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1. Introduction

The results hitherto obtained in the domain of magneto-thermo-elasticity are
the establishment of the general equations for real and perfect conductors, [1],
and the obtainment of a number of solutions concerning principally the propagation
of discontinuity waves in one-dimensional problems for perfect and real conductors
[2], [3] and also the propagation of plane waves [4], [5]. A number of more general
solutions have been obtained in problems of magneto-elasticity.

In the present paper are derived general relations constituting a generalization
of the familiar Betti's reciprocity theorem to the case of a magneto-thermo-elastic
field. The paper is confined to the case of perfect elastic conductors postponing
for the time being the consideration of analogous problems for real conductors
and anelastic bodies. Sec. 2 of the present paper gives the fundamental equations
and Sec. 3 — the derivation of the reciprocity theorem.

2. Fundamental equations

Let us consider the equations of magneto-thermo-elasticity in the case of a
perfect elastic conductor. In this case these equations can be reduced to a set of
equations with two dependent variables which are the displacement
and the temperature. By solving this set of equations it is easy
to calculate the perturbed values of the field h and E and the
state of stresses and strains. ( B

Let us consider a region B bounded by a surface 5" in the period
/ > 0 (Figure). The set of equations of the problem is composed of

a) the equation of motion:

(2.1) <?ij,j+Ti]j+Xl = Qin,

b) the heat equation:

(2.2) (v2-— dt)e-V'e
\ x I

67—[93]



68 S. K a l i s k i and W. N o w a c k i [94]

c) the equations of electrodynamics for a slowly moving body:

An _ . Un i — Mo -
(2.3) roth = — / ; r o t £ = li; E= (uXH); divA = 0.
v ' c J c c
hence

h = rot (u X H),
c _

_/ = "7~rot rot (uXH),
where:

Un - —.
(2.4) rw = - j 1 [ht Hi+h} m - dti (A • ff)]

is Maxwell's tensor (the electric components of this tensor have fallen off due to
linearization), Xi — body force components, Q — density, y — (3A+2,a) at, where
X, n are isothermal elastic constants, at — the coefficient of linear thermal dilatation.
Next, K = XQ/QCE, where 1Q is the coefficient of heat conduction and cE is the specific
heat with constant strain; r\ = yTQ\X^ where To is the absolute temperature in the
natural state, in which the strains and the stresses are equal to zero and, finally,
Q — WJQCe, where W is the quantity of heat produced per unit volume and time.
The symbol e — s^k denotes the dilatation, c — the velocity of light in vacuum and
Ho — the magnetic permeability which is usually assumed, for perfect non-ferro-
magnetic conductors, to be equal to unity. The stresses are related to the strains
and the temperature by the Duhamel—Neumann relations

(2.5) at] = 2fieti+(^ - y6) dtl,

where

If the body bounded by the surface S is not in contact with a medium filling
up B\ outside B, these equations are completed with the equations of the field in
vacuum in the region Bt (Figure).

(2.6) rot h* = — E* ; rot E* = - — h*
c c

or

It will be assumed in what follows that the primary magnetic field H is directed
along the x$ axis, that is H — (0, 0, H). This means, of course, no loss of generality.

With this assumption we find from (2.3):

(2.7) Ex== M2; E2 = - MI; £ 3 = 0;



[96] The Reciprocity Theorem in Magneto-thermo-elasticity. I. 69

c c c
(2.8) h\ — "-E2.3J ti2 ~ --£1.3; »3 = "(-£2.1 — -^1.2)>

(J.Q HQ (J.Q

(2-9) A--^(*3,i-*2.3): 72 = ^(^1.3-/23,1); h = ^{h2A-h,2).

On calculating the components of Maxwell's tensor and inserting them into

the equations of motion (2.1), we obtain the set of equations

(2.10)

where «§ = $ H2J4TIQ , #o is the Alfven velocity.

The set of Eqs. (2.10) and (2.2) together with (2.3) constitute a complete set of equations of
magneto-thermo-elasticity for a perfect conductor. Let us observe that the matrix of operators
in the set of Eqs. (2.10) is symmetric. Hence Green's functions obtained from (2.2) and (2.10) will
also be symmetric. Let us observe in addition that the coupling between the electromagnetic field
and the strain and temperature field is effected through the factor a%, depending on H3 = H. For
H-*Q the set of Eqs. (2.10) becomes that of equations of thermoelasticity. Eqs. (2.10) show sym-
metry in relation to the *3-axis. The structure of these equations bears some resemblance to that
of a transversally isotropic elastic body. The resemblance is of a formal nature, however, because
Maxwell's tensor is not expressed in terms of the strain tensor [6], [7], it thus being possible to
obtain, by means, for instance, of a judicious choice of constants expressing the influence of the
field H, equations of the same structure as the equations of elasticity for a transversally isotropic
body.

The above set of, equations should be completed with the boundary conditions at the surface
S, where displacements or loads pi = (ffy+7« — T*j) ii] may be prescribed, Tfj denoting Maxwell's
tensor of electromagnetic field intensity in vacuum and the continuity conditions of tangent
electric fields and normal magnetic induction. In addition the temperature 0 should be prescribed
or the temperature gradient in the direction normal to S. If the action of the vacuum is neglected
T*j = 0 and the continuity conditions of the electromagnetic field fall off. It will be assumed in
what follows that every cause producing motion starts its action at the moment / = 0 + . The initial
conditions are assumed to be homogeneous.

3. The reciprocity theorem

Let us perform the Laplace transformation on all the equations of Sec. 2 assuming

homogeneous initial conditions. We consider two sets of causes and effects. We

start out from the identity (2.5):

(3.1) (dii+yOdij) e'l} = (a'tj+y6' hi) etj = (2ffeij+Xe3t)) e'l} =

where
00

= L (otj) = j e~pt at1 (x, t) dt, etc.
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On integrating the expression (3.1) over the region B, we find

(3.2) J {ffu e't} - a'tj ey) dV= J (5n uti} - o'u Ui,j)dV= f [(ff« w{'),}+
B B B

- oiiju'i - (?{iat,j),t+oU},jti] dV=-yJ (jSi1- We) dV.

Making use of the divergence theorem and the equation (2.1), and performing
the Laplace transformation, we obtain

(3.3) J (Xi u{ - X't ui) dV-Y f (pt ii'i - p\ ik) dS+y f 0e' - V e) dV =
B S B

= / (fij e'i} - T'v 'En) dV,

where p~t is expressed in a different manner depending on whether the action of
the vacuum has or has not been taken account of. In order to simplify the considera-
tions we neglect the action of the field in vacuum. However, in conclusion of the
present section additional equations will be given in order to take into consideration
this influence. Disregarding the influence of the field in vacuum, we have

pt = (otj+Ttj) iij; p't = (

Making use of Eq. (2.2,) we find

(3.4) I (0' V2 6 - eV20') dV = rjp { (fd' - §' B)dV-— j (Qd' - Q' 6) dV.

B B B

Using Green's identity, we transform (3.4) to obtain

(3.5) f(eW -e'0)dV=— f(Q0' -Q'd) dV+-^ f' 0'6,»-66',n) dS.
B B S

Finally, substituting (3.5) into (3.3), we obtain the reciprocity equation:

(3.6) rpcp U (Xi u'i ~ Xl tit) dV+ j (Jn ut - p'{ iH) ds\ =y [ (QB' - Q' 6) dV+

'ln-6d[n) dS + r,xp f (ffj l/t- % ~etj) dV.

For an infinite body Eq. (3.6) will become much simpler there being no surface
integrals. If homogeneous boundary conditions are prescribed on the surface of
the body the surface integrals vanish also. Then it can easily be shown that (3.5)
splits up into two independent equations: These are:

rjxp f (Xi u't - X[ Hi) dV- yf(QQ'-Q'd)dy = O,

(3.7) B B
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Similarly, for an infinite space the surface integrals vanish also and (3.6) becomes
(3.7) for B —> V, where Fis the infinite region. The validity of (3.7) follows from the
symmetry of operators of the set of Eqs. (2.1) (2.2) and, as a consequence, the sym-
metry of Green's function. This will be illustrated by means of a simple example.

Let an instantaneous source of heat Q — 8 (x — £) S (?) act at a point £ of the
body, another concentrated source, Q' — d (x — £') S ((), acting at (', With no
body forces and assuming that/?< = p* = 0 and 0 = 0' = 0, we obtain from (3.6):

^ y J [8 (x - 0 V (x, ?,p)-d (x -£')0 (x, i, p)] dV =
B

= W / [Tti (x, ̂  P) Hi (*, £',P)~ % (x, £', P) W (x, £, p)] dV.
B

Hence

rixp C
(3.8) 0' tf, r, p) = 6 (£', I, p) — I [Ti} (xu I, P)iy (x, r, P) -

B -T'{j(xJ',p)-e{1(xJ,p)]dV.

The function 6 (x, £, p) is easily obtained by solving the set of Eqs. (2.2) and
(2.10) with Xt = 0 and Q = d (x — f) 8 (t). The matrix of this set of Eqs. being
symmetric, it follows that Green's function is symmetric

(3.9) B(*,*,/0-9(& x,p).

Therefore, the integral on the right-hand side of the equation (3.8) must be zero
which proves our thesis. Analogous considerations may be presented for other
perturbations, such as the action of two concentrated impulses of force or one
impulse of force and one heat source.

Performing on (3.7) the inverse Laplace transformation, we obtain

t ,
i C C\ dut (x, T) , din (x, T)1

(3.10) fjxU drj \xt(x,t-T)-!± X't(x,t-r) ^ \dV =
0 B

= y f dx \ f Q (x, T) 6' (x, t-x)-Q' (x, x) 0 (x, t - T)1 dV,
o h

t ,
r C\ de{j(x,x) , ^ ( X , T ) 1

(3.11) j dx J \Tt, (x, t - t) - ^ T'ti (x, t - T) dx j dV.
0 B

Let us observe that the second of the Eqs. (3.7) may be written thus

(3.12) J (Ti} % - T'tfeu) dV= f gflg [§' i3 3 - Se'33+2 (ii3 u3i, - i j , fl3> 0 +

It is easy to observe that the integral relation will be satisfied locally in the case
of the plane problem in the plane normal to the direction of the field H, that is
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in the x^-plane, because in this case the derivatives with respect to x3 vanish.
This relation is also satisfied for any one-dimensional problem.

In conclusion of the present section, let us consider in brief the case in which the field vacuum
is taken into consideration.

Then, of course, pi is expressed as

(3.13) Pi=(.Oij+Tij — Tfj)nj.

Eq. (3.6) will be completed, for the vacuum, with equations for Laplace transforms, resulting
from (2.6)

(3.14) j [(E*xn*)~ (E* xh'*)]'n dS = 0
s

the normal to the surface is directed towards the interior of the region B\.

The two sets of Eqs. (3.6) and (3.14) are interrelated by additional relations of continuity of
the field (for JX R* 1)

(3.15) hn = h*n; Est=E*t,

where hn and Est are expressed in an explicit manner in terms of « by means of Eqs. (2.3).

In practical problems the field in vacuum is usually negligible and Eqs. (3.6) may be used.

A number of practical formulae can be deduced from the above theorem. In particular the
Somigliana theorem can be generalized to the magneto-thermo-elastic problem. The theorem just
proved can also be made use of for the obtainment of integral equations of certain boundary-value
problems. In a number of cases the computation can be simplified by making use of the second
of Eqs. (3.7). The possibilities of application being numerous, it is impossible to discuss them in
detail. Let us observe, finally, that considerations analogous to those of the present paper may be
presented for real conductors. This will be the object of a separate communication. The case of
perfect conductors deserves special consideration, due to its particular simplicity and, in this
connection, the practical applicability of the equations obtained.

DEPARTMENT OF VIBRATIONS, INSTITUTE OF FUNDAMENTAL TECHNICAL PROBLEMS, POLISH
ACADEMY OF SCIENCES

(ZAKLAD BADANIA DRGAN, INSTYTUT PODSTAWOWYCH PROBLEM6W TECHNIKI, PAN)

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF FUNDAMENTAL TECHNI-
CAL PROBLEMS, POLISH ACADEMY OF SCIENCES

(ZAKLAD MECHANIKI OSRODKOW CIAGLYCH, INSTYTUT PODSTAWOWYCH PROBLEMOW TECH-
NIKI, PAN)

REFERENCES

[1] S. Kaliski, J. Petykiewicz, Dynamical equations of motion coupled with the field of
temperatures and resolving functions for elastic and inelastic anisotropic bodies in the magnetic field,
Proc. Vibr. Probl., 1 (1960), No. 3.

[2] S. Kaliski, W. Nowacki, Excitation of mechanical-electromagnetic waves induced by a
thermal shock, Bull. Acad. Polon. Sci., Ser. sci! techn., 10 (1962), 25 [25].

[3] — , Combined elastic and electromagnetic waves produced by a thermal shock in the
case of a medium with finite electric conductivity, Intern. Journ. of Eng. Sci., 1 (1963), 163—175.

[4] W. Nowacki, The plane problem of magnetothermoelasticity, Part I, Bull. Acad. Polon.
Sci., Ser. sci. techn., 10 (1962), 485 [689], Part II, ibid., 11 (1963), 1 [1].

[5] G. Paria, On magneto-thermo-elastic plane waves, Proc. Cambr. Phil, Soc, 58 (1962),
No. 3.



[99] The Reciprocity Theorem in Magneto-thermo-elasticity. I. 73

[6] S. Kaliski, The Cauchy problem for a perfect conductor isotropic and transversally isotropic
in a magnetic field., Proc. Vibr. Probl., 2 (1961), No. 2.

[7] — , The Cauchy problem for a real, isotropic elastic conductor in a magnetic field, ibid.,
2 (1961), No. 2.

C. KAKHCKHfl H B. HOBAIJKHfi, TEOPEMA B3AHMHOCTH ^JIH IlPOEJlEMbl
MArHHTo-TEPMO-ynpyrocTH.

B pa6oTe BbmeneHa TeopeMa B3anMH0CTH jsjia npo6jieMti ManmTO-TepMo-ynpyrocTH B cjiyliae
HAeajTbHbix ynpyrax npoBOflHHKOB B MarHHTHOM nojie. IIojiyieH pafl npaKrawcKH Ba*Hi>ix (j)op-
Myji, npn noMomH KOTOPBIX MOSCHO KOHCTpyHpoBaTi. HHTerpanbHoe ypaBneime KpaeBwx npo6jieM
MarHiiTO-TepMo-ynpyrocTH, nonyHHTb pacnrapemie TeopeMbi CoMnrjraaHo, HaKcmeij, B papfi
oco6ux cnyiraeB, ynpocTHTb BbiiHcneHHH, oimpancb Ha TeopeMy B3aHMH0CTH. JJ,na HeKOToporo
oco6oro Kjiacca cnyiaeB nonyieHa TeopeMa c lacTH'iHWM cooTHOnreimeM B3aHMH0CTH (6.7),
BiipaaceHHbiM numb TeraopoM MaKCBejina H BeKTopoM nepeinemeHHH.

B HacTOHmeJt pa6oTe aBTOpw orpaHiwHJiHCb mnnb cnysaeM HfleanbHbix npoBOflHHKOB paflH
npocTOTM H 3(])(i)eKTHBHOCTH (JiopMyn. Cxrynaa peanbHbix npoBOffHHKOB 6yj(eT paccMOTpeH OT-


