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1. Introduction

In [1] the two-dimensional dynamic problem has been considered concerning
the propagation of thermoelastic waves in a perfectly conductive infinite medium,
subjected to the action of a steady magnetic field.

It has been there assumed that the state of strain, the temperature and magnetic
fields, excited by the body forces and heat sources, depend on the space coor-
dinates x;, x, and on the time 7 only, and, moreover, that the initial steady
magnetic field H = (0, 0, H3) is directed along the axis xi.

In the present contribution a method of solving the fundamental equations
of the problem will be given using three auxiliary functions (of the type of Galerkin’s
functions known from the theory of elasticity), as well as procedure of approximate
solving this system of equations. Furthermore, the boundary problem for the medium
consisting of the thermoelastic half-space adjoining the vacuum will be formulated.

The fundamental equations of the problem with the corresponding notations
are as in [1].

The first group consists of the equations of displacements

(1.1) UV2 (A u+a? o) grad div s+ F = y grad 0o,
a=(“l»“2,0)s F=(F],F2,0),

H3
@ = -5;3, v = ot4-a3.
Here, » denotes the displacement vector, F —the vector of the body forces, § —
the temperature measured starting from the natural state of the body (6 = 0),
M, A are the isothermic Lamé constants, ay — Alfven’s velocity, o — the density,
and y = (34-+2u) ai. By a; we denote the coefficient of thermal linear expansion,
and by pg-—the constant of magnetic permeability.

1--{1]



9 W. Nowacki [2]

The second group constitute the electrodynamic equations of slowly moving,
media

Hi | H, |
(12) Bttt B=HIHL p g
C [ 44
» C
(1.3) =0, Mh=0, hkh=——(@01E—0nE),
Ho
- c - c -
(1.4) 11314;(32??3, J2=_Ealh3: J3=0.

In the above equations E; (i = 1, 2, 3) stand for the components of the vector
of the electric field intensity E, iy (i =1, 2, 3)— for the components of the magnetic
field intensity &, and j; (i=1, 2, 3)— for the components of the current density j.
The light velocity is denoted by c.

The last relation of the system of differential equations is represented by the
equation of heat conductivity

1. .
(1.5) V%O—;ﬁ—ndivuz—Q/x.

This is the generalized heat conductivity equation, [2], taking into account the
coupling of the strain state with the field of temperature. Here » denotes the heat
conductivity, Q = W/c,, where W is the quantity of heat created in the volume
unit per time unit, ¢, — the specific heat at constant strain, referred to volume
unit, n = pTy/k, where k denotes the coefficient of heat conductivity, and T, the
absolute temperature of the body at the natural state (thus, for 6 = 0).

Finally, we write the relations connecting the displacements u; with the strain
components gy, and the stresses oj; with the strains e; and the temperature 0

1
(1.6) &y = E(”i.f'l'“m)s Lj=1,2,

wn oy = 2u egj+(Aegr —p0) 0y,  Lj=1,2,
Oyy = Aegx — ‘y@ .

Relations (1.7) are known from thermoelasticity as the Duhamel-Neumann equa-
tions.

2. Solving functions ¢ (i = 1,2, 3)

Egs. (1.1) and (1.5) are coupled with each other. Dividing (1.1) by u they can
be represented in the form:

(C2+B0%) uy+B0ydg uy — mg 0y 0 = — Xy,
2.1) B0105 u1-|-(|:|§+5@§) Uy —mpy 0y 0 = — X,
— 10y Oguy — 10 Op up+[13 0 = — X3.
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where the following notations have been introduced

1
Y = mg, = 3, Atptdie=4,

1 1 0
2

0
55:5} Xi=Fjlp, X=Fuk, X;=0Q|.

Egs. (2.1) can also be represented in the operator form

23) Lyw)=—Xs, i,7=1,2,3,
where

Wy = up, w2=u2s w3=63
2.4) Ly = 3+po, L= p010, = f0,0y, etc.,

and it should be observed that the operators /2,3 and /2,3 are non-symmetric.

Let us introduce three functions ¢; (i = 1, 2, 3) connected with the displacements
and the temperature by the following relations:

P1 Lra Ly3 Lo Ly Ly Ly, o
(2.5)  wi= |2 L Lo way = | Loy gy L3 wy = | Ly Loy @y
P3 J-)az -933 -931 P3 -933 Ea: »932 P3

or, in another form:
wi = uy = [05 (03+P03) — mo 1 03] @101 02 (ymo 00— P O3) 2+
+mo 0 01 93,
(2.6)  wa =ty = 01 02 (mmp 0 — B [I3) ¢+ (T3 (D54 P0T) — mg nd 0F) 1+
+mo 00 02 93,
wy = 0 = 00 (0301 p1+02 p2)+(03+AV3) [ @3

Substitution of the quantities wy (i = 1,2, 3) from formulae (2.6) into Eqgs. (2.4)

yields the following three non-homogeneous equations determining the functions
(4] ('[= 1:23 3)

2.7 RUO54+8V2) OF—mynde Vil e = — Xy, i=1,2,3.

Furthermore, two quantities characterizing the wave propagation, the dilatation
e = 0 t1-+0; Uy and the component of rotation along the x3 axis w3 = 1(0; uy —
— 0, up) can be expressed in terms of functions ¢y

(2.8) e = [ (13001 @140z @2)+mg Vi @3],
(2.9) my = F[O3(03+ V) — mg 90 V31 (0) 2 — 02 1)
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The course of the procedure is the following. For given body forces F = (I}, F,)
and heat sources Q, the functions ¢, are found from Eqgs. (2.7). Next, the displace-
ments u;, the temperature 0 and the quantities e and w; are determined from for-
mulae (2.6), (2.7) and (2.9), and then the strains and stresses from formulae (1.6)
and (1.7), while the electromagnetic quantities from formulae (1.2)—(1.4).

Let us observe that in the particular case where the heat sources vanish (Q = 0)
we have g3 = 0, Only two of Egs. (2.7) are then at our disposal, and formulae
(2.6), (2.8), (2.9) simplify considerably.

If no body forces act (Fy = 0, F, = 0), then we have ¢; = 0, g, = 0. In this
case only the third of Eqs. (2.7) holds. Introducing the notation & = mg 3 ¢3,
this equation can be represented in the form

m
(2.10) (@O —nmo Vi) = — —xg,

where

!
, @e=I+2utae, Oi=V:— ;0.

m=
ap

In this particular case we have

i
(2.11) =018, uy=20a¢, -*:;DTC.
and

(2.12) e=Vi[{, w3=0.

Here we deal with the longitudinal wave only, and it follows from the nature of
Eq. (2.10) that this wave undergoes damping and dispersion. Function ¢ and Egq.
(2.10) coincide with function @ and Eq. (2.18) from paper [l], which has been
derived in another way by resolving the displacement vector into the potential and
rotational parts.

The procedure presented in this section is important for the cases where the
body forces cannot be decomposed into the potential and rotational parts (e.g.,
in the case of concentrated forces).

3. Approximate solutions

The exact solution of the conductivity equations in terms of displacements
coupled with the heat conductivity equation encounters considerable mathematical
difficulties. However, it is known from thermoelasticity that the effect of the coupling
of the strain state and the temperature field contributes only to small changes in
the values of the displacements and stresses. We may therefore expect a considerable
simplification of the solution by using the method of perturbation (method of small
parameter).
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In [1] it has been shown that by the substitutions
(3.1 u=0P—0ody, u=0no+dy,
(3.2) Fi=0(019—0y), F=0(029+0 1),

the system of relations (1.1) and (1.5) can be reduced to the following system of
equations

1
(3.3) P o+ E;ﬂ =m0,
1
Co)) Diy+—z2=0,
&)
(3.5) 20— yV2® = —Qfx.
Eliminating the temperature 6 from Eqs. (3.3) and (3.5), we obtain
& mQ 1
(3.6) (D%Dg——’;d.—,V?) = *—T'——ﬂaljg?}, &= nmx.

The most difficulties are connected with the solution of Eq. (3.6). In this equation
the quantity & can be assumed as a very small one, [3], (¢ = 1.68-10~2 for copper,
e = 2.97.10-4 for steel, & = 7.33-10-2 for lead) and the function @ can be expanded
into an infinite series of the powers of &

(3.7) D — Z‘ P
—0
Inserting (3.7) into (3.6), we arrive at the following system of equations
2 2 Bl = Q I 2
(3-8) D|D3¢)*";—_§Dyﬂ,
|
(3.9) R rEon = ~ 0, V2 -1,

Eq. (3.8) can be readily solved. It can be decomposed into the wave equation
1
(3.10) [} o0+ 'az‘t'} = mi®,

and the classical equation of heat conductivity

@.11) 0360 = — Q.

Eq. (3.10) determines the longitudinal wave which undergoes neither damping
nor dispersion and propagates with the velocity . Function @ being known,
the function @© can be obtained from Eq. (3.9). Using again Eq. (3.9), we deter-
mine successively the functions @@, @3, etc.

In technological computations it suffices to retain the second term of the series
(3.7) only.
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The first approximation can be regarded as the solution of the problem where
the coupling of the electromagnetic field with the temperature field has been taken
into account, while the coupling of the strain state with the field of temperature
has been neglected.

An analogous procedure can be applied to the system of Eqgs. (2.7) and relations
(2.6) by assuming

(3.12) pi= Yo, wi= Y wPe, i=123.
2 2

r=0

For the first approximation we obtain the system of equations

(.13) Of O3 = — L

4, Elastic half-space adjoining the vacuum

Let us consider the thermoelastic half-space x; > 0 adjoining the vacuum
x; < 0. We assume that both in the thermoelastic half-space and in the vacuum
there exists an-initial steady electromagnetic field H = (0,0, H3).

The thermoelastic half-space is described by Egs. (1.1)—(1.7), while for the
vacuum the following wave equations and relations are valid

1 - 1

@) (i—z)Ee =0, (B—ga)ir=o,
5o 1 1

4.2 rotE*=—?h*, rot A* =?E*.
We have denoted the vectors of the electric and electromagnetic field intensities
by E* and h*, respectively. For the two-dimensional problems considered we have
4.3) El =co by, Ej=—coih;, E;=0,
(4.4) 1=0, hB=0, h=—c(0E—0E)]).
By virtue of (4.3) and (4.4) relation (4.1) reduces to three wave equations

1
4.5 DyE; =0, DE;=0, Dhi=0, @:V%—;;af.

For the given vertical and horizontal loadings p; (x2, 1), p2 (%1, f) and the tem-
perature 0 (0, xz, #), we have at the plane between the thermoelastic medium and
the vacuum the following boundary conditions, [4], [5],

(4.6) 0110 X3, )+ T3 (0, X2, £) — T3, (0, x3, O)+py (2, 1) = 0,
(4.7) 012(0, X2, )+T12 (0, X, ) — T, (0, X2, O)+pa(x2, 1) = 0,
438 00, x, 1) = f(x2, 1),

4.9) Ey (0, x5, 8) = E{(0, x2. 1), E3(0, X, 1) = E3 (0, x5, 1),

h3(0, x2, 1) = h3 (0, X2, 7).
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Eqs. (4.6) and (4.7) represent the effect of the vertical and horizontal loadings
acting in the plane x; x3, while Ty, T3 and Ty, T, are the components of Maxwell’s
potential tensor for the solid body and the vacuum, respectively. Condition (4.9)
determines the distribution of the temperature at the boundary x; = 0. Finally,
relations (4.9) are the conditions of continuity of the electromagnetic quantities
in the plane of contact.

Maxwell’s potential tensors are given by formulae
| -
(4.10) m=z;mm+mm—%ﬁ&

1 =
.11 Ty =4 (Hihj+H; b — 6y HR¥),  i,j=1,2,3

Taking into account relations (1.2), (1.3) and (4.3), (4.4), we obtain from Egs.
(4.10) and (4.11)

o
4z

Bearing in mind relations (1.6), (1.7) and (1.2), (1.3), we have
011 = 2u 0y u1+2(01 uy+03 up) — 30,
4.13) 012 = (01 U0y uy),
hy = — H(0y uy+0, 1) .

By virtue of (4.12) and (4.13) the boundary conditions (4.6)—(4.9) at the plane
x; =0 can be represented in the following form:

(4.12) Ty =—’ﬂH3 hs, Th=—

47 H‘_l, )‘x‘; .

2

4.6) 0 uy+ —az uz—me+—a—2 + 4:;9 2H3 hy =0, a}=Autal,
“.7 0y up+0y u1+p2 =0,
(4.8 6=1,
H
4.9y el ”“ 2 i a i =0,

hy = hy = — H3 (9, Hrl-@z ).

It can readily be seen that the number of boundary conditions is equal to that
of equations.

For the one-dimensional problem, where all quantities depend on x; and ¢
only, the boundary conditions simplify considerably.

The relations presented in this section show that the loading or heating of plane
x; = 0 and also the action of body forces and heat sources within the thermoelastic
space is inseparably connected with the excitation of electromagnetic waves in
the vacuum. The problem simplifies considerably by disregarding the coupling
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of the temperature field with the strain state (y = 0). The one-dimensional problem
concerning the sudden heating of plane x; = 0 has been discussed in detail in papers
[6] and [7].

A further generalization of the present paper to cover two-dimensional problems.
(propagation of Rayleigh’s waves, wave propagation in a layer, etc.), and one-
-dimensional problems, will be published in Archiwum Mechaniki Stosowanej
in 1963.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF FUNDAMENTAL TECH-
NICAL PROBLEMS, POLISH ACADEMY OF SCIENCES

(ZAKEAD MECHANIKI OSRODKOW CIAGEYCH, INSTYTUT PODSTAWOWYCH PROBLEMOW
TECHNIKI, PAN)
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B. HOBALIKUW, TIJIOCKASL 3AJAYA MATHUTOTEPMOVYIIPYI'OCTH. II

B macrosiueil pabore, koTopast sBiiseTcsa npogosnkeHueM pabortsl [1], moxasan
METOJ PELICHUS JUIOCKON CONPSDKEHHON 3ala4d MarHMTOTEPMOYNPYIOCTH B He-
OIPaHHYEHHOM TIPOCTPAHCTBE TNPH WCMOJIB30OBAHHKM TPEX pELIAIOLMX (DYHKIIHIE
@i (i=1,2,3). B yacTHOM ciyuae BO3JEHCTBHS €JIMHCTBEHHO HMCTOYHMKOB TEIUIA,
IUIsL PEleHHs 3a1a4y JOCTATOYHA OHA TOJBKO (YHKUUS @3 = @.

B paspene 3 pabGorel maercsa mMeTOm MPHUOIKEHHOTO pPELIEHUs] OCHOBHBIX BOJI-
HOBHIX YPaBHCHMIl IIpH TNpAMEHeHWM nepTypOauuHonHoro wmeroxa. Haxowerm —
B pasjiesie 4 TIPHBOJATCS CHCTEMbI YPABHEHHH M KpaeBble YCIOBUS JUIsi CIIydas
TEPMOYNPYTOro IOJYNPOCTPAHCTBA, HAXOMAILErOcs B KOHTAKTE C BAKYYMOM.



