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1. Introduction

Many problems of structural mechanics lead to linear differential equations
either ordinary or partial with variable coefficients. In view of mathematical dif-
ficulties which we meet in solving exactly the equations, we replace the differential
equations by difference equations, substituting difference quotients for derivatives.

In many problems of statics, stability and dynamics of plates and shells the
highest order derivatives have constant coefficients, while the derivatives of lower
orders appear with variable coefficients. As an example we may quote the equation
of deflection of a plate simultaneously bent and compressed

(1.1) NpA

Here w (x, y) is the plate deflection, N = const — the plate rigidity, p (x, y) —
the loading of the plate normal to the plate surface, and q (xt y), r (x, y), s {x, y)
are loadings acting in the plate surface.

Eq. (1.1) can be represented in the operator form

(1.2) £(w)=>p — C2)(w)>

where ,jP (tv) = N\/4 w and Q (w) are linear differential operators.
The derivatives in the ,Q (w) operator are multiplied by constant coefficients,

while derivatives in the operator ?) (w) — by variable coefficients. The solution of
Eq. (1.2) can be reduced to the integrq-differential equation

(1.3) w= j pwda — / w<7)(w)da,
a a

or, for some definite boundary conditions, to an integral equation [1], [2].
w(x, j ; £, rj) denotes Eq. (1.3) the Green function satisfying the equation

(1.4) £(w) = d(x — i)d(y-ri),

where 8 is the Dirac delta.

[257]
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Difference equations can be solved in the same way. If we substitute in Eq. (1.1)
difference quotients for derivatives, then we can reduce this equation to the form

(1.5) £xy (Wxy) = Pxy — Qxy (Wxy) ,

where

(1.6) £xy(wxy) = N(A4
x+2ei A\A\ + &A%) wxy,

(1.7) C£>xy(wXy) — {qXyA\JrTXy £2 Al + Sxy eAx Ay) Wxy,

qxy = qxy Ax2, and so on, where e = Ax/Ay.
The difference equations of the type (1.5) are to be solved in the statics of frame

systems, in flat gridworks, and for beams on elastic supports. For this reason the
way of solution of these equations can be widely applied in practice.

It is essential for further considerations that the operator J2xy contains the dif-
ference quotients of the highest orders with respect to the directions x and y, res-
pectively.

2. Solution of the difference equation £xy (wxy) = pXy — Qxy (%)

We shall seek the solution of Eq. (1.5) in the form of the sum equation

n, m n,ni

(2-1) Wxy = J T qin W{nsev — J T CDiv (Win) »
s. n S> v

Here w%yin is the solution of the difference equation

(2.2) J3xy I
where

(2.3) 6Xi -

Function w xy$n is the Green function (the influence surface) of the equation
£xy (wXy) = fxy and the functions dXi and 6Vll in the difference equation are the
Dirac deltas. It is easy to prove that they satisfy the following relations:

n ii n, m

ft A\ V V V1

' *™1 V"l x , y
and

n n n, m

(2.5) J? 3 * 4 = 1 ,

In order to determine the Green functions, the knowledge of the eigenfunction
?>*.*, satisfying the equation, written below, is necessary [3]:

(2.6) £xv (fMy) = a.k <pfy f t = 1, 2, ,.„ «; k = 1, 2, ..., m.

The functions (p™ should satisfy the same boundary conditions as the function
Wxy. We assume that the functions 9?^ and the coefficients am are known, and that
they form an orthonormal system, i.e.

», TO

x, y
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Let us expand the functions Wxy$n and bXi, dyn into double series of eigenfunctions

(2-8) Wxyin = £ ea <P%, bH 5Vn = JT"
i, k ' i, k

where, taking into account (2.4), we have

(2.9) aik -

Substituting (2.8) into Eq. (2.2), we obtain

(, k i, k

Taking into account Eq. (2.6), we obtain from (2.10); aa ca = rp™.
Thus,

(2-11) . wx]/^t! = 2_i ~Z—Vayy'Psti-
i, k ik

Now we substitute Eq. (2.11) into Eq. (2.1) and expand the function qin into the
series of functions

(2.12)

' in

Finally, expressing the function wxy by means of the series

(2-13)

and inserting it into Eq. (2.12), after simple transformations and change of sum-
mation, we obtain, taking into account relations (2.4), (2.5) and (2.7), a system of
non-homogeneous linear equations:

(2.14) AvlloVft = gvll~ ]? Aiicbikvil, i, v = 1, 2,..., n, k,fx = 1, 2, ...,m,
I, k

where

After the deteimination of quantities AvpL we get function wxy from relation (2.13).
It is interesting that we perform eventually the operation CD^ on the known func-
tion a>**.

Although for the determination of the quantities AVfl we have n-m equations,
we can confine ourselves for calculations to the system of several equations with
the same number of unknowns, because the successive terms on the right-hand side
of Eq. (2.14) are rapidly decreasing. In the case qVfl = 0 we have a system of homo-
geneous equations. The parameters appearing there (as for example the frequency
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of free vibrations, the critical force) can be determined from the secular equation
having the form

(2.15) K««^+Jtt,J-0.
We obtain a particularly simple solution of the system of equations when the

operator CD^ contains differences with constant coefficients. In this case we have

(2-16) % , ( < $ ) = = ^ < ,

where $« have constant values. Thus

(2.17) bavl • 0i

and Eq. (2.14) takes the form

(2.18) AVfl (cvf0 v / 1 ) = ? v p v - 1,2 «, ^ = 1,2, ...,w.

Substituting (2.18) into Eq. (2.13), we obtain

The proposed way of solving of Eq. (1.5) can obviously be extended to difference
equations containing a greater number of variables.

3. Examples

Let us consider a rectangular plate simply supported on the whole boundary
and compressed in the x direction by the forces q {x, y). Replacing the differential
equation by the difference equation, we obtain

(3-1) £xy (WXy) = — <DXy (Wxy) ,

where the operator £xy is given by Eq. (1.7), and

(3.2) Q)xy (wgy) = qXy A\ (yvXy), qxV <=> qxy Ax2.

The eigenfunctions for the assummed conditions of the simple support are of the
form

(3.3) y t t - J f iy* , Z*2 = - | /f-sina4x, y» « - | / | - sin fo y,

in o kn
at = — , p* = .

n m

Substituting (3.3) into Eq. (2.6), we obtain

(3.4) aik = 2N [cos 2at — 4 cos at + 6+4e2 (cos at — 1) (cos /5& — 1)+

-r-e4(cos2/3fc —4cos/3*+6)].
Now we assume that qxv — q 8yy. It means that the loading qXy acts along the

line y = y. From Eq. (2.14) we calculate

(3.5) bMt. q 2 1 ̂  ̂  ^̂  (̂ *) = - 2* * 2 j j ̂  ^

= —2riqdhY-Y"-, n=\— cosa4 .
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Eq. (2.14) takes the form

(3.6) AVfl =
°v/i k

Now we multiply both sides of Eq. (3.5) by Y~ and sum with respect to /x.

The sum on the left-hand side of the equation is equal to the second sum on the
right-hand side of the equation; thus we have

(3.6) q=\ l—T~-
2 r ( y >

Depending on the number of half-waves in the direction x, we assume in turn
r - 1 , 2 , . . . .

In the particular case of qxy = const in the whole plate region, taking into
account that

bikvp = — q U <5«v fat >
we obtain from Eq. (2.14)

(3.7) o^ — Qfy

Let us consider a continuous beam resting on elastic supports of rigidity AX. Let
the rigidity of the beam El be equal in all spans /. We denote the support moments
by Mx, and by 5* the compressive force constant in all spans. In order to solve the
problem of buckling of a beam with variable rigidities Xx, we obtain the system of
the following difference equations (cf. [4]) connecting the moments M% and the
support deflections:

(3.8)

Introducing the notations

El k
y'2 =

and eliminating from Eq. (3.8) moments Mx, we obtain the equation

(3.9) £ . ( * • ) - —«Z>.(w,),

where

£x = (A4
X+Y2 Gx A\) WX , q)x (wx) - tcx Gx (wx),

Gx (wx) = j (y) wx-i +11 (y) Wx+j (y) wx+i»
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The solution of Eq. (3.9) is reduced to the determination of coefficients Av from
the system of equations

(3.10) As = — ~ Y AsbSv, bSv= £ <pl(!)i(<Pp, v. J— 1.2, . . . ,».

The function wv is obtained from the equation

(3.11) wx

Assuming that the ends of the beam are simply supported, we have

(3.12)

Substituting (3.12) into the equation

(3.13) ,QX (<pv
x) = c v ?>;;.

we obtain

(3.14) <rv = (2 cos 2yv+8 cosyv-f 6)+y2 [2jv cos 2yv +

4(iv —j\) cos y v + 2 (/„ — 2/v)].

Now we assume that the function xx characterizing the variation of the
supports rigidity varies in the following way

(3.15) >ix = >«o (1 + ^M) •

It means that the rigidity of the support x = x is twice as great as the rigidity of
others. Thus,

bSv = xn &s ((3Sv+ 9- V-); &s = 2 (js cos a,, + / s),
t i

and consequently Eq. (3.10) takes the form

o y s

If the rigidities of the supports are identical (xx = «0 = const), then from the
system of Eq. (3.16) we obtain the condition of stability

(3.17) crv + x0*v = 0J v = 1,2,...,«,
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