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The aim of the present paper is to give basic solutions of wave equations in
an unlimited thermoelastic medium. To present in particular, in a closed form the
wave functions as well as the displacements and temperature field formed in an
unlimited space under the action of a concentrated force changing harmonically
in time.

Let us consider the system of linearized equations of thermoelasticity [1], [2]

1 dd d Q
(1) V 2 0— : w — d i v a = ,

x dt ' dt x

(2) fiV2 u-\-{X+n) grad div u-\-X = y grad 6
df- '

The first equation is an expanded equation of heat conduction, while the second —
the displacement equation (equation of motion) of the theory of elasticity. The
equations are mutually coupled. The following notations are adopted: u denotes
the displacement vector, X — the vector of body forces, 0 = T — To — the difference
between the absolute temperature T and the temperature characterizing the natural
state of heat of the body, To; Q stands for the function describing the intensity
of heat sources, p, and 1 are Lame coefficients with reference to the isothermic state;
K — hl6c is a coefficient wherein Ao denotes the heat conductivity constant, Q —
density and cs — specific heat, the deformation being assumed constant. Further,
V — yTo/h, where y = (3X+2/n), at, a* being the coefficient of linear heat dilatetion.
At least, Q = WJQCC, where W denotes the quantity of heat generated in a volume
unit of the body in a time unit. The functions u, 0, X, Q are functions of position
and time.

Decomposing the displacement vector and the body forces vector into the po-
tential vector and the solenoidal vector

(J3) u = grad <p+rot 4*,

(4) , - * = e ( g r a
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we reduce the system of Eqs. (1) and (2) to system of the following three equations:

(5) lv2 d)dvdV2(p =

(6)

X-\-2u

After eliminating the temperature 0 from Eqs. (5) and (6) we arrive at two wave
equations

(8)

(9)

Eq. (8) is characteristic of the propagation of the longitudinal wave, whereas Eq. (9) —
of the transverse wave.

Let us remark that in an unlimited space the heat source and X' = Q grad •&
generate only longitudinal, dilatational waves, while X" = Q rot —% only transverse
waves. , . .

We shall assume that the causes provoking the wave disturbances, namely the
heat sources and body forces, change harmonically in time

(10) Q{x,t) = Q*{x)eimt, &(x,t) = &*(x)eM, X « = X* (*)*"•

Consequently, the temperature, the displacements and the strains will change
harmonically in time, too. Introducing the notations

(11) e(.x,t)^8*(x)eimt, <p(x,t) = <p*(x)eM
s etc.

we reduce Eqs. (8) and (9) to the forms

(12) (V2 - k\) (V2 - kj) <p* = - ^— - X (V2 - q) #*,
1

(13) (V2 2)4*

where

k\+k\ = q ( l+«) - ff2, k\ k\ - - g<r2,

ia> co2 co2

X C1 C2

k\ and k\ are the roots of the following biquadratic equation

[a2
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We shall now consider the action of the concentrated force in an unlimited
medium and construct the components of the Green displacement vector. Let us
put first that the concentrated unit force — changing harmonically in time — acts
at the origin of the coordinate system along the X\ axis.

In a general approach, for an arbitrary vector of body forces, we determine the
functions #* and x* from the formulae [3]

(14) #* (») - - - p - f f f \x\\x')~ ( * -) + X\ (* ' ) • / - (* ,,
4nQ J J J I dxi \R(x, x')] Jdx2\R(x,x)

Introducing into Eqs. (14) and (15) the expression

X; (x') = 6 (x[) 6 (x'2) 5 (x'3) diU j - 1, 2, 3,

which characterizes the action of the concentrated force at the origin of the coor-
dinate system along the x\ axis, we obtain successively:

Thus, we have to solve the following equations

(17) * 1 d ll

c ) (V2+T2)V. = _ _ _ F _ . _

We shall devote our attention to the first equation of group (17), as the solutions
of the remaining equations are known and may be written in the following form:
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where

When solving the first equation of the (17) group we take advantage of two
properties of the function <p*. The concentrated force acting along the x\ axis the
wave functions, as well as the displacements, will be axi-symmetric with respect
to the x\ axis. Moreover, the cp* function is antisymmetric with respect to the x% x3

plane, as the displacement u\ is symmetric with respect to this plane. Considering
cp* as a function of x\ and of the radius /• = (x\-\-x?$12, we perform on the wave
equation first the Hankel transformation and then the sine Fourier transformation.
Introducing the transformation

OO OO ^

(19) £ (a, p) = l / - ^ - f | cp* (xi, r) rJ0 (or) sin fa dxx dr,
o o

we reduce the wave equation to the form

(20) cp (a, p) =

where

1 I 2 T

{k\ ~q)c»2 (k\ - q) a>2

Subjecting the relation (20) to the inverse Hankel-Fourier transformation

— 00 OO

2 C C
(21) q>* (xu r) = "|/ — j I 7p (a, ft aJ0(ar) sin pXl da dp,

o o

we obtain for the function tp* (xj, r) the following solution in closed form

(22) * • < * ' > " - 1 ^ a ! ^
where

F = /(2 Ja(R, o) - ^x 7i(J?, co) -

) = — «"** 7 = 1 , 2 ;

Notice that passing from the coupled to the non-coupled problem, i.e., putting
in the expression for cp* the following values: r\ = 0, e = 0, k\ ~ q, k\ = — a2,
we obtain the known solution of the wave equation of classical elastokinetics

1 d le-1aR 11 d I
(23) cp* (r, xx) - - — -

4 w co2 i)xi \ R
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Let us return to Eq. (22) and transpose the concentrated force from the origin
of the coordinate system to the point (!). Let us, moreover, attach to the functions
<p* and <J>* indices (1) in order to indicate that they are connected with the force
acting along the xy axis. We obtain then

(24)

where

R = K*i -

Superposing the displacements conformly to formula (3), we arrive at

(25) u;m^-^{dldj[FiRt<o)^FoiRtto)]) + ^8tif^L,

7 = 1 , 2 , 3 .

The action of the concentrated force in an unlimited medium is accompanied by
the temperature field which will be determined from Eq. (6). The amplitude of the
temperature field is

0*0) = _ (V2+cr2) / C O + 0*(1) = _ d

After some simple calculations we have

In the non-coupled problem (i.e., for e = 0) we have 0*C1) = O.

Returning to the coupled problem of thermoelasticity, we remark that the
function 0*(n exhibits a singularity at the point (x) = (f). Thus, the action of the
concentrated force at the point (£) generates a concentrated heat source in this
point. •

Let us direct the concentrated force acting at the point (I) subsequently along
the xi, x% and finally along the X3 axes.

In this way we obtain three groups of components of the displacement vector
w;n),«;C2:W; (3) and the accompanying temperature fields 6*m,B*(2) and 0*(3).

The set of all the components of the displacement vector forms the Green
displacement tensor

(27) Gf (x, ?, 0 - Re [wj« (*, ?, w) eia)(] =

^~^ Re lRe lelmt
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The temperature field 0*{k) is described by the formula

(28) 6(» {x, ?, t) = Re [0* (x, ?,co) efo{] =

Thus, the functions M*W and 0*(fc) being known, we are able to determine the
amplitudes of stresses and strains from the formulae

(27) <#» = 2

(28) e*fk) = - j («:,^+«;,f), i,j,s = 1, 2, 3 .

Now we assume that in the point (?) the concentrated unit heat source generates
solely the longitudinal waves described by the wave function <p£, which propagate
in the form of spherical waves. The solution of Eq. (8) (for ft — 0) is known [4].
It is of the form

(29) <p% = -^K{fijQ [h(R, co) - h (R, a))]•

We obtain the displacement due to the action of the heat source from the following
relation

(30) u*T = dj(p*T>

wherefrom'

(31) i,;T - dt cp"T = to(/cT-^~ dj \h (R, co) - h (R, m)].

Let us place the concentrated force acting along the Xj axis in the point (*').
Then the temperature generated by this action in point (?') will be obtained from
Eq.(26).

(32)

Now we assume the concentrated unit heat force to be placed in the point (£')•
The displacement u*T (due to the action of this heat source) in point (x1) directed
along the Xj axis may be obtained from the formula (31).

We have .

(33) u)T(x\ 5 » = fattfi fi di \-h (R, <») - h (R, co)].

Comparing the formulae (32) and (33), we obtain

(34) 6*«\%', x', co) = - ^ u ] T ( x \ §', co).
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This result should be considered as a corollary to the theorem on the reciprocity
for the thermoelastic medium [5]. This theorem may be written — for the unlimited
space — under the form:

(35) r,xiwjjj {X*t u*' - X*' u\) dV = y / / / (2* 0*' - Q*' 0*) dV.
(B) (B)

In the case here considered we have

and Eq. (35) assumes the form

rptto f f J S(x- x') 5n u*T(x, %', co) dV(x) =
(i)

= - y / / / d(x - §') 6H1\x, x', co) dV{x),

whence

(36) d*«\%', x', co)=~ ^j- u*T(x', %', co).

Taking into account that y = mc\ Q we arrive at the conclusion that the formulae
(34) and (36) are identical. The theorem on reciprocity leads to two further con-
clusions, namely:

07) «;»>($', *' ,«).= «;«(*', * ' ,«) ,

and

(38) 0 " ( * ' I $ ' , < B ) = 0*CS', * ' ,« ) .

Relation (37) describes the reciprocity of displacements. It means that the displace-
ment u*m (%', x', co) in point (£') due to the action of the concentrated unit force
applied in point (x') and acting along the xje axis is equal to the displacement
w]j!W) (x1, \', co) in point (x1) along the Xk axis due to the action of the concentrated
unit force applied in point (?') and acting along the Xj axis.

Relation (38) concerns the reciprocity of temperatures. It means that the unit heat
source placed in point (%') generates in point (*') the temperature 6*' (x', %', co),
whereas the heat source placed in point (x1) generates heat in point (%') its
temperature amounting to 6* ($;', x', co).

A more extensive discussion of the problem here considered will be found in
a separate paper to be published in the Proceedings of Vibration Problems.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF FUNDAMENTAL TECH-
NICAL PROBLEMS, POLISH ACADEMY OF SCIENCES

(ZAKLAD MECHANIKI OSRODKOW CI4GLYCH, INSTYTUT PODSTAWOWYCH PR0BLEM6W
TECHNIKI, PAN)
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B. HOBAqKHM, cDYHKIJHH TPHHA #JIfl TEPMOynpyrOM CPEflbl. I

B pa6ote flaeTca B 3aMKiiyTOM BHfle ocnoBiioe pemeHHe BOHHOBBIX ypaBnemiii B iieorpanH-
TepMoynpyroM npocTpancTBe. B lacTHOCTir, flaroTCa (JjyriKinHH nepeMemenH5i TeH3opa

Fpnna, a TaK̂ Ke noun TeMnepaTypw, conyTCTByromHe


