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Consider an elastic body with a steady concentrated heat source of
intensity W located at a point Q inside the body. The action of this heat
source cause's in the elastic body a temperature field T and a state of
stress (ay). Assume that T = 0 on the surfaces Fa, Ft, constituting part
of the total surface of the body, the boundary condition for the remaining
part, 7V, being dT/dn=0. This means, that there is no heat flow in the
normal direction n, in other words, that the surface F,: is thermally in-
sulated (Fig. 1). Our problem is to determine the temperature field in
the body considered.

We should therefore solve the heat equation [1]

(1)
W

with the boundary conditions

T(S') = 0 on Fa and J\,

dT(S')
(2)

<n
= 0 on rc,

Fig. 1

where P denotes any point inside the body and S'-any point on its surface.
We halve' also « = X/Q C, where X is the coefficient df heat conduction,
Q density and c specific heat. Finally, <S denotes the Dirac function. Let
us observe that the unknown function on the surface Fa and Fb is the
function ip{S')=dT{S')/dn of the temperature gradient, and on the surface
Fc — the function (p(S') = T (S').

The solution of the Eq. (1) will be assumed in the integral form

(3) T (P) = To (P) + [ f y> (S) G (P, S) d Fa,

where S denotes any point on the surface 7V In the relation (3), To (P)
denotes the temperature field satisfying the differential equation

[205]
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W
(4) FaT0(P) = — — <5(Q)

x
and the boundary conditions

To(S')=-0 on Fb,
(5)

—^ = 0 on 7 o and / c •
On

The function G (P, S) is the Green function determining the temperature
field satisfying the differential equation

(6) P2G(P,S) = 0

and the boundary conditions .

G(S,S') = 0 on A,
(7)

d Gj& S) = s (S'~ S) on Fa and A-

We assume that the point S' lies on the surface A so that

(8) j J 6{S'— S ) d A = l J 5 US'— S)dA = 0.

The function y)(S) — dT{S)/dn appearing on the surface /« is chosen in
such a Way that the condition' T (S') = 0 is eatisfdedl on the surface A-

From the Eq. (3) we obtain

(9) T (S') = 0 = To (S') + / J v (S) G (S\ S) d A .

This is Fredholm's integral equation of the first type. From the solution
of this equation we obtain the function %p (S), the knowledge of which
will enable us to determine the temperature field, which is sought, from
the Eq. (3). Shifting the point P to S' on the edge of A and differentiat-
ing the function T with respect to the normal, we have from the Eq. (3)

dT(S') dTa(S') .

Bearing in mind the second of the boundary conditions (5) and the second
of the boundary conditions (1), Ve find that

(ID ^ ~ = f f V> (S) 6 (S'~ S) d Fa = y> (S1).
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It is se'etn that the integral expression (3:), where the function ip(S) is
the result of integration of the Eq. (9), satisfies the1 differential equation
of heat conduotion (1) with the boundary conditions (2) assumed above.

Our solution can easily be extended to the case of a heat source
distributed along any curve or over any surface or space region inside
the body.

In the case, where no heat source appears inside the body and a func-
tion T(S') is assumed on the surface Fa, the Eq. (3) takes the form

(12) = (jip(S)G(P,S)dFa.

The function f {S) will be obtained by solving the integral equation

(13) T(S')= \ \v(S)(S',S)dFB.
trB)

This solution method may be extended to cases, where different boundary
conditions appear on more than three parts of the surface bounding the
elastic body and, finally, to cases
of thermal insulation on the
surfaces Fi (i = 1, 2,... r) inside
the body.

The procedure of the above
method will be illustrated by
a few simple examples:

(a) Consider a concentrated
heat source of intensity W at
a point Q of co-ordinates (f, rj, £) 1—\
inside the body represented in
Fig. 2. Let T = 0 on the planes
x = 0, a and y = 0, b. Further,
on the plane Fa, let T = 0, and,
on the plane Fc, let dT/dz = 0.

The temperature field will be found from the Eq. (3) which, in our
case, has the form

c, rf3

(14) T(x,y,z)=T0(x,y,z)+ [ / y>{£,ri)G(x, y,z; f^,0) dtdr,.
c, rf,

The function To (x, y, z), will be obtained by .solving the equation

Fig. 2

(15) r2T0 = —~

with the boundary conditions

(16) T = 0 for x = 0,a and y = 0, b.
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We halve dT/dz — G for 2 = 0 and therefore also for the region Va

and rc. It can easily be verified that the function T(, has the form

<W) T (T v z) =

2 W \ i 6 n'm ~t~ G ttttn —,
= ~T~ 2J 9" S^n a" ^ s i n r»> 7Ism a" x s m Pm y,

where •

The solution of the Eq. (6) with the boundary conditions

G = 0 for x = 0,a and y = 0, b,

z=0
(18)

is

4 V~l e~
Zt*n,m

(19) G (x, y, z; £, tj, 0) = -r > — sin an £ sin pnrj sin a« cc sin fl,,( y.r
ao«,m

The integral equation (9) takes the form

(20) v (f, rj) 2J 5 ^—i sin a« a: sin /3/n y =
Jy Vn.m

nm

W Y e
2 ^ ^ ft '? sin a« ̂  sin
n,m

An accurate solution of this integral equation presents considerable dif-
ficulties. However, this equation can toe solved in an approximate manner
by replacing integrals by sums, thus reducing the solution- of the integral
equation to that of a system of linear algebraic equations. In the particular
case of Ci = 0,c2, = a,d1 = 0, ck = b we obtain the solution of the Eq. 1(20)
in the form of the trigonometric .series

(21) v (f, tj) = —— ]? e-&nm s i n an isin jSm- s i n an x s i n p m y

From the integral .relation (3) we find that

(22) T(x,y,z) =
DO

2 W v i sin an £ sin Bm « r _i,_n,» _
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Consider, in addition, the case, where no heat source exists inside the
elastic body, the boundary condition on the surface Fa 'being T (x, y, 0) =
= V = const. The in tegra l equation (13) takes the form

e, d,

(23) , rj) X
J J

c, (/,

sin a,, f sin Bm n . , n Va b
—„ — s i n an x sm pm y — — '

Vnm 4

In the par t icular case off. cx = 0, ca = a, di = 0, d2 = b the solution of the
Eq. (23) is

(24) (ft Vt
16V V2

The tempera ture field is obtaimed from the Eq. (3)

(25) T (as, y, z)

e~
= 16V y
~~ ah 2-1 On / 3 m

sin a,, x sin £,„ y.

(lb) Consider Q thin plate atrip
wi th a concentrated heat source at Q:
Let T = 0 at the edges x = 0, x = a,
and along the segment ct of the edge
y == 0. Let OTlOy = 0 along the
segment c2 of the edge y = 0.

Fig. 3

The functions To (a;, y), G (x, y £, 0) take the form [2]:

(26)
•«=i

" " " • g "Hi. - o , ( •

" '

W
cosh — (y — rj) — cos — (x -

Qi (I

cosh -(y—5"?)—cos —(a

cosh— (y + •»/) — cos — (x — £)
a a

cosh n
a (y + rj) — cos -^ ( x + f)

(27) G (x, y; £, 0) = ^j & sin a,, f sin a,, x =

cosh — y — cos — (x — f)
= — In .

cosh — 1/ — cos — (x + c)
a a
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In oarddr to determine the function ip (f) appearing on the segment ct of
the edge1 y = 0 we should solve the integral equation (9):

(28, J
0

sin--(x—, . 71 - n ,
cosh — « — cos — (x —

5 £
sin

71 7E, 7E _ 7E ,
cosh — « — cos (x —

a a

In the particular case where c, = a, the solution of the Eq. (28) is the
function

( 2 9 )
1

n.cosh ii — cos — {x — ?
a a

. 71- 71 , '
cosh — ri — cos (x +

a a

2 W V1 - n ii
==• / , e " sin an I sin an x.

Substituting ip (£) in the Eq. (3), we have

(30)

or, in a closed form,

(31) T(x,y) =

ax
sin an f sin a,, x,

an

W .= - In4

ncosh - (y -f rj) — cos - (x — I)

cosh - (
a — cos - (a; +

cosh -- (y — rj) — cos - (x + •

cosh — (y — rj) — cos - (x — f)

In the particular case of no heat source in the region of the plate, the
boundary condition along the segment cx .of the edge y = 0 being T = V =
= const., the integral equation1 (9) takes the form

(32)
/

sin —(a: —

sin
2 a

In the particular case where Cj= a, we obtain the solution of this equa-
tion in the closed form

(33) 2VI . «z\->
= sin

a \ a
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The temperature field will be found using the Eq. (3). We obtain

2 e~ " y sin —
(34) T (*, y) - f arctg ^ - - - ^ ^ g f ^ sin Un x,

(c) Consider an elastic semi-space. Let T = V(x, y) over a region Fa

of the'plane bounding the semi-space. Let dr/dz|,^o = 0 outside this
region. The function dT/dz|^0 = »/>(£, r/), appearing in the region Fa, will
be found from the Eq. (13)

(35) |' f V (*, rj) G (x, y, 0; f, ??) 0) d£ dr, = V (x, y).

The kernel G of the integral equation should satisfy the equation 17'2G = 0
with the boundary conditions

(36)

G = 0 at infinity.
It can easily be verified that the function G has the form

(37) G(x)y,z;f,ril0) = - 2 ^ R R = [(a - f )a + (y - ij)« + za

Therefore,

(35')

Ain equation of this type appears in the contact problems of the theory
of elasticity, that is in problems of a rigid punch acting on an elastic
semi-space. In .these problems the function y> corresponds to a function
of the normal stress between the punch and the elastic body, and the
function V to a function of vertical displacement. By applying this ana-
logy a number of solutions of contact problems can be used for determin-
ing temperature fields*).

(d) Let a .heat source of intensity W act at the point Q of the co^
ordinates (0, 0, £) in an elastic semi-space. Let T = 0 over the region Fa

in the 3 = 0 plane bounding the semi-space, the condition for the external
region being dT/dz|z=o = O. The solution is sought in an integral tform (3),
wheire the function y> is found from the solution of the integral equa-
tion (13)

(38) f \ y){S, ri)G(x,y, 0; f, r/, 0) df dr? + Tn(x,y, 0) = 0,

where To {x, y, z) is th'e solution of the equation p'2T=0 with the boundary
conditions dT/dz|^o = O and T0 = 0 at infinity.

*) An abundant literature on contact prablams has toeen gathered in the mono-
graphs toy L. A. Galin [3], and I. Y. Stayerman [4],
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It can easily be verified .that this equation, together with the boundary
conditions, is satisfied by the function

where

The Eq. (38) therefore takes the form

(40)

In the particular case, where A is a circular region of radius a, the inte-
gral equation (40) may be replaced by the equation

(41)

where

K(X) = f (1 - A3sin2 <P)-va d 0 = -f - ,F , (hii U A3),

is a complete elliptic integral.
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