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1. General equations

In Ref. [1] it has been shown that the plane non-coupled dynamic problem of
thermoelasticity (for plane strain) can be treated in stresses by means of the stress
function F connected with the stresses by the relations

(L.1) 0ij = — F,i3+ 0y (F,kk—é-‘%ﬁ), =12,

and satisfying the non-homogeneous bi-wave equation

(1.2) 02 02 F+-2um 02 T = 0,

where T'is the temperature, uA — the Lamé constants, a; — the coefficient of thermal
dilatation and m = %E, 3,03 are the differential operators

1 1
(13) . Bi=r—gd Oi=r—gd
where 2 is the Laplacian operator and ¢, and ¢, are the velocities of propagation
of the longitudinal and transversal elastic waves, respectively,

¢

fziﬂa {'22#-
e e

The other symbols are d;; — Kronnecker’s delta, ¢ — density and o — the symbol
of time derivative.
The temperature 7 should satisfy the heat equation

0 [
(1.4) D§T=—"““, E]§=l72_‘;dh

’
where % = l—, 0= i and A’ is the coefficient of heat conduction, W — the
¢ cp

quantity of heat produced per unit volume and time and ¢— the specific heat.

[427]
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The solution of the Eq. (1.1) may be expressed in the form of a sum of three
functions F = Fy--F*, F* = F;+F,, where F, is a particular integral of (1.2),
and Fy, F, are the general integrals satisfying the equation
(1.5) 0}F, =0, O}F,=0.

In the case of the infinite space it suffices to determine a particular integral
of the equation )

(1.6) 03 Fo+2umT = 0.

For a limited body, in addition to the particular integral F; the functions F;
and F, should be determined. The particular integral Fy should be selected in such
a way that some of the conditions of the problem will be satisfied. The determi-
nation of the particular integral may done in the following way.

Let us eliminate the temperature from the equations (1.4) and (1.6). Then,

2
(1.7) 00 Fy = Ly

b

Bearing in mind that

03—
(i e ()
Eq. (1.7) may be represented in the form:

| 1
(1.8) oio3 = D§—|:|§=;a¢~a§d§,

2 (so—g %) B=—4" @ —@pre.

Let us introduce an auxiliary function S, satisfying the equation
(1.10) 0% S =—Q/x,

and assume that function S satisfies the same boundary conditions as function T.
Since

1
(L.11) T=—l@de, S=—i@po
Eq. (1.9) takes the form
(1.12) (l—a,——lf a}) Fom B (T — ),

4 Cl

A number of particular soluticns can be cbtained in a simple way from (1.12).

Let us assume that the action of the heat sources started at 7 > 0 and for 1 < 0
the body was in the natural, undeformed and unstressed state. On performing the
Laplace transformation on Eq. (1.12), we obtain

~ 2um

(- o= (o1t

)
where

Fo(%r, p) = f (xr, ) €244, etc.
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The inverse Laplace transformation yields the function Fy, and the Egs. (1.1) —
the stresses corresponding to this function.

If the heat sources are harmonic in time Q (xy, £) = e/®* Q,(x,) the functions
T, Iy, S are also harmonic.

Inserting

T(xp, 1) = e U(xy), S 0)= eV (x), Fo(xr, 1) = e Dy (xy),
into (1.12), @, is obtained from the equation

2um (U — V),
D=t ) N = 2 — 2fe?
(1.14) Py P N = ofx, k2= w?c.

The stresses corresponding to the function Fy are expressed by
(1.15) Oty = f"“"{(pu i5+01 (|72_|_ )550] hj=1,2.

If the temperature field moves along the xj-axis with constant velocity », then,
transforming the co-ordinates

(]16) & = x| — I, Ez——“.XQ,
Eq. (1.12) is reduced to

) 02 )
A (St Foter, ) =—2em TG £ — S &1 )
1
where the functions T and S should satisfy the equation

(03+03-+0/ 0) T = —0Qx, (af+a;_“-:§a§)5=_g/,,,
(1.18) i

Let us observe that for an infinite elastic space Eq. (1.13) may also be obtained
in another way.

Let us perform the Laplace transformation on Eqs (1.7) and (1.4). We obtain
the system of equations

(1.19) (72 —pl%) (72 — p¥ed) Fop = — —-7 ;

(1.20) r—pF=—2.

Let us perform on (1.19) the triple Fourier integral transformation determined
by the equations

[*(ay, p) = 2m)—** fo- f(xy, p) €orzrdy, dV = dx; dxy dxs,
(1.21) =
Fxr, p) = @Ry m f*(ar, p) e—rmrdW, AW = day doy da.
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The solution of (1.19) takes the form (2)

~ 2Q2m) 32 um [ 3 O* (ar, p) e *rdW
(l -22) Fﬁ (Xr, _p) —— s lj ff (ar ar_l_p/x) (ar . ._|_p2/(1]2)

or
00

T 32 #* p—tlay ”’V
(123) Fylepy =B R f f’ f Q* e—terr

(p/z— p?[c}) |= arartple
(" O* e—lar®r W
J ar ar+p2lct |’

—00

kl,'—

The first integral in figured brackets on the right-hand side of (1.23) is equal to T,
as a solution of (1.20), the second may be treated as a solution of the differential
equation

(1.24) (72— p2|c?) §=~%, S (xr, 0) = S (xr, 0) = 0.

It should be added that for the determination of the function F; it suffices to
know the transforms of the function 7" The function S will be obtained by replacing
p/# in the transform T' by p?/ci.

Below a few solution examples are given for an infinite elastic space and an
elastic layer.

2. The infinite space

Let an instantancous linear source uniformly distributed along the xj-axis

act in the infinite space O (xp, 1) = ancr) d(f). The resulting temperature field is

0 i
(2.1) T(r,t)= —-—“— ,exXp ( m), 12 = x34x2.

On performing the Laplace transformation on Eq. (2.1), we obtain

(2.2) T(r,p) = -2%‘,’; Ko(rV pl#),

where Kj (z) is the modified Bessel function of the third kind and of zero order.
Replacing p/x in (2.2) by p?/c?, we obtain '

(2.3) E(r,p) = %Ko (rpo), o= 1/e.
Therefore
@.4) Bl p) = ol Y ) — K (ep].

27ux(pln—p?c})
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On performing the inverse Laplace transformation, we obtain the function Fj.
The same problem has been solved in another way by W. Derski [3].

d(r)

In the case of a periodic source Q (xy, f) = Qg el®* T Ve obtain from (1.14)

(2.5) Dy = ;m:%z [Ko (r |/;';;r)-— Ko (rk)). n=wlx, k= wlc.

The stresses oy, corresponding to the function @, will be obtained from Egs. (1.15)
Let the heat sources vary harmonically in time along the xp-axis

17T
Q (-\'h X2, f) == Q[) plwttlay 2, § (xl), Uy = {-I;- : n =20, il, iz, T

In this case the following equation is to be solved
) 2 o Q_O " fa,, T,
(2.6) PRU—inU= —-x--f‘)‘ (xq) e**n,

It is easy to verify that the following function is a solution of this equation

By T, i
2.7) @umh_fﬂ, Pa=Va2+in, x1>0.
k1
Therefore :
—¥n T
(2.8) V=%e‘“1t”=?—;’}:-, yn=Vat—k?, k= olc;,x;>0.
n

Substituting (2.7) and (2.8) into Eq. (1.14), we find

(2.9) Dy = Qo pm e**n ® (e""ﬂ B e tn®

# (in+k2)

Knowing @, the stresses will be found from Egs. (1.15).

), x; >0.

Yn

3. The elastic layer

Let us consider an elastic layer of thickness 2h with boundary surfaces free
from stress. The same surfaces are heated harmonically in time according to the
equation

fn=co
(B.1)  T(kh xp1t) = e Z Ty €¥n % =

T =—00

= glat [%9 + Z (An cOS ap X2-+-By Sin an X9)l,  aa= nmla.

=1

In order to determine the paﬂicular integral Fy the following equation should be
solved

(3.2) P2U—inU=0,
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with the boundary conditions

f= 00
(3.3) U(h,x)) = 2' Tpeln® and U=0 for x24x%Z-—co.

H=—00

The solution of Eq. (3.2) with the boundary conditions (3.3) has the form

M=o
ho —
(3.4) Uy, ) = Y T,,"h ;ﬂx‘ el 9y =/ ad+in.
N=—o0
Therefore
=00
R . perune
(3.5) Vanx) = Y Tn%e‘“u% yu =V @ —k2,
n=—co
and
_m SY g g (SOt chiyn xy
(55 = m—}—k2 Z fue (ch{}”h chyuh)'

Thus, a particul ar integral of Eq. (1.2) has been obtained, satisfying a part of the
boundary conditions, the normal stresses oq; on the boundaries x; = + / being
zero. The shear stresses oy, remain different from zero. To satisfy all the boundary
conditions, particular integrals of (1.2) should be taken into consideration. Intro-

ducing the equation
(3.7 Fy (xy, 1) = et Dy (xp), Fy (xy, 1) = €'t D, (xy),

Eq. (1.5) is reduced to the form
2 2
B8 (PO P=0, (AP =0, KR==, s2=27.
1
The solutions of these equations will be assumed in the form

=00

Z On e"n® chyy Xy,
N=—oo

(3.9)
=00 i
d52 = Z by e"n% ch fgu X !81'% = l/a.?, ‘—':‘5'

=—00

From the boundary conditions o1y = 0, oy; = 0 for x| = A, that is from the con-

ditions
2
(3.10} — Qs: 120= 0: q}) 22"}_ %'@ = 0! Q e ®ﬂ+q’l+¢29

the constants a, and b, can be determined. We find

D= 2umTy ch Ba h Dp thdph — yu thyy h
G.11) in-+-o? " yushyn hch Py h— Pnsh Buhchynh’
bf} = _a“c‘h?}ﬂ h

ch ﬁnh
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The knowledge of the function @ = @y D,--P, will enable us to determine the
stresses from the equations

2
(3.12) o1y = elot [— D, 15-+04 (I?'z“‘ %) ‘p]' Lj=12

Considerable simplification is obtained in the case of the boundary condition
(3.13) T (h, x5, 1) = Ty etet,
where T does not depend on x,. In this case the solution of the problem is confined
to the function
dwi - s

(3.14) Foss 2;{ng£ (ch Xy ]_/m __cos kxl) .

in+k* \chy/inh cos kh
Making use of Eqs. (1.15) we find that the boundary conditions 13 = 0, 01y =0
are satisfied here. The stresses in the elastic layer are

1 = | =
(3.15) 611=—EEF0, “22:FDsII—EE§F{}s o12=0.

[

Thus, we have forced vibration produced by a harmonic temperature, field.
The excitation frequency w should not coincide with the natural vibration frequency
2n — 1 mcy

2 h
nomenon of resonance. The quantities w, are the roots of the equation cos kh = 0.
For o approaching anyone of the w, values, the stresses will increase indefinitely.

of the layer wy = n=1,2,..., oo, Otherwise we would have the phe-
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