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1. Introduction

In [1] the two-dimensional dynamic problem has been considered concerning
the propagation of thermoelastic waves in a perfectly conductive infinite medium,
subjected to the action of a steady magnetic field.

It has been there assumed that the state of strain, the temperature and magnetic
fields, excited by the body forces and heat sources, depend on the space coor-
dinates x\t x-i and on the time t only, and, moreover, that the initial steady
magnetic field H = (0, 0, #3) is directed along the axis x3.

In the present contribution a method of solving the fundamental equations
of the problem will be given using three auxiliary functions (of the type of Galerkin's
functions known from the theory of elasticity), as well as procedure of approximate
solving this system of equations. Furthermore, the boundary problem for the medium
consisting of the thermoelastic half-space adjoining the vacuum will be formulated.

The fundamental equations of the problem with the corresponding notations
are as -in [1].

The first group consists of the equations of displacements

(1.1) /xV2 it+(X+fj.+al Q) grad div u+F = y grad

Here, u denotes the displacement vector, F — the vector of the body forces, 6 —
the temperature measured starting from the natural state of the body (0 = 0),
(x, % are the isothermic Lame constants, OQ — Alfven's velocity, Q—the density,
and y = (3X+2/x) at. By at we denote the coefficient of thermal linear expansion,
and by ^0 — t n e constant of magnetic permeability.
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W. N o w a c k i [2]

The second group constitute the electrodynamic equations of slowly moving,
media

flQ Hi , fJ,Q - ^ 3 .
(1.2) Ei" — «a, ^ 2 - — — HU £3 = 0,

c
(1.3) /j! = 0, /j2 = 0, k = — — (dj 2s2—^2-£'i))

(1-4) j \ = —d2h3, j2= — — dih3, h — 0.

In the above equations Ej (z = 1, 2, 3) stand for the components of the vector
of the electric field intensity E, hi (i— 1, 2, 3) — for the components of the magnetic
field intensity Ti, and jt (i = 1, 2, 3) — for the components of the current density / .
The light velocity is denoted by c.

The last relation of the system of differential equations is represented by the
equation of heat conductivity

, 1 •
(1.5) Vie 6 — r)di\u = — Q/x.

This is the generalized heat conductivity equation, [2], taking into account the
coupling of the strain state with the field of temperature. Here n denotes the heat
conductivity, Q = W/ce, where W is the quantity of heat created in the volume-
unit per time unit, cr. — the specific heat at constant strain, referred to volume
unit, 7] = yTo/k, where k denotes the coefficient of heat conductivity, and To the
absolute temperature of the body at the natural state (thus, for 6 — 0).

Finally, we write the relations connecting the displacements m with the strain
components s<;, and the stresses Oij with the strains e« and the temperature &

(1.6) stj—^r(uij-\-Ujti), i}j
= 1>2,

dij = If! Eij-\-{Xe)cic — yd) dij, i,j = 1, 2,
(1.7)

ff33 = AEjtlc — yd .

Relations (1.7) are known from thermoelasticity as the Duhamel-Neumann equa-
tions.

2. Solving functions qn (( = 1, 2, 3)

Eqs. (1.1) and (1.5) are coupled with each other. Dividing (1.1) by fi they can
be represented in the form:

— m0 di 6 = — Xy,

(2.1) /9did2 wi+(Di+/S$ u2 — m0d26 = — X2,

— ?/di biuy — y\d2 dt l
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where the following notations have been introduced

(2.2)

m0,

•• i«. • ! 1 X <)Xi '

Eqs. (2.1) can also be represented in the operator form

(2.3) J2ij(wj) = —Xi, i,j= 1,2,3,

where

(2.4) u etc.,

and it should be observed that the operators £13 and £23 a r e non-symmetric.
Let us introduce three functions (pi (i = 1, 2, 3) connected with the displacements

and the temperature by the following relations:

(2.5) H>I == (p2£22 £2l

3 -^32 -^33

or, in another form:

(2.6) w2 = u2 = d[ d2(rjm0

= 6 =

W2 = £• 23

£ 31 9'3

dj] t — ^\jj) <p2+

~ m0 r,dt d\)

+m0

Substitution of the quantities Wi (i = 1, 2, 3) from formulae (2.6) into Eqs. (2.4)
yields the following three non-homogeneous equations determining the functions
cPt (f = 1,2,3):

(2.7) ^ [(D1+/3V2) • ! 1 = 1, 2, 3 .

Furthermore, two quantities characterizing the wave propagation, the dilatation
e = di u\+d2 u2 and the component of rotation along the x3 axis a)3 = %(d\ u2 —
— d2 Mi) can be expressed in terms of functions cpt

(2.8)

(2.9)

e = )+w 0 V? 993],

V?] (di ^2 ~
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The course of the procedure is the following. For given body forces F = (F1; F2)
and heat sources Q, the functions <pi are found from Eqs. (2.7). Next, the displace-
ments lit, the temperature 0 and the quantities e and a>3 are determined from for-
mulae (2.6), (2.7) and (2.9), and then the strains and stresses from formulae (1.6)
and (1.7), while the electromagnetic quantities from formulae (1.2)—(1.4).

Let us observe that in the particular case where the heat sources vanish (Q = 0)
we have <p3 = 0. Only two of Eqs. (2.7) are then at our disposal, and formulae
(2.6), (2.8), (2.9) simplify considerably.

If no body forces act (Fi = 0, F2 = 0), then we have tpi = 0, q>2 = 0. In this
case only the third of Eqs. (2.7) holds. Introducing the notation £ = m0 U\ 953,
this equation can be represented in the form

(2.10) (•? • ! - r,mdt V?) f - - ^ ,

where

In this particular case we have

(2.11) u = d £ u = d £ 0 = - D 2 £

and

(2.12) e = V2£, 0)3 = 0.

Here we deal with the longitudinal wave only, and it follows from the nature of
Eq. (2.10) that this wave undergoes damping and dispersion. Function £ and Eq.
(2.10) coincide with function 0 and Eq. (2.18) from paper [1], which has been
derived in another way by resolving the displacement vector into the potential and
rotational parts.

The procedure presented in this section is important for the cases where the
body forces cannot be decomposed into the potential and rotational parts (e.g.,
in the case of concentrated forces),

3. Approximate solutions

The exact solution of the conductivity equations in terms of displacements
coupled with the heat conductivity equation encounters considerable mathematical
difficulties. However, it is known from thermoelasticity that the effect of the coupling
of the strain state and the temperature field contributes only to small changes in
the values of the displacements and stresses. We may therefore expect a considerable
simplification of the solution by using the method of perturbation (method of small
parameter).
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In [1] it has been shown that by the substitutions

(3.1) ui = h & — ^2f> u2 = d20+ditp,

(3.2) ft - e ft 0 - d2 y>), F2 = Q (d2 #+dr %),

the system of relations (1.1) and (1.5) can be reduced to the following system of
equations

(3.3) n ? *

(3.4) nlv+72-

(3.5) D?0 — VV2& = — Qjx.

Eliminating the temperature 0 from Eqs. (3.3) and (3.5), we obtain

(3.6) (•?rj!--d,V?W=—— - 4 ° ^ , £ = ??mx.
\ yt \ yt ci

The most difficulties are connected with the solution of Eq. (3.6). In this equation
the quantity s can be assumed as a very small one, [3], (e = 1.68-10~2 for copper,
e = 2.97 • 10-4 for steel, e = 7.33 • lO"2 for lead) and the function 0 can be expanded
into an infinite series of the powers of e

r-0

Inserting (3.7) into (3.6), we arrive at the following system of equations

(3.8)

(3.9) • ? Q^ (p(r) = — dt Vf #<r-U.

Eq. (3.8) can be readily solved. It can be decomposed into the wave equation

0(3.10) a j

and the classical equation of heat conductivity

(3.11) D ^ = - £ / * •

Eq. (3.10) determines the longitudinal wave which undergoes neither damping
nor dispersion and propagates with the velocity a. Function <£(0) being known,
the function &®> can be obtained from Eq. (3.9). Using again Eq. (3.9), we deter-
mine successively the functions &W, (Z>(3), etc.

In technological computations it suffices to retain the second term of the series
(3.7) only.
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The first approximation can be regarded as the solution of the problem where
the coupling of the electromagnetic field with the temperature field has been taken
into account, while the coupling of the strain state with the field of temperature
has been neglected.

An analogous procedure can be applied to the system of Eqs. (2.7) and relations
(2.6) by assuming

oo oo

(3.12) ^ J T ^ y V ' wt-*£vV*, / - 1 , 2 , 3 .
r=o r=0

For the first approximation we obtain the system of equations

(3.13) •? nl nl <pf> = - ~r, i - I, 2, 3.

4. Elastic half-space adjoining the vacuum

Let us consider the thermoelastic half-space x\ > 0 adjoining the vacuum
Xi < 0. We assume that both in the thermoelastic half-space and in the vacuum
there exists an • initial steady electromagnetic field H = (0,0, H$).

The thermoelastic half-space is described by Eqs. (1.1)—(1.7), while for the
vacuum the following wave equations and relations are valid

(4.1) J

(4.2) rot S* -—-%*, rot h* = -£*.
c c

We have denoted the vectors of the electric and electromagnetic field intensities
by E* and fi*, respectively. For the two-dimensional problems considered we have

(4.3) E*^cd2h*, E$ = —cdihl, E* = 0,

(4.4) h* = Q, A2* = 0, fi*3= — c(diE* — d2E*l).

By virtue of (4.3) and (4.4) relation (4.1) reduces to three wave equations

0 ^ * 0 C2) V? d\(4.5) ^ £*=( ) , 2>£j = 0, ^ = 0, 2) = V?

For the given vertical and horizontal loadings pi (x2, t), p2 (x\, t) and the tem-
perature 6 (0, x2, i), we have at the plane between the thermoelastic medium and
the vacuum the following boundary conditions, [4], [5],

(4.6) o-u (0, x2, t)+Tn (0, x2, t) - T*n(0, x2, t)+px(x2) t) = 0,

(4.7) ai2 (0,x2) t)+T12 (0, x2, t) — T*n (0, x2, t)+p2 (x2, 0 = 0,

(4-8) 0(0,x2,t)=f(x2,t),

(4.9) Ei (0, x2, 0 - £f (0, x2t), E2 (0, x2, t) = E*2 (0, x2, t),
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Eqs. (4.6) and (4.7) represent the effect of the vertical and horizontal loadings
acting in the plane xi x3, while T\\, T\2 and Tn, T\2 are the components of Maxwell's
potential tensor for the solid body and the vacuum, respectively. Condition (4.9)
determines the distribution of the temperature at the boundary x\ — 0. Finally,
relations (4.9) are the conditions of continuity of the electromagnetic quantities
in the plane of contact.

Maxwell's potential tensors are given by formulae

(4.10) Tt} - -7- (Ht h)+H] h — dtj Hh),
4JT

(4.11) T* = ~ (Ht hj+Hj h\ - du Hh*), ij = 1 , 2 , 3

Taking into account relations (1.2), (1.3) and (4.3), (4.4), we obtain from Eqs.
(4.10) and (4.11)

(4.12) Tn = -^H,h, r?!-—£-JSr3Aj-

Bearing in mind relations (1.6), (1.7) and (1.2), (1.3), we have

an = 2/ndiu1+A(d1u1+d2u2)— yd,

(4.13) or12

By virtue of (4.12) and (4.13) the boundary conditions (4.6)—(4.9) at the plane
xi = 0 can be represented in the following form:

( 4 . 6 ) ' dlu1 + ^ d 2 u 2 ^ t Jg

(4.7)' d1u2+d1ul+p2 = 0,

(4.8)' 6=f,

(4.9)' -•£*%_**._,>. ^ -

It can readily be seen that the number of boundary conditions is equal to that
of equations.

For the one-dimensional problem, where all quantities depend on xi and t
only, the boundary conditions simplify considerably.

The relations presented in this section show that the loading or heating of plane
x\ = 0 and also the action of body forces and heat sources within the thermoelastic
space is inseparably connected with the excitation of electromagnetic waves in
the vacuum. The problem simplifies considerably by disregarding the coupling
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of the temperature field with the strain state (rj = 0). The one-dimensional problem

concerning the sudden heating of plane x\ = 0 has been discussed in detail in papers

[6] and [7].

A further generalization of the present paper to cover two-dimensional problems

(propagation of Rayleigh's waves, wave propagation in a layer, etc.), and one-

-dimensional problems, will be published in Archiwum Mechaniki Stosowane}

in 1963.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF FUNDAMENTAL TECH-
NICAL PROBLEMS, POLISH ACADEMY OF SCIENCES

(ZAKtAD MECHANIKI 0SRODK6W CIAGtYCH, INSTYTUT PODSTAWOWYCH PROBLEMOW
TECHNIKI, PAN)
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B. HOBA1I,KHM, IUIOCKAH 3AflAHA MATHHTOTEPMOyilPyrOCTH. II

B HacTOHmeft pa6oTe, KOTopaa HBjraeTca npo/jojiaceHHeM p a 6 o r a [1], noKa3air

penieHHH JIJIOCKOH conpaxceHHoii 3a,n,aHH MarHHTOTepMoynpyrocTH B

orpaHHneHHOM npocTpaHCTBe n p a Hcnonb3OBaHHH Tpex peniaiomHx

<Pi(£= 1,2,3) . B nacTHOM cnyiae BO3fleftcTBHa eflHHCTBeHHO HCTOHHHKOB Tenna,

flJiH pemeHHa 3a«aHH flocTaTOHHa o^Ha TOJibKo (byHKijHH ^,3 — >̂.

B pa3,nejie 3 pa6oTbi AaeTpa MeTOfl npn6jiH>KeHHoro pemeHHa OCHOBHHX BOJI-

HOBBIX ypaBHemtii npn npHMeHeHHH nepTypSaiiHOHHoro MeTOfla. HaKOHen; —

B pa3flene 4 npHBOflHTca cHCTeMH ypaBHeHHH H KpaeBwe yoioBiia AJIH cj iyiaa

Tepwtoynpyroro nojiynpoctpaHCTBa, Haxoflameroca B KOHTaKTe c BaxyyMOM.


