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1. In paper [1] have been determined the Green functions for the displacements
and temperature produced in the infinite thermoelastic space by the concentrated
forces. These functions have been obtained from wave equations as derived from
the fundamental differential equations of the thermoelasticity by decomposition.
of the displacement vector into the potential and 1otational parts.

In this paper a more direct method of obtaining the Green functions will be
given starting from the disjoint system of differential equations of the theimoelasti~
city.

The disjoint equations have been derived for the quasi-static problem by V. Io-
nescu-Cazimir, [2], and later generalized by S. Kaliski, [3], and in another way
by I. S. Podstrigach, [4], and D. Riidiger, [5]. These equations are for the thermo-
elasticity of analogous importance as the Galerkin functions for elastostatics and
elastodynamics. =

We shall consider successively the Green functions for the dynamic problem
in the cases of concentrated and distributed forces and heat sources.

We proceed in our considerations from the linearized equations of thermo-
elasticity, [5],

(1.1) uV2 u+ (2 + p) grad div u+ X = y grad 0 + ou,
1 . 0
D) e i 1 T
(1.2) V20 " 6 — ndiva "

The first of the above relations is the equation of motion, in terms of displacements,,
while the second — the generalized heat conduction equation. In these equations u
denotes the displacement vector, X — the vector of body forces, 0 = T — T, is the
difference between the absolute temperature T and the temperature 7, which de-
scribes the natural state of the body, Q is a function characterizing the intensity
of the heat sources, u and 1 are the Lamé constants related to the isothermic state,
% = Apfoc, is a coefficient where 4y denotes the heat conductivity coefficient, while p
is the density, and ¢, — the specific heat for constant deformation. Further, we
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have = yTy/Ag where y = (3A+2u) ar = 3Kay, a; is the coefficient of linear thermal
expansion, and K — the bulk modulus. Moreover, we have denoted Q = W/pc,,
where W is the quantity of heat created per unit volume and unit time. The functions
u, 0, X and Q are functions of coordinates and time. The derivatives of these functions
with respect to the time variable will be marked with points.

We introduce four solving functions, vectorial functions ¢ = (1, @2, @3) and
the scalar function y connecting them with the displacement u and the tempera-
ture 0 by the following relations:

(L.3) u = Q¢ — grad div (I'p) 4 grad v,

(14) 0 =nordiv(Di @) +(1+a) O v,

where

(1.5) Q=(+a) OF OF— 070 V2,  I'= a3 — yo70

and wherein we have denoted

1 A+2
D§=V2h?a?; 0.=1,2, C?= 9#, C§=%s
1 Atp I
2= D —— — = —,
O;=V xah a P ’ Yo U

Introducing (1.3) and (1.4) into (1.1) and (1.2), we arrive at the system of four
disjoint equations

2 frmd cmd Xi >
(1.6) Oz (O3 D;—?}matw)w‘l‘?:(), i=123,
1
Ou
(1.7 (0F O3 — wma, VA y + 7 =
1

The above equations will be used for determining the Green functions in the
case of concentrated forces and heat sources acting in an infinite thermoelastic
medium.’

2. Effect of concentrated forces

Let us first examine the effect of the body force X = (X}, 0, 0) acting in the
infinite thermoelastic body, along the axis x;. In this case, assuming that no heat
sources occur, we have gy = @3 =0 and p = 0.

The system of Egs. (1.6) and (1.7) reduces to the equation

X,
@1 03 (00 0 — nmau V2) 1+~ = 0.
1

Let us assume that the body force X (x, ) is a harmonic function of the time
wvariable. Then, substituting it into Eq. (2.1)

Xl — (xs t) =] X: (x) e‘wis P1 (x: t) = w: (x: C!J) e‘m"'!
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we reduce Eq. (2.1) to the form

2 2 * X:
2.2) (V2 — k) (V2 — kD) (V2 +12) g} = ~—7
1
Here we used the following notations

K+k=q(+e—0o2, kiki=—qo?,

iw 5 w? 5 w? y
=== ===, =, g=ymx, M=-3—.
T AT vt emww MU

The quantities k7 and k3 are the roots of the biquadratic equation
k4 K2 [02 — g (1+ )] — g0 = 0.

The roots k, (a = 1, 2, 3, 4) are complex quantities, functions of the parameter w.
A detailed analysis of these roots has been given in [6]. In what follows we consider
only the roots ky, k; with positive real parts.

Eq. (2.2) will be presented in the operator form
; X7
(2.3) Dy D Dy ¢y = ——7,
o<y
where

D,=V2—Kk, a=1,2, D3=V2412,
The particular integrals Eq. (2.3) can{pipresented in the form

1 ( F' F, B—B _)
— F.
K—kg \k+2 g+ G+ E+) )

(24) ¢y =

where the functions F, (¢ = 1, 2) satisfy the familiar wave equation

£

2.5 D,F:=—Qc‘z, a=1,2,3.
1

Let now the concentrated force, acting along the axis x;, be applied at the origin
of the coordinate system. Then we have X ," =0 (x1) 6(xp) 8 (x3), and the particular
integral of the Eqs. (2.5) are given in the form of functions:

1 1
. —kaR — Ll —{rR
(2.6) R =mdre ™ o 1,2, F prmy 5 LI

R=(i+x+x3)".

Inserting (2.6) into (2.4), we obtain the following expression for the function rpf:

Q2.7)

1 c—k,R C—E.R k? — ki
q*.‘ s [ — - ! 2 e—er]
T dmpd (G — k)R LG+ KB+ (k42 (B4 1)
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The functions uf and 0* will be determined from (1.3) and (1.4), thus
28) uf=Q¢f —RT*g, wy=—0102T*¢!, u3=—01031"*¢},
0% = mio (V2+2) 0, o},

where
O =(1+a)(V2—=k)(V2—k), TI*=a(V2—gq)— (1+a)eq.

Intreducing (2.7) inte (2.8) and taking into account the relations
(k2 —q)(ki+o)=kige, a=1,2,
(i +7) (k3 + ) = 02 [a (2 + ¢) -+ (1 + a) ge],

we arrive, after simple transformations, at the following formulae for the ampli-
tudes of the displacements and the temperature

1
e R T
uy e 0,0 E (R, w) + FeaR e 8y =123
(2.9)
e B
0 et A PR ),
where
1 B—qg eh® [2_g eBR 22 R
ERoO=" " & B R @2 RJ
(2.10)
e l'e—k.x e—k,R]
Ro)=77 77| R

Let us now translate the concentrated force from the origin of the coordinate
system to the point (). Then the quantities »; and 0* will be the Green functions
for the case where the concentrated force is acting along the axis x;. The formulae
(2.9) remain valid, provided R now denotes the distance between the points (x)
and (§).

In general, if the concentrated force acts along to the axis xy (j =1, 2, 3), then
the Green functions for the displacements and the temperature are given by the
formulae

o B 1 ( c? gk
(2.11) up? (x, 8, ) = = g (07 0k E (R, u)“"gé:k r )
" 9 ;
(2.12) 3‘”(x,€,w)=“majF(R,w), Lk=123.
1
(2.13) U (x,E, 1) = Re [¢" up? (x,E, )],

69 (x, €, ) = Re [ 0* (x, E, w)].

The formulae (2.11) and (2.12) coincide with those derived by the author in [7] .
by another method.



[655] Green Functions for Thermoelastic Medium, II 469

Neglecting the coupling of the deformation and temperature fields (¢ = 0,
n = 0) i.e., taking into account the relations k¥ = ¢, k3 = — o2, we have

1 [a 5 (e—ioR - e——f!’R) ; e—irﬂ]
4o |7 °F R B

(2.15) 0*D (x,E,0)=0, jk=1,2,3.

Let us consider the effect of the uniformly distributed force X (x,t) =
= Xi (x1, xp) €t = 6 (x1) & (x3) €'* applied at the origin of the coordinate system
and acting along the axis x;. The problem examined is two-dimensional, inde-
pendent of the variable x3. Thus, in Egs. (2.2) we should assume p2 = 6?-63.
The formulae (2.4) and (2.5) remain valid, however the functions F, occurring
there will assume the form

(2.14) y? (x,E )= —

1 1 1
* __ e o ;
(2.16) F 2?:963 Ky (leyr), F, 2:mgcf Ky (kyr), F ___25190% K, (itr),
where Ky (z) is the modified Bessel function of the third kind, and r = (x?--x%)"2,
Substituting (2.16) into (2.8), and bearing in mind that the derivatives with
respect to the variable x; vanish, we obtain

1 : 1

. = e—— 1 e Ve e
(2.17) U ancg Ky (izr) 20c 01 01Ey (ry m),

g* = e 01 F i
(2.18) . e v(nw), j=12,
where

1 [KB—g¢ K —q K=l
Ey(r, w) = oy [_—ki_— Ko (kpr) — e Koy (ky 1) ———— Kolm)|,

1
F(r,w)= B2 [Ko (ka r) — Ko (ky )]

In general, if the uniformly distributed force is applied at the point (), and
acts along the axis x;, then the Green functions for the amplitudes of the displace-
ments and temperature assume the form

1 a
(2.19) = = e [f).« Ox By (r, w) — 2 Ko (iwr) 6;::] ;
q

= e i) A
(2.20) 0 e m 0 Fo(r, w), j k=12,
If the coupling of the deformation and temperature fields can be neglected (¢ = 0,
k* = ¢, k3 = — ¢?), then the formulae (2.19) and (2.20) reduce to the relations

1

@21 P =105 0k (Ko lior) — Ko (en)] — 22 Ky () dpl, — k=12,

(2.22) 0*D — o,
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3. The effect of heat sources

Let in the infinite thermoelastic medium act the heat source Q (x, £) = Q (x) '*".

If no body forces occur, then the function ¢ vanishes, and we have at our disposal
the equation

On
(3.1) (D03 — yma) y + ——=5 =0,
%pey
whence we have
0*
(3.2 Dy Dyyp = woc "

The particular integral of the above equation is

1
3.3 = (Fy — F}).
(3.3) v kf-—k%ti 2

The functions F, (¢ = 1, 2), will be determined as the particular integrals of the
equations

0*

xoct *

(3.4) D,F=—

For the concentrated heat source 0* (x) = 6 (xg) 8 (x3) d (x3) acting at the origin
of the coordinate system, we obtain

—kaR
.o ¢ .
(3.5) 2 __4ngcfz R 4= 1.2.
Thus, we have
‘M
W et
(3.6) v dmgc TR1®),

=

where F (R, w) is determined as in the previous section.
The amplitudes of the displacements and temperature will be found from the
formulae (1.3) and (1.4)

(3.7 W=podiy*, 0*=(+a)V2+c2)y*, j=1,2,3.

Inserting (3.6) into (3.7), we arrive at the relations

*® ___ m .

(3.8) uy —"—-md;F(R, @) = 1.2,3,
(3.9 g = — . H(R

' 4 » @),
where

1 evk.R e-k,R
= e 2 2 ——
H (R, o) k%_kg[(ﬁﬁ-a) 6+ o) — ]
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Translating the concentrated unit heat source from the origin of the coordinate
system to the point (§), denoting by R the distance between the points (x) and (E),
and taking the real parts of the functions, we obtain the following Green functions
for the displacements and the temperature

m
A7

(3.10) we (5,6, ) = ———Re [ 3% FR, 0)], k=123,

1
_ ——— fwt-
(3.11) 0(x, 8,1 e Re [¢'“" H (R, w)].
For the elastic medium where the coupling of the deformation and temperature
fields can be neglected, the formulae (3.10) and (3,11), with e = 0, k] = ¢, k3 = — 02,
simplify considerably. In this case we have

m eimf. o
(3'12) * (x, E’ I) - daxR Re [(J'l' o2 (E_“R =g ER) 2
(3.13) 0(x,8 0= Re [efwi*RI/q_] .

4axR

If a uniformly distributed heat source of unit intensity is acting along the straight
line passing through the point (), and parallel to the axis x3, we obtain

(.14) w* = —EE;—?% [K; (ky ) — Ko (Ky )],

where r = [(x; — £)2 4 (x — &)2]'%. The displacements and the temperature
will be given by the formulae

. m eim:
(.15  wyx§ ) =— o Rﬂ{k% - (Ko (ka r) — Ko (ky f‘)l}: i=12,

1 fwl
(3.16) 0(x80)=— 2 RE { kf‘: 2 [(k3+02) Ko (ka ) — (k3 +02) Ko (ky *')]}-

If no coupling between the deformation and temperature fields occurs (2 =0,
k} =14, k2 = — 02), we have

m e‘m{ -
(3.16)  w(x,E 1= — e Re { T [Ky (ior) — Ky (r Vq)]}, J=12;
1 =
(3.17) Bx g 0)y= B Re {ei“"" Ky (r ]./q]} :

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF FUNDAMENTAL TECH-
NICAL PROBLEMS, POLISH ACADEMY OF SCIENCES

(ZAKLAD MECHANIKI OSRODKOW CIAGLYCH, INSTYTUT PODSTAWOWYCH PROBLEMOW TECH-
NIKI, PAN)
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B. HOBALIKWI1, ®YHKLIUKM I'PUHA I HEOTPAHUYEHHOI TEPMOVYIIPYI'OM
CPEJBI. II.

Bo sropoit yactu paboTel NpHBOAATCA B 3AMKHYTOM BHIE (hYHKUMH nepeMereHui u Temne-
parypsl I'puea ons ciyyas BO3EHCTBHA TOMEYHBIX M IMHEHHBIX COCPENOTOMEHHBIX CHII, 4 TAKKe
BO3/ICHCTBHA TOYEYHBIX ¥ NuHEHHBIX MCTOYHMKOB Temna. McxomHON TOYKOM NMpH pelueHHH 3ToM
npobnemst Gy Qyakuus anepkuna, o6o0IIeHABIE HA TEPMOYOPYTYIO CpPEay.



