—p) 0 —npV2d = — h.

We eliminate from these equations first function @ and then function . In this:
way we get the following equations

(1.11) (V2— ) (V2 — B) & = — mh— (V2 — p) (of +9),
(1.12) (V2 —2) (V2 = ) 0 = — (V2 — p2) h — npV2 (pf + 9).
Here, A; and 1, are the roots of the equation:

M—2p(p+1+8e)+p3=0, &=nm,
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hence,
(1.13) 20 =§[p + 1484 (p2 — 20 (1 — O+ (1 + 6242,

From Egs. (1.6) and (1.7) or (1.9) and (1.10) we can pass to the equations of
the approximate theory, i.e. to what is called the theory of thermal stresses. We
achieve this transition in a formal way, i.e. by putting 7 = 0. In this case, Egs. (1.9)
and (1.10) became mutually independent and the roots 4; and 7, take the values p
and pl2, respectively.

2. Solutions of equations of thermoelasticity for the initial condition 0 (&,0) = /(&)

Consider the auxiliary function G. Then the solution of the differential equation
in an infinite thermoelastic space will read

@1 [(V2 — 07) (V2 — 0,) — €0, V2] G (§, ;1) = — 0. (§ — ) 6 (2).

The right-hand side of this equation represents a concentrated and instantaneous
pulse applied at point v. We assume the initial conditions of Eq. (2.1) to be homo-
geneous. After performing on Eq. (2.1) the Laplace transformation we get

(2.2) (V2= 2) (V2 =) G En,p) = — (€ —m),

which is an equation of the same type as Eqs. (1.11) and (1.12).
The solution of Eq. (2.2) is known [1].

e~ Mo e—ﬂsﬁ'

23) GEnp = T E—7) 2= (G —n) (G —m), i=1,23.

This solution describes a spherical wave propagating from the point of disturbance
towards infinity. The function G (§, v, p) will be of use in finding the solution of
Eq. (1.2) for the case of prescribed initial conditions 0 (,0) = h (€). As a result
we obtain the integral

(2.4) D (n,p)=m [ h(©) T Ex.p)dV ().
B

The inverse Laplace transformation gives

@5) @ (n,7) =m [ h(®)GEn7)dV (©)
B

Determination of the function G, i.e., the performance of the inverse Laplace
transformation on the function (2.3) involves considerable mathematical difficulties.
To avoid them, we choose to determine approximately the function G by the per-
turbation method. We take the quantity ¢ as the small parameter characterizing
the coupling of the temperature field with that of deformation (cf., e.g., [2] and [6]).
Assuming

@ = By ePy + 2 By + ..,
(2.6)

G=’—Gg'+£Gl —|—8261+....



412 W. Nowacki [660]

we obtain for successive approximations the following equation
@) B =m[h®CE&n DAV ), r=0,12,..
P _

Only the first terms of the expanded form of Eq. (2.6) will be taken into account
for the determination of the function @. Function G, will be obtained by expanding
the quantities 23 (e, p), A3 (e, p) and so on into the MacLaurin series following the &
powers and confining ourselves to the first power

P? p

222 Zz e
A‘I p+p—l£’ A'Z p_l)

@.8) hysp . pm(l — #)

_P
2(p—1) 2(p—1)

1 1 (1 p+1 )
~ — & s
B—2 pp—1) (p— 12

Introducing 4; and 4, into the exponential terms e~*¢ e~*¢ we have

e M ~( £e 4 ) e P,

2 p—1

(2.9) £0 plfz
welz ~ == —eplit
(1 -+ 2 o= 1)) e :

Substituting (2.8) and (2.9) into (2.3), we get

— —pplid
P _ g—ep

-~ ]

GU‘._: 5
4 —1
~ P ep p ep=
= — — PP oty —ppift
& dme p(p— 1)? l(p—i+2)e (p—l{ 2 )"’ l

The inverse Laplace transformation gives
A 0
Go(o, 1) = (igr_'3 — 1) H(x—0)—|U(p,7) —erfez——= } ,
2yt
(2.12) Gy (0,7) = — l {[[(’c— 2+ (v — )(3—1)4_1] r—e _ 1| x
. 110, 4,:9 (4] [ 2 e —

XH(T—o+ale,?)5 27t U+E(Z_TQ Vo~

o[ T\12 02 72 02 5 -
H?(}?) e"p(" 4r)] [2 g I] v (3 = 29) e

+ erfc (2 5;) = % (;;)”2 exp ( = i—i)} ;




[661] Certain Dynamic Problems of Thermoelasticity, III. 413

The following notations were introduced
" =)
15 =—[e aerfc(zl/_ ]/1:) + e"erf‘c(zv—-k }/-r"
(2.13) —[ ~Cerfc 2V— = }/"?) — e erfc (E'T + I/T)]

a(p,T) = fl(-co s ) V(e,to) — = U(g, 7o) + ( )”2 exp (— :;;)I dry.

Function Gy (€, 0, 7) refers to the non-coupled problem, representing a spherical
wave, its center being at point v. The first term e*~¢ H (v — p) is the expression
for an elastic wave ‘propagating from point % towards infinity with the velocity

B (ﬂ.+2,u 0
‘1 20 2]/?
acter. Similar terms are characteristic also of the function G; (€, n, 7).

Introducing G and G, into (2.4), we obtain the expression for the function @
in the following form

(2.14) D (n,7) = m [ h () [Go(En,7)+GL €, D]V (),

12
) . The second term, U (g, 1) — erfc( ) is of diffusional char-

which is the approximate solution of Eq. (1.11), provided

0@C0="rE), g®=0 [f(E=0

To find the temperature 6 (v, ) which will give the solution of Eq. (1.12) for the
initial condition 6 (€, 0) = h (§) we have to consider the auxiliary function F (€, 0, 7)
satisfying the equation -

(2.15)  [(V2—0) (V2 —0,) — 3, V2| F(§, 0, 7) = — (V2 — 07) 6 (§ — ) 6 ().

Assuming the initial conditions for Eq. (2.15) to be homogeneous, we obtain —
alter performing on this equation the Laplace transformation —

B p)eth - () e

2= Ci—m)(&i—m), i=123.

Function 0 (n, T) giving the solution of Eq. (1.12) may be expressed in the form
of the integral

(2.17) 0, 1) = [ h(§)F&n, 7 dV Q).
B

Similarly as was done for the function G, we expand the term F (§, ¥, 7) into a power
series after & so as to obtain

@.18) 0, v) = [ h(®) [Fo €, 0)+F1 &0, 0) + ] AV (§).
B
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Making use of relations (2.8) and (2.9), we have

—oplf2
e op

Fo(o,p) = e

2.19)
% 4 - (4 i e W
FI(Q:P)_4 o( 1)2[e 01’.{_(-—2})"11’20;__1)__1)8 op ]‘

The inverse Laplace transformation performed on the above formulae yields:

1 p?
(2‘20) FO (9) T) = .8_(—?!17}3"2 exp (_ -4;) ¥

1
@21  F(e)= = {(T —e+DeH(T—0) — [(r +D U7 —

1 \12 2
~$reafeglrent () e (- L)l

Function Fy is of diffusional character; it refers to the non-coupled problem, the
theory of thermal stresses. The expression for the function Fj contains both a wave
and a diffusion term.

3. Solution of equations of thermoelasticity for the initial conditions @ (, 0) = f({)
and 0: @ ({,0) = g&)

We now turn our attention to the auxiliary function K (&, , 7) which is the
solution of the wave equation
(3.1) [(V2— ) (V2 —0,) — 80, VI K&, m, 1) = — (V2 — 0,) 6 (§ — 0) & (),

provided the initial conditions relating to Eq. (3.1) are assumed to be homogeneous.

The solution of Eq. (3.1) after performing the Laplace transformation is of the
following form

(B} —p) e — (B —p) e
4m (4 — %)

We introduce additionally, besides the function K, the function L (§,n, 7) as the
particular integral of the equation

(3.2) KGnp=

(B3) (V2= (V2—0,)—e0, V2L (&, 7) = — V20 (& — ) 0 (3.
The initial conditions for the function L (€, v, 7) are assumed to be homogeneous.
The Laplace transformation of the solution of Eq. (3.3) is given by the formula

emhe _ j2e—he

4o (1 — X)

(34) LEnp) =
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The functions K and L being known, we are now able to solve Eq. (1.11) and (1.12)
for the prescribed 'initial conditions @ (€, 0) = f(§), 0, ® (§,0) = g (€). The fol-
lowing functions are the solutions of Egs. (1.11) and (1.12)

3.5) @ ,p) = [ [/ ®) +g®IKEn p)dV ©),

36 i00="2 [ 1@+ @ZEn) Q.
B

We shall expand the expressions for the functions X and Z

K=Ky +ek+2%+..,

(3.7 o i &
L=Ly+ L)+ &L+ ...

Introducing (3.7) into (3.5) and (3.6) and retaining only the terms of the expansions
of (3.5) which are linear with respect to & we obtain the following approximate
formulae for the functions @ and .

B8  Bmp= [ [f©)+g®1 K@ 0, p) + eKiGn, 2]V @),

69 o1, p) = f (o @+ ®1 oG m. 2) AV ).
B

Taking into account the relations (2.8) and (2.9) and expanding formulae (3.2)
and (3.4) into series according to the powers of & we have

pe"'?p ey e—aiﬂ 1

|
K% S i i e O
Ky (0: P) 43'59 e ’ Ly (9! p) 4?!9 (P ] ]) s

(3.10)

1 1 0o —p ]
X ey e e —oP o O St —oP
Kl (Q!p) 4?39[(1’ ])z(pe I € ‘) 2 ? le gibess

Let us now consider the first approximation of the functions @ and 0 obtained
from the formulae (3.5) and (3.6).

G1)  Bomp) = [ ®)+e®@le?aV(©), Oo(n,p) =0.

i
We perform the inverse Laplace transformation on Eq. (3.11) and we get
G12) Do) =[[g® T —)+SQ) T — 1AV ®), 0Cn,1)=0.

We introduce the spherical coordinates (g, ¢, ¥), where

O<p<2n, 0<d<m E=G—-mC—m) i=123
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Taking point n as the centre of the sphere we have

§i=ni+mo,
where
ny=sindcosp, n=sindsing, n3=cosd,
are the cosine directionals of the straight line connecting the centre of the sphere n;
with point . '

Since in the spherical coordinates there is dV = g2 do sin ddddp, we reduce the:
relation (3.12) to the form

1
(3.13) ¢Mmﬂ=;;fk@ﬁmmﬁ@—wrhﬂm+mwﬁh—QM-
B

0
X odg sin 9dddp = M, . {g} + > M, . {f}]-

Here the qﬁantity
1 2z n
(3.14) M, . {g}= _Z;f dtpf g (ni + ny.7) sin 9dd
0 0

was introduced; it denotes the mean value of the function g on the surface of a sphere:
with centre at % and with radius 7. The solution (3.13) is known from the classical
theory of elastokinetics [7].

The second approximation for the function @ will be obtained from Eq. (3.8).
It reads :

(3.15) Oy = [ 8@ Ki G, 1) +/©) 0, Ki €, D] dV ).
J
Taking into account the relations (3.10), we get
o o1 0 o 0
(3.16) Kied=— gttt HE— 0+ 50— 0 —

— [TU (e, 7) — % V (o, ?-'):H,
1 0 - @
T L A e I R (R [

+§axp-m_a{ﬂumﬂ—§w%aﬂﬂ-

In the expressions for the functions K and 0, K; w. have terms of diffusional
type as well as terms characterizing a spherical elastic wave propagating from point
v towards infinity,
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Introducing (3.16) and (3.17) into (3.15) and making use of surface integrals
(3.14), we arrive at the following formula

(3.18) ¢1(mr)=—‘+ f—d—(V—(E)Y g(§)(r—~§—+l)+
n ¢ e |

¢ Noaer 1 [L7®
+10 (=g 4 J e

{g(ﬁ) [TU (0, 7) —

~Lyven|+r0 lo+oven—Lve ol| - o4, ) -

1 1
— 5 2 M, U+ 8+ 5 0.2 M, ()

We now have to determine the second approximation for the temperature.
After the inverse Laplace transformation on Eq. (3.9) we obtain

B.19) 0,0 =¢b(n,7) = Tf; f [g (@) 0: Ly (€, m, 7) +

g®)
o0& m)

HO R LGN Q= | Sy grace—o+

B

et H(z— ) — [U(e, ) — e © }dV(cH

2V ard

e [ I®
e — ’T— a = =0 T—0)—
o ! T O b+ G~

_ g =g
0: [U(g, )+ 2}/?”—3 e ]}dV(K).

This expression may be reduced to the form

(320) 06, =— f LA
' 'I,'r = g b 6
o o 0Gm)
e av (@) 5 e_%]
 dam f 0, m) g(c)[Uie,T)-l' oy +

vV

8 5
+H©, [U(e, e ]} oMy {gH} —

— 0c [TMy, « {3+f}] = 63 [eMy,:{f}]-
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Let us remark that the formula (3.20) contdins diffusional terms as well as those
characteristic for the propagation of spherical waves. The full text of the present
work including uni- and two-dimensional problems will be published in Proceedings
of Vibration Problems. '

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF FUNDAMENTAL TECHNI-
CAL PROBLEMS, POLISH ACADEMY OF SCIENCES L]

(ZAKLAD MECHANIKI OSRODKOW CIAGLYCH‘ INSTYTUT PODSTAWOWYCH PROBLEMOW TECH-
NIKI, PAN) '
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B. HOBALIKMI, HEKOTOPBIE ANHAMHWYECKHE TIPOBJIEMbI TEPMOVIIPY-
TOCTH. III.

TMpepmeroM paboTsl sBIANOTCHS MPOBIEMBI PACXOMAECHHA IPOJONBHBIX TEPMOYIPYIHX BOJH
B HEOTPaHMYeHHOl cpefie. 3amaNHEIE HAYANLHEIE YCIOBMA PacCMATPUBAIOTCA B KAYECTBE HMMITYJTEb=
COB, BHI3LIBAIONINX IpONAaraumio YNOMARYThIX BojH. Mcmomsays coorsercTByomme (GyHRIMH
I'puna, BONHOBbIE YPABHEHMS W NPMMEHAS METOJ BO3MYIUCHHH MONMy4aeTcs NMpHOMDKEHHOE pe-
meHne 1 moTeHunana @ m Temmeparypsl 0 B 3aMKHYTOM BHIE,



