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1. General equations

In Ref. [1] it has been shown that the plane non-coupled dynamic problem of
thermoelasticity (for plane strain) can be treated in stresses by means of the stress
function F connected with the stresses by the relations

( ^ y=i,2,
\ ZC2 /

and satisfying the non-homogeneous bi-wave equation

(1.2) D2
in

2
2F+2/xmnlT=0,

where T is the temperature, /j,X — the Lame constants, at — the coefficient of thermal

dilatation and m — -— ,!,~> O2
uOl are the differential operators

where p 2 is the Laplacian operator and c\ and c2 are the velocities of propagation
of the longitudinal and transversal elastic waves, respectively,

cj= ~, c2 = ~.
Q Q

The other symbols are dij — Kronnecker's delta, Q — density and dt — the symbol
of time derivative.

The temperature T should satisfy the heat equation

where « = — , Q = — and X is the coefficient of heat conduction, W — the
CQ CQ

quantity of heat produced per unit volume and time and c — the specific heat.

[427]
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The solution of the Eq. (1.1) may be expressed in the form of a sum of three
functions F = F0+F*, F* = Fi+F2, where Fo is a particular integral of (1.2),
and Fi, F2 are the general integrals satisfying the equation

(1.5) DjFl = 0, D2
2F2 = 0.

In the case of the infinite space it suffices to determine a particular integral
of the equation
(1.6) O\ F0+2/imT = 0.

For a limited body, in addition to the particular integral fo the functions Fi
and F2 should be determined. The particular integral fo should be selected in such
a way that some of the conditions of the problem will be satisfied. The determi-
nation of the particular integral may done in the following way.

Let us eliminate the temperature from the equations (1.4) and (1.6). Then,

(1.7) n2
iDlF0 = -^-Q.

Bearing in mind that
n2 n2 1 1

x c

Eq. (1.7) may be represented in the form:

Let us introduce an auxiliary function S, satisfying the equation

and assume that function 51 satisfies the same boundary conditions as function T.
Since

(i.ii) T=-1-(ni)-iQ, s = --(•?)-! e,

Eq. (1.9) takes the form

(1.12) £ ^ - 1 -

A number of particular soluticns can be obtained in a simple way from (1.12).
Let us assume that the action of the heat sources started at t > 0 and for t < 0

the body was in the natural, undefoimtd and unstressed state. On performing the
Laplace transformation on Eq. (1.12), we obtain

where

% (xr, P) = J (xr, t) e~ & dt, etc.
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The inverse Laplace transformation yields the function Fo, and the Eqs. (1.1) —
the stresses corresponding to this function.

If the heat sources are harmonic in time Q (xr, t) — eitot Qo (xr) the functions
T, FQ, S are also harmonic.

Inserting

T (AY, 0 = «'»« U (xr), S (xr, t) = eM V (xr), Fo (xr> f) = e«"' &0 (xr),

into (1.12), 0o is obtained from the equation

( U 4 ) go

The stresses corresponding to the function Fo are expressed by

(1.15) atj = et»t\<P0,ij+8tjlV2+~^&Q], ij = 1,2.

If the temperature field moves along the xi-axis with constant velocity v, then,
transforming the co-ordinates

(1.16) & - * i — « , & - * * ,
Eq. (1.12) is reduced to

(1.17) ( - di + V\ dj\ Fo (ft, f2) = - 2/̂ m [rtfi , fa) - ^ (fi,

where the functions T and 5" should satisfy the equation

Let us observe that for an infinite elastic space Eq. (1.13) may also be obtained
in another way.

Let us perform the Laplace transformation on Eqs. (1.7) and (1.4). We obtain
the system of equations

(1.19) (V2-PM (V2-I^I^) h = -ljl~Q,

(1.20) ( F 2 _ 7 ^ ) r = - | .

Let us perform on (1.19) the triple Fourier integral transformation determined
by the equations

f*(ar, p) = (2m)-3'2 Jff f(xr, p) eiar *tdV, dV=dxldx1i

(1.21)
OO

^ dW=daida2da^
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The solution of (1.19) takes the form (2)
OO

(1.22) FQ(xr,p) — — I I T- ar+p/x) (ar ar+p2/c2)

or

xJJJ ar ar+p/x

OO

*Q

ar

The first integral in figured brackets on the right-hand side of (1.23) is equal to f,
as a solution of (1.20), the second may be treated as a solution of the differential
equation

(1.24) (p2 _ p2/c2) s = _ Q. f s (xr, 0) = S (xr, 0) = 0.

It should be added that for the determination of the function FQ it suffices to
know the transforms of the function T. The function S will be obtained by replacing
p/x in the transform T by p2/c2.

Below a few solution examples are given for an infinite elastic space and an
elastic layer.

2. The infinite space

Let an instantaneous linear source uniformly distributed along the .\-3-axis

act in the infinite space Q (xr, t) = Qo-~8(t). The resulting temperature field is
Znr

On performing the Laplace transformation on Eq. (2.1), we obtain

(2-2) ^ M ^ /

where Ko (z) is the modified Bessel function of the third kind and of zero order.

Replacing pjx in (2.2) by p2/cj, we obtain

(2.3) S (r,P) = §^

Therefore

(2-4) ?o fc*>
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On performing the inverse Laplace transformation, we obtain the function FQ.
The same problem has been solved in another way by W. Derski [3].

In the case of a periodic source Q (xr, f) = QQ eimt -—-, we obtain from (1.14)
27ir

(2.5) &Q = /f^[KQ(r/rr])~K0(rk)), r, =

The stresses oty, corresponding to the function 0O, will be obtained from Eqs. (1.15)
Let the heat sources vary harmonically in time along the x2-axis

Q (xu x2, 0 - Qo ei°>"-ian*> d (JCI), a,, = — , n = 0, ± 1, ±2 , . . . .

In this case the following equation is to be solved

\72Uir]U =(2.6)

It is easy to verify that the following function is a solution of this equation

(2.7) tf«|M^4—^ 0«= l/̂ +ftj, *i>0.

Therefore

(2.8) V = ^ e f a » « . e , yB = /a2—A;2, * = cu/ci, A-i > 0.

Substituting (2.7) and (2.8) into Eq. (1.14), we find

, , 1 > 0 .

Knowing $o> the stresses will be found from Eqs. (1.15).

3. The elastic layer

Let us consider an elastic layer of thickness 2h with boundary surfaces free
from stress. The same surfaces are heated harmonically in time according to the
equation

(3.1) T(±h,x2,t) = eimt

•n =—oo

oo

= eiat M + y (A« cos a« X2+Bn sin an x2)], an = nn\a.
L » - l

In order to determine the particular integral Fo the following equation should be
solved

(3.2) ptU—iriU=0,
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with the boundary conditions

(3.3) U(h,x2)= y Tne
tane' and U=0 for x\+x\ -> oo.

The solution of Eq. (3.2) with the boundary conditions (3.3) has the form

(3.4)

Therefore

(3.5)

and

(3.6)

V(xux2) =

\ ch ^n

Thus, a particular integral of Eq. (1.2) has been obtained, satisfying a part of the
boundary conditions, the normal stresses an on the boundaries x\ = ± h being
zero. The shear stresses a 12 remain different from zero. To satisfy all the boundary
conditions, particular integrals of (1.2) should be taken into consideration. Intro-
ducing the equation

(3.7) FX (xr, t) = eM <Z>! (Xr), F2 (xr, t) = e^ &2 (xr),

Eq. (1.5) is reduced to the form

(3.8) ( 1 / 2 + ^ ) 0 ! = 0, (p2+s2)<P2 = 0 , ^2 = ^ , S2 = ^ .
Cl C2

The solutions of these equations will be assumed in the form

(3.9)

# 1 = Qn etang'dhynXi,
» = —CO

From the boundary conditions a12 = 0, an = 0 for X\ — h, that is from the con-
ditions

(3.10) —0,12 = 0, ( |

the constants an and bn can be determined. We find

%t th &nh — Yn •

(3.11)
???+cr2

ch ynh
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The knowledge of the function 0 = 0o-\-&i-\-&2 will enable us to determine the
stresses from the equations

(3.12) at] = e<«4— 0, if+dti [?*+ y j <Z>j, ij - 1,2.

Considerable simplification is obtained in the case of the boundary condition

(3.13) T(±h,x2,t) = Toe
M,

where T does not depend on xi- In this case the solution of the problem is confined
to the function

. . . „ _ 2ixmTQeimt Ida x{ \/ir\

^ J ° ty+*2 \ c h ] / ^ / i

Making use of Eqs. (1.15) we find that the boundary conditions a\i = 0, an = 0
are satisfied here. The stresses in the elastic layer are

1 » 1 -
(3.15) on = —j^F0, o-22 = F0,n — ^iF0, <r12 = 0.

Thus, we have forced vibration produced by a harmonic temperature, field.
The excitation frequency co should not coincide with the natural vibration frequency

of the layer co» = n ^ n = 1, 2,..., oo. Otherwise we would have the phe-

nomenon of resonance. The quantities con are the roots of the equation cos kh = 0.

For co approaching anyone of the con values, the stresses will increase indefinitely.
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