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The aim of the present paper is to give basic solutions of wave equations in
an unlimited thermoelastic medium. To present in particular, in a closed form the
wave functions as well as the displacements and temperature field formed in an
unlimited space under the action of a concentrated force changing harmonically
in time.

Let us consider the system of linearized equations of thermoelasticity [1], [2]

] '29 1 00 o .0
) Vv 5 :qardlvu— %"

02 u
@ V2 u+(A+p) grad div ut+X =y grad - — -

The first equation is an expanded equation of heat conduction, while the second —
the displacement equation (equation of motion) of the theory of elasticity. The
equations are mutually coupled. The following notations are adopted: # denotes
the displacement vector, X — the vector of body forces, ) = T'— T — the difference
between the absolute temperature 7" and the temperature characterizing the natural
state of heat of the body, Ty; O stands for the function describing the intensity
of heat sources. p and A are Lamé coefficients with reference to the isothermic state;
% = Agfpc is a coeflicient wherein Ay denotes the heat conductivity constant, o —
density and ¢, — specific heat, the deformation being assumed constant. Further,
7 = yTo/g, wherey = (34-+2pu), s, @ being the coefficient of linear heat dilatetion.
At least, Q = W/pc,, where W denotes the quantity of heat generated in a volume
unit of the body in a time unit. The functions =, 0, X, Q are functions of position
and time.

Decomposing the displacement vector and the body forces vector into the po-
tential vector and the solenoidal vector

(3 u = grad p+rot ¢,

“4) - X = p(grad d+-rot ¥),
315—[391]
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we reduce the system of Egs. (1) and (2) to system of the following three equations:

1
(5) (VZ—-—?‘—c}g)ﬂ—-?;f)gv2qo=—%,
6 Vz—-l—a’ —mﬂ—if}
(6) 2o Q= L
1 1 A+2u u 0
Y ey e 2 —_—— 2 2= 1 —_
(7 (V c? ‘)a) $ c% P €1 0 ’ C2 ik Ot TR

After eliminating the temperature 0 from Eqs. (5) and (6) we arrive at two wave
equations

8 (vzuia)(w—iﬁ) — = V2 =—£——[(vz~la)ﬂ
®) w ff“‘rp x"_qj * cf P i

1 X
©) (Vz—gaf)¢=mgx-

Eq. (8) is characteristic of the propagation of the longitudinal wave, whereas Eq. (9) —
of the transverse wave.

Let us remark that in an unlimited space the heat source and X’ = p grad ¢
generate only longitudinal, dilatational waves, while X*' =p rot — y only transverse
waves. -

We shall assume that the causes provoking the wave disturbances, namely the
heat sources and body forces, change harmonically in time

(10) Q@x,N=0*@ e, FxN=0*@e", x@) =x*@ec"

Consequently, the temperature, the displacements and the strains will change
harmonically in time, too. Introducing the notations

(11) 0(x, 1) = 0*(x) e, @(x,1) = p*(x) e, etc.
we reduce Egs.(8) and (9) to the forms
3 X mQ* 1
(12) (P~ kD) (W~ d g% = ——— g (T2 —g) B,
1
1
(13) (V2+472) p* = _;?x*,
2

where
K+l = q(1+e) — 02, I3k = — qo2,

iw w? w?
g=—, o=—, 2=—5,
% ¢ ¢
k% and k3 are the roots of the following biquadratic equation

k4+k2[o2 — g(146)] — o2 g = 0.
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We shall now consider the action of the concentrated force in an unlimited
medium and construct the components of the Green displacement vector. Let us
put first that the concentrated unit force — changing harmonically in time — acts
at the origin of the coordinate system along the x; axis.

In a general approach, for an arbitrary vector of body forces, we determine the
functions #* and x* from the formulae [3]

(14) a*(x)————ffflx (’)d (R(x ))—I—X;( J—(Txlty)
+X3 ()3 (W:*))]W(x’%

@ xo=—g [[[} [Xz(“—(m -
1 0 I
=i e ,))]Jr;[xa (x)g-(——R(x,x,))—
* ;_a_ ] i__ .___1
_Xl(x)()x3(R(x,x'))]+k[X L ) (R(x x))

. ' 1 i
X (R(x, x) )]}‘W(x)‘
Introducing into Eqgs. (14) and (15) the expression
X; () =0(x)d(x) 8(x) 0y, Jj=1,23,

which characterizes the action of the concentrated force at the origin of the coor-
dinate system along the x; axis, we obtain successively:

| 0o [1
P S Sl il *
(16) PO g ‘3-Y1(R)’ Lo
1 o (1 | 0o (1
e B e N B (- — (222,
%27 4mp 0x3 ( ) %3 4o 0xy (.R)’ R=oatxy)

Thus, we have to solve the following equations

Lm0 (L
4:19::'?( —q)()xl R/’

(V2 — ) (V2 — ) p* =
(V2+22) 3 =0,

a7) e 1 o1
(Vo vd)vs 4mp ¢3 ox3\ R’

2 N ™ = 1 i .l.
(V) 95 4mpc: oxy \ R/’
We shall devote our attention to the first equation of group (17), as the solutions
of the remaining equations are known and may be written in the following form:

10 - 19
Fy(R,0), 3= — ) 5';1“0(1? ).

*__ *
(18) i 0: WZ 49.59 w2 ()X
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where
e~ itR 1

Fy(R, @) = — =

When solving the first equation of the (17) group we take advantage of two
properties of the function ¢p*. The concentrated force acting along the x; axis the
wave functions, as well as the displacements, will be axi-symmetric with respect
to the x; axis. Moreover, the ¢* function is antisymmetric with respect to the x3 x3
plane, as the displacement uy is symmetric with respect to ‘this plane. Considering
@* as a function of x; and of the radius r = (x3+x3)'”, we perform on the wave
equation first the Hankel transformation and then the sine Fourier transformation.
Introducing the transformation

®  Fen= 2 [ renri@npmana,
0 0

we reduce the wave equation to the form

(20) 7 (@, p) =

where

W ATE .
470 2 7w | % 2 +p24-k2 Vatptiz a24p2 )

(k3 — q) w? (ki — q) ?

2TaARE=-)’ U arkE—Kk)

Subjecting the relation (20) to the inverse Hankel-Fourier transformation

/_2_ o0 Do
e =V = [ [ 7 an@sinpmdad,
.00
we obtain for the function ¢* (xy, r) the following solution in closed form
22) N e .
FRLE dmp w2 Oxy (R, ),
where

F= A4 LR, 0) — Ay [} (R, 0) — L)(R, v),
1 —lyR ] 1
IJ(R,EU)_‘EE Fi=1\2; [0=?.

Notice that passing from the coupled to the non-coupled problem, i.e., putting

in the expression for ¢* the following values: =0, ¢ =0, k} = ¢, ki = — o2,
we obtain the known solution of the wave equation of classical elastokinetics
a3) . i 10 (e—‘“ﬂ 1)

Vi (r9 xl) 4?_59 @2 axl R Rl
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Let us return to Eq. (22) and transpose the concentrated force from the origin
of the coordinate system to the point (£). Let us, moreover, attach to the functions
¢* and $* indices (1) in order to indicate that they are connected with the force
acting along the x; axis. We obtain then

* (1) = — Rt
(24) OB =0, p0=—1" &Ry
8 ’ - dmow? 0x3 0V
0
() = izl
"Pz 4759 (-'.)2 5-\'2 FD (R, r"”) 3

where
= [(v; — £D2+(x2 — £22+(v3 — &3)2]'2
Superposing the displacements conformly to formula (3), we arrive at

1 e—itR

") — 7 e ETT
@) i QU F(R0) — Fo(R o)} + by,

j=1,2,3.
The action of the concentrated force in an unlimited medium is accompanied by

the temperature field which will be determined from Eq. (6). The amplitude of the
temperature field is

1 1
0*0 = — (V24 02) * Ok —— 9* ) = — 01 [(V2-+0) F(R, 0)+02 T (R

4mow?m
After some simple calculations we have

qe
dmomci (k3 — k3)

26) gro = — (R @) — I (R, o).
X1

In the non-coupled problem (i.e., for & =0) we have 6*® =0.

Returning to the coupled problem of thermoelasticity, we remark that the
function 0*® exhibits a singularity at the point (x) = (&). Thus, the action of the
concentrated force at the point (§) generates a concentrated heat source in this
point.

Let us direct the concentrated force acting at the point (£) subsequently along
the x|, xo and finally along the x; axes.

In this way we obtain three groups of components of the displacement vector
Uy, u; @, uf® and the accompanying temperature fields 6%, 6*® and 0.

The set of all the components of the displacement vector forms the Green
displacement tensor

@)  GP(x,E 1)=Re[uf P (x, §, 0) ] =

—1TR
= = s {e[“’; [‘)f 08 (F(R, 0) — Fy (R, ) — 72 by~ R ]}

o 4o w2
(= N\
1 o & ’
B R

o T
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The temperature field 0*® is described by the formula
28) 0% (x,E, 1) = Re [0*(x, §,0) ] =

_ e
dmoci m (ki — k3)

Re {e"! 0x [L(R, ) — I (R, w)]}.

Thus, the functions u;® and 6*® being known, we are able to determine the
amplitudes of stresses and strains from the formulae

@7 oy = 2uel®P+(Aer® — y6**) 8y,
1 :
(28) e =5 WP+ ), hjs=1,23.

Now we assume that in the point (E) the concentrated unit heat source generates
solely the longitudinal waves described by the wave function g7, which propagate
in the form of spherical waves. The solution of Eq. (8) (for 4 = 0) is known [4].
It is of the form

(29) o [l (R, ) — I; (R, w)].

. m
4aux (k5 — k3)

We obtain the displacement due to the action of the heat source from the following
relation

(30) u; T— rp;,
wherefrom’
m
@31 uy” = 0y 9y = -0 01 [l (R, w) — I (R, w)].

Let us place the concentrated force acting along the x; axis in the point (x”).
Then the temperature generated by this action in point (§') will be obtained from
Eq. (26).

¥ gt e qe .
oy OGO = g R @)~ LR )

R = [(x; — &0, — £)24(x5 — £)2'7.
L
Now we assume the concentrated unit heat force to be placed in the point (§').

The displacement u;” (due to the action of this heat source) in point (x') directed
along the x; axis may be obtained from the formula (31).

We have

33 *T ¢ ¢ ' s m
( ) uj (x DE ’w) 43”‘(!{% . k%)

Comparing the formulae (32) and (33), we obtain

a.f [I.?. (R! LU) - Il (‘R! {’.U)I ,

’ ! —_— Ila)x‘q r ’
(34) 0 E 2 e) = — i T (x, 8, o).
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This result should be considered as a corollary to the theorem on the reciprocity
for the thermoelastic medium [5]. This theorem may be written — for the unlimited
space — under the form:

(35) quwfff()(: ot =Xl dV:yfff(Q* 0% — Q*' 0%) dV .

(8) (8)

In the case here considered we have
X;=06(x—x)dy, X{=0, Q¥=06x-E), 0*=0,

and Eq. (35) assumes the form

NHIW fff S(x —x) by u;T(x, €, w)dV (x) =

(B)
=7 J‘ff 6(": - Ef) 6‘(D(x’ I" (’)) dV(I)!
(B
whence
nxiow
(36) ﬁ,t{jj (E.-, x', m) - 1 u;r (x', E,, m) -

Taking into account that y = mc} o we arrive at the conclusion that the formulae
(34) and (36) are identical. The theorem on reciprocity leads to two further con-
clusions, namely:

(37) uy W(E, 2, @) = P (', B, w),
and
(38) 0* (x', &, w) = 0* (&', ¥', w).

Relation (37) describes the reciprocity of displacements. It means that the displace-
ment t:}'“" (', x', ) in point (§') due to the action of the concentrated unit force
applied in point (x) and acting along the xi axis is equal to the displacement
ug® (x', €', ) in point (x') along the x; axis due to the action of the concentrated
unit force applied in point (§) and acting along the x; axis.

Relation (38) concerns the reciprocity of temperatures. It means that the unit heat
source placed in point (§’) generates in point (x) the temperature 0%’ (x', ', »),
whereas the heat source placed in point (x') generates heat in point (§') its
temperature amounting to 0* (€', x, w).

A more extensive discussion of the problem here considered will be found in
a separate paper to be published in the Proceedings of Vibration Problems.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF FUNDAMENTAL TECH-
NICAL PROBLEMS, POLISH ACADEMY OF SCIENCES

(ZAKLAD MECHANIKI OSRODKOW CIAGLYCH, INSTYTUT PODSTAWOWYCH PROBLEMOW
TECHNIKI, PAN)
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B. HOBALIKMI, ®YHKLIN I'PUHA JUJISI TEPMOVIIPYTOM CPEJBI. I

B pa60're aeTcA B 3aMKHYTOM BHOE OCHOBHOE pelieHWe BOJIHOBBIX YPaBHEHMIl B HeOrpaHu-
YCHHOM TEPMOYMPYroM ITPOCTPAHCTBE. B HACTHOCTH, OarTCHa \‘.b)l'HKL[]-'II{ MEPCMELLICHH TCH30Pa
T'puna, a Takxke mons TEMMOCPATYPRI, COMYTCTBYIOLIHE JIE{])(}DM&{IHHM.



