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Consider an elastic body with a steady concentrated heat source of
intensity W located at a point @ inside the body. The action of this heat
source causes in the elastic body a temperature field T and a state of
stress (oy). Assume that T = 0 on the surfaces Iz, I}, constituting part
of the total surface of the body, the boundary condition for the remaining
part, 1%, being 0T/0n=0. This means that there is no heat flow in the
normal direction n, in other words, that the surface I'. is thermally in-
sulated (Fig. 1). Our problem is to determine the temperature field in
the body considered.

We should therefore solve the heat equation [1]

: W
(1 VAT (P)=—-"38(Q),
with the boundary conditions
T(S)=0 on [ and I},

IT(S")
“on

(2)

=10 on Ff_‘,

Fig. 1

where P denotes any point inside the body and S’-any point on its surface.
We have also »=1/pc, where 1 is the coefficient of heat conduection,
¢ density and c specific heat. Finally, § denotes the Dirac function. Let
us observe that the unknown function on the surface Iy and I is the
function »(S’)=0T(S")/0n of the temperature gradient, and on the surface
I'e— the function ¢(S) =T (S’).

The solution of the Eq. (1) will be assumed in the integral form

3 T(P)= T,,(PJ-i-j ] v (S) G (P,8)d s,

where S denotes any point on the surface I';. In the relation (3), T, (P)
denotes the temperature field satisfying the differential equation
[205]
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w
(4) e TO(P}:—-—;(&(Q}
and the boundary conditions

T,(8)=0 on I},

(5)
ITy(S) _

s 0 on [, and [%.

The function G (P, S) is the Green function determining the temperature
field satisfying the differential equation

(6) VG (P,S)=0
and the boundary conditions .

G(S,8)=0 on I},

(7) 3 ,
__E_(S_,S_)___ats,_ S) on I, and I%.
an
We assume that the point S’ lies on the surface I, so that

@ [[os—9dn=1 [[ss—sdn=0.

iral

The function y(S)=0T(S)/0n appearing on the surface I, is chosen in
such a way that the condition T (S”) = 0 is satisfied on the surface I}.
From the Eq. (3) we obtain

(9) T(8)=0="T,(S)+ | [ p(S) G(S,8)d Is.
(Cq)

This is Fredholm’s integral equation of the first type. From the solution
of this equation we obtain the function w (S), the knowledge of which
will enable us to determine the temperature field, which is sought, from
the Eq. (3). Shifting the point P to S’ on the edge of I, and differentiat-
ing the function T with respect to the normal, we have from the Eq. (3)

IT(S) OT,(S) , [ 0G (S,
T(S') _ 0T )+”‘N (i__S}

(10) S)—gn  &la

dn dn

FLA
1)

Bearing in mind the second of the boundary conditions (5) and the second
of the boundary conditions (7), we find that

(11) d%‘?: qup(sw(s'—- S)d I'v=1(S").

A
(Ig)
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It is seen that the integral expression (3), where the function (S) is
the result of integration of the Eq. (9), satisfies the differential equation
of heat conduction (1) with the boundary conditions (2) assumed above.

Our solution can easily be extended to the case of a heat source
distributed along any curve or over any surface or space region inside
the body.

In the case, where no heat source appears inside the body and a func-
tion T (S”) is assumed on the surface I}, the Eq.(3) takes the form

(12) T(P)= | [ 9(S)G(P,S)d I's.

1F'g)

The function yp (S) will be obtained by solving the integral equation

(13) T(S) = | | p(S)(S,8)alL.
(F'g)

This solution method may be extended to cases, where different boundary
conditions appear on more than three parts of the surface bounding the
elastic body and, finally, to cases
of thermal insulation on the
surfaces I (i=1,2,..7) inside
the body.

The procedure of the above
method will be illustrated by A ey

Z
HQI-‘
|

=1

B
o

a few simple examples:

(a) Consider a concentrated
heat source of intensity W at
a point Q of co-ordinates(, 7, ¢)
inside the body represented in _._‘

Fig. 2. Let T = 0 on the planes
x =0, ¢ and y = 0, b. Further,
on the plane I, let T=0, and, Fig. 2
on the plane I';, let 0T/0z=0.

The temperature field will be found from the Eq. (3) which, in our

case, has the form

€y dy

(14)  T(xy,2) =T, 2+ [ [ vEnG,y2zEn0dédy.
¢, d,

The function T, (x, y, 2), will be obtained by solving the equation

(15) 2Ty =— e — 9y —7) 3 (z—0)

with the boundary conditions

(16) T=0 for x=0a and y=0,b.
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We have 0T/0z=0 for =0 and therefore also for the region I}
and I%. It can easily be verified that the function T, has the form
(17} Tl] (.'L', y: Z) =

besed _12“51 tyom -—IZ-|-§};'!H m
2w e il @ el = = ; :
= ——sin au & sin B, 1 sin a, x sin oy,

abx Dn, m

n, m

where

na mor S8 me
ap= a 1 ﬁm = _T)_ ) On.m= ] ai + m*

The solution of the Eq. (6) with the boundary conditions
G=0 for x=0,a and y=0,b,

(18) s,

T =d(x—¢&d(y—n),

z=0

is

4 b:.l TR 2ty m

—— sin a, & sin 7 sin a, x sin B, Y.

(19 G(x,9,2 490 =— - —

n,m

The integral equation (9) takes the form

£ dy

=]

(20) ffw{'f, ”) Z Sln—'Sti'-g—sm—-msin an 2 Sin B y =

nom o
cl dl

W it B_Eﬂ nim .
=— ——— Sina, §sin fi,u n sin a, 2 sin fn y.
% am Vnm

An accurate solution of this integral equation presents considerable dif-
ficulties. However, this equation can be solved in an approximate manner
by replacing integrals by sums, thus reducing the solution of the integral
equation to that of a system of linear algebraic equations. In the particular
case of ¢, = 0,c, = @, d, = 0, d, = b we obtain the solution of the Eq. (20)
in the form of the trigonometric series

AW X0 g s
e Z e "M sin ay & sin B 1) sin ay @ sin B y.

f,m

(21) p(&,n)=
From the integral relation (3) we find that
(22) T (-'I.', Y, 2) ==

2w msinc::nE.-sin,éiu:*“ —(z—B)8,
" abx 2 / F[e { nm___

—~(z+8)9, ; ;
e ;l iR | 8111 an -'I.' S1n ﬁ,m y-

n,m nm
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Consider, in addition, the case, where no heat source exists inside the
elastic body, the boundary condition on the surface Iy being T (x,y,0) =
= V = const. The integral equation (13) takes the form

< oo
’ { b (6; ?)} _S.E}E-'l__'gs:.lnﬁm Ui Vﬂb

sinayxsinfi,y= ——
ﬂ!l”i y 4

(23)

Vo wom
e, o

In the particular case of ¢, = 0, ¢» = a, d;, = 0, d, = b the solution of the
Eq. (23) is

16V NV D ;
(24) p (&)= b 2 au sin ax @ sin fm Y.
The temperature field is obtained from the Eq. (3)
(25) T (x,y,2) = -0
L]
L ¢ sin apxsin
p— b & “ag ﬁm n mlY "
: . . Ui
(b) Consider a thin plate sirip
with a concentrated heat source at @: =
Let T=0 at the edgesx =0, x = ¢ )
and along the segment ¢, of the edge X
y=0. Let 0T/dy =0 along the Fig. 3
segment c, of the edge y =
The functions T, (x, y), G (x, y &, 0) take the form [2]:
(26) T, (x, y) = y &11'1 Gn |e——fr,;{,!‘—-ﬂ| J (v Tﬂl sin a .,
Ty(x,y) =
5 . T - n
W cosh = (y—m) —cos = (;c —E)J [cosh— [y i :;) — oS —{';c — E)J
=———1Inz 5
4
% N oosh T {y—q)—cos o @+ E)l [cosh {y + ?;) — cos —(:r + 5)]
9 O e oY . ‘
(27) G(x,y;£,0)=———&— e sina, &sin ay v =
n

n=1

7T
cosh — L y—cos —a-(:Jc-J—E)
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In order to determine the function ¢ (£) appearing on the segment c, of
the edge y = 0 we should solve the integral equation (9):

& sin - (x — &)

7 7 -
coshE?;r— -cos—(:c—é')

(28) {’fp () In __?_ﬁ!_ ——df= Wln — e
. sini{:c + & % cosh 7 ;—cos ("L—&)
0 2a ? o a
In the particular case where ¢, = a, the solution of the Eq. (28) is the
function
W :w}j 1 - o
(29) (&)= T sinh l

cosh 7 q — €os —(1:——5)

—_— -1—————- — I::Z_T Zl e gin an & sin ap x.
cosh = ;,a — cos (.’L + &) =1
Substituting v (£ in the Eq. (3), we have
—ag (=0~ ) 3
(30) T (x,y) L, ————ng- ~——sina, ésinay x,

ax e Uy
or, in a closed form,
Bl Txy=

W lcosh (y +n)— cos = = (x — 5)] lcosh (y—n)— cus = (x + E)l

T 4ax

[cosh (y 4+ 1) —cos= (:r: + E)] [cosh —(y—n)— cos - (:r: — E)]

In the particular case of no heat source in the region of the plate, the
boundary condition along the segment ¢, of the edge y = 0 being T=V=
= const., the integral equation (9) takes the form
I

. T
sin —2'—E($C —5) |

&

(32) fw{f) In - =
o sin 2— (x &)
a

dé=2aV,

In the parficular case where ¢,= a, we obtain the solution of this equa-
tion in the closed form

(33) (=i 3} (sin -’Ef)hj
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The temperature field will be found using the Eq. (3). We obtain

£ 4 ax

a
2e @ sin— G o
a 4V e

: 2V
(34) T (x,y)= - arclg - sin ay x.

— o—Tma e
1 e M a = a

(c) Consider an elastic semi-space. Let T = V (x, y) over a region [
of the plane bounding the semi-space. Let 0IYdz|..o=10 outside this
region. The function 0T/0 z|.-0 =y (&,7), appearing in the region I';, will
be found from the Eq. (13)

(35 I [ w(&n) G, y,0,¢,1,0) dédy=V (x,y).

iy
The kernel G of the integral equation should satisfy the equation J*G=10
with the boundary conditions

0G|

(36) T s

—=d(a— &) d(y—1),

G = 0 at infinity.
It can easily be verified that the function G has the form

@) G@yzEn0=—,l R=|@—&+@y—n+2]"
Therefore,
- " (&,n)dédy
(35 ) —-_-H...w_“-:—::._,'-:_.. =—2aV (CC, y)
I ] Vie—& +y—n)®

()

An equation of this type appears in the contact problems of the theory
of elasticity, that is in problems of a rigid punch acting on an elastic
semi-space. In these problems the function y corresponds to a function
of the normal stress between the punch and the elastic body, and the
function V to a function of vertical displacement. By applying this ana-
logy a number of solutions of contact problems can be used for determin-
ing temperature fields *).

(d) Let a heat source of intensity W act at the point @ of the co-
ordinates (0,0, {) in an elastic semi-space. Let T = 0 over the region [,
in the z = 0 plane bounding the semi-space, the condition for the external
region being 0T/dz|;—0=0. The solution is sought in an integral form (3),
where the function y is found from the solution of the integral equa-
tion (13)

(38) I [ 9 G,y,0; &n,0) dédn + T, (z,y,0) =0,
i)
where T, (2, y, 2) is the solution of the equation 7T =0 with the boundary

conditions 0T/0z|:~o=0 and T,=0 at infinity.

*) An abundant literature on contact problems has ;t;eé_r; _gai.hered in the mono-~
graphs by L. A. Galin [3], and I. Y. Stayerman [4],
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It can easily be verified that this equation, together with the boundary
conditions, is satisfied by the function

W 1 1
(39) To(e, )= g+ Ry

where
« Ria=[2TF0R 4224y

The Eq. (38) therefore takes the form

('f 1 dfd?j 3
40 ' 4
) ’fvm—ﬂLHy n Ly

In the particular case, where I, is a circular region of radius g, the inte-
gral equation (40) may be replaced by the equation

o

@) (2Ver\g, — W o, sayre
4 do=— /
(41) J>g+r(g+r)9 ol
where

2

K@= [ (1 —2sin® @) d & =2,F, (3, 4;1; 29,
L]
is a complete elliptic integral.

DEPARTMENT OF MECHANICS OF CONTINUOUS MEDIA, INSTITUTE OF BASIC
TECHNICAL PROEBLEMS, POLISH ACADEMY OF SCIENCES
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