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1. An instantaneous source of heat in an infinite space

Let the heat quantity @ =Woc be produced at the point A (&1, ()
of an isotropic elastic space at the instant t = 0, where W denotes the
intensity of the heat sour., o — the density and ¢ — the specific heat
of the elastic medium. The temperature field is described by the differen-
tial equation

(1.1) PEIT = —

a7
ot '’

&=

where T (x, v,z t) is the temperature at the point (v, y,z) and at the
instant t, and k= A4/pc, where 1 is the coefficient of heat conduction
(thermometric conductivity).

The temperature field due to the action of the concentrated instanta-
neous heat source at the point A (&, #,{) is determined by the equation, [1],

R

w T ane where R*=(x—&*+ (y—n)P+ (2 —0),

(1.2) T= BI{JT:kt]:"':! e )

.or by the integral expression
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(1.3) Tﬂ;ﬂwH ’ [ r.exp|—kt(a3—|—ﬂ2+},9]|>(

R
X cos a (x— &) cos f(y —n)cosyzdadfdy.
In order to determine the state of stress, it is convenient to use the so-

.called potential of thermoelastic strain @. It is related to the displacement
components u, v, w by the relations

o0
ox

dy ' o0z
[77]

(1.4) u,
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The relations (1.4) introduced in the three displacement equations of
the theory of elasticity, can be reduced to the unique equation, [2],
(1.5) o=t 1
1—y

The Eq. (1.5) is valid if the dynamical effects are disregarded. It is
known that the displacement accelerations are disregarded in the displace-
ment equations of the theory of elasticity. Our problem is therefore
considered to be quasi-statical.

In the Eq. (1.5) » denotes Poisson’s ratio and «/ the coefficieni of
thermal dilatation.

Differentiating the Eq. (1.5) with respect to time, and using the Eq.
(1.1), we obtain

(1.6) (33’) 1_+" wkp>T.
Hence,
(1.7) !I)=ii:a1kj Tdt.”

From the relations (1.1) and (1.7) the following relation is obtained:

100
2 )
(1.8) Pro=x 5.

The stress components are connected with the potential of thermo-
elastic strain by the relations, [2],

0% P 1 0
. e— 2 B e —] —— e — TS
G 2G(V(D = ) 2(}({”TE & dt)’
-t 0* P ¢ 1 0
P P =g e B e e SR
Tis 2G(| 0 — )ﬁzc;(dyg = at)’
e ‘ 0* @ 0% @ a4
—_— -8 AR, ,_._._2 )_..I_. __”
- 26(;, @3 ,)—_2 (azg - 52
0* @ . (D g OO D
ony_ZG d U‘y:-—2Gdg-0_Z, (J'z.r—-Zszi‘,

G denoting the modulus of elasticity in shear.

In order to determine the stress components we shall proceed. as
follows. We determine a particular integral of the Eq. (1.5) and substitute
it in the relations (1.9). This integral does not satisfy, in general, every
boundary condition. In the latter case to the state of stress (o) a state
of stress (¢ ) will be superposed, chosen in a way to satisfy every boundary
condition. The resulting stresses will be obtained by adding the correspond--
ing stress components pertaining to the states (o) and (o).



State of Stress in an Inﬁnn.e and b@?}lt-—hlf’l‘lltfe Elastic Spuce 70

It is seen that according to the Egs. (1.2) and (1.7) the particular
integral of the Eq. (1.5) will take the form

t

1w Wk (e R
(1.10) Biomo— “8“’_[[“] exp( 4kt)dt
1]
or
1 ,_v .50

a1 o=—7a jff(a~+ﬁ 99 exp [— Rt (a® + B+ 9]

0
XCOSG{&’:'—' §)cosp(y —m)cosy (z—C)dadfdy.
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By substituting u = R¥4 kt, the integral (1.10) can be reduced to

==

1+ w ey

(1.12) (bzl—': at TR —‘/—-udu

Since

o

.J'u‘“”"’ exp (—u)du =y [1 — erf (Y u)] = Vmerfe Y
we have ‘

(1.13) qrj’::1—!-;- a W

1—v 4n

R
- R~ erfe — 1.
(2 Vkr)

Substituting the particular integral @ in the relations (1.9) and introduc-
ing the notation

1+ GW
N_ﬂl—vm 27’
we have
_ N, 5) R (=B
(1.143) o= R3{| ]lef(z;/kt)+]/kt p(_4kt)]+

R? )
Rexp( 4kt
oy kt)?

[R? — (x —&)? }

and two analdgous equations for ayy, 0::;

_ 3N R
(11.4b) oo =g (@— & y—mn [erfc (21/?'&) -

V;,_e p[: :::t) (1+ é R_f)l

and two analogous equations for o and ozy.
It is seen that the normal and shear stresses vanish at infinity at
every instant t.
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They do not vanish, however, for t = oo for arbitrarily chosen x, y, =.
For t = oo we have

N 3 —&)
(1.15a) e i ll_( —é)

_R':i RE

and two analogous equations for ayy. , 0:2..., and

3N
(1.15b) Oxy. = oy (x— & (y—m)
and two analogous equations for oxz,.., oyy,--.

If these values of stresses are substracted from the stresses expressed
by the Egs. (1.14a) and (1.14b), we obtain the stress components satisfying
all conditions at infinity.

We obtain finally:

N s) ~ i e T |
(1162) o= Rs{l “ e pl 4kt) Elf(z,.rkt)'.’
R:
Rexp(_‘iﬁ) IR"- (& — &2
i A I e
21/ 7 (kt)* 2 l

and two analogous equations for gy, 6:;; and

3N i RE R*
(1.16b) o= R (x— &)y — #}) — eXp (_4E) (1 i G-Et) =

2 |"kt)l
and two analogous equations for oy, oy:.

Equations for stress components in polar co-ordinates are particularly
simple in the case of spherical symmetry of strain. Let us assume the
heat source to be located at the origin. Then,

2N

R i —
(1.17) ="~ R"'erfc( :--—-), where R=y x4 y°+2".
G 21/ kt| ] 4

The stress components are expressed by

¥ 1+4»

“:er\-=2G(5me+ T 1__2,,“‘T}
(1.18) Tyy™ Top ™ L (efﬁ'f'+ 1—39 1'0_ 1-_—+211 S T)
0, =0, T,5== 0, apa=0.
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The notations are as follows:

- dug ur
SR~ gR' %w™ R
{1.19)

_ | ~dup up do
O=¢epzt+ egyt &y = dR i R® ¥ Tan
where up is the radial displacement.

Bearing in mind that for t = oo the stresses should be zero, we obtain
the Eqgs. (1.18) in the form

Opp=— BI“ET erf - R;; p(
‘ R 21kt ]/:-rkt 4kt),

4N . R R
1.20) T = T = "R [ertzl/ﬁt B I_/:rkf SR ‘ 4kt) (1 * 2]“)'

Oy =0, 0py=0, 0,,=0.

Figs. la, b, c represent diagrams of T, g, dpy, in function of the
radius R for a few values of the parameter ¢ = 4 kt.

If in the Egs. (1.16a), (1.16b), we put W = 1, these equations represent
the Green functions of our problem. The knowledge of these functions
enables the solution of the more general problem of determining the
stress components o}; at any point B (z, y, 2) due to the action of instan-
taneous heat sources w (&, #,¢) distributed over a finite region of the
elastic space.

Using the superposition method, we obtain the o¢j; components from
the equations

(121)  of(ryzt=| | | wEnd oy zsnitdéidydl ij=mxy,z
) !

2. An instantaneous source of heat in a semi-infinite space

Consider an instantaneous source of heat of intensity W acting at
a point A (0,0, () of a semi-infinite space. Our problem is to determine
the stress components when the plane z = 0, bounding the semi-infinite
space, is free from stresses.

In addition, we require that T =0 for z =0. Thus, the boundary
conditions of our problem are

(2-]—) Uzz-_—ﬂ, Uz_rzo, Uzy:o, TZO, fOI‘ 2= 0.

The first and the last conditions will be satisfied if a positive and
a negative sources of heat are located at the points A(0,0,Z) and A(0,0,—0)
of the infinite space, respectively.
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For such a system of heat sources, antisymmetric in relation to the
plane z = 0, we obtain, using the Eq. (1.13),

Ry erfc(2—§—;—c-;)— R,! rfc(zllj t)l

Rip=2a" + y* (2 F-{)".

L4+» a W
\ S5k PR VE
(2.2) b o l

1
where

For further considerations it will be convenient to represent the
function by the Fourier integral

1 y W
e ff (a® + B -+ )" exp [— ket (a® + B2 -+ y3)]| x

00
“cosaxcosfy|cosy(z—L) —cosy (z+¢)| dadpdy.

(2.3) &=—

The stress components due to the action of two sources, antisymmetric
in relation to the plane z = 0, can easily be found by means of the Egs.

(1.14a), (1.14Db).
Thus, for instance,

(243) Ou=—=; {[ 33:2[ 2|/k) V}:te'p(“?:)]-i-

T - i)

2 f (kt)w R} R; 27kt

+;/"R—E 2 %"

( RE)J+_RLQ’_‘i4it)

4ot 2}/n[kt)3"‘" ’
R‘ Rl 1 Ri
(2.4 1) my—3N:cy{ |9rfc(2l/k)+ ki) e"P( 4kt) ( th)j

| R, \, R R 1 R
“R_ilerf°(z,/fc) (et exp( &‘iez)'(1+‘€ m')]}

The function @ does not satisfy all boundary conditions. In the plane
2 =0 the stresses oy, 0y, do not vanish. In order to suppress these
stresses an additional problem must be solved, and the state of stress
(oi) in the elastic semi-infinite space for T = 0, due to the action of the
shear stresses — oyz, —0y; in the plane z = 0, must be determined. The
conditions of this problem are

{2-5) E.rz + Oxz = 0, Eyz -+ dyz == 0, Ozz =10 for z==100.
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The stresses i, due to the action of a heat source at the point
A(0,0,8) of the elastic semi-infinite space, will be obtained by super-
position of the stresses oy and o).

In order to determine the stress components (o) in the semi-infinite
space we use the Galerkin displacement function, [3].

This function reduces the system of three differential equations of
displacement to the unique biharmonic equation’

(2.6) vipte=0,

where the stress components (o) are expressed by the relations

= _ 0 *p L 0* ¢
Oy “az(rlflq)_a}g)| G'yy"‘a—z(vV p— a_y-j),
e BT 0% ¢ j o 0% g
(2.7) G”_“d_zl(l_v)l?sm-l-d 2+dy I = Gz oy oz’
0 g o [dg , g,
ax[ax2+ay ”VE‘?’J’ O =gylows g ”]'

The displacement functmn will be assumed in the form of the Fourier
integral

T o

(2.8) p= [f Z(a,p,z) cosaxcos fydadf,
(]
where

=(A+Bé2)e”, o=Va+p,

and A, B are functions of the parameters a, f.
The third of the boundary conditions (2.5) leads (as can easily be seen
by substituting (2.8) in o, obtained from (2.7)) to the relation

(2.9) (2—9)Z (0)8*— (1 —») 2" (0)=0.
Since Z'(0)=(B— A)¢4, Z" (0).5 (3 B— A) 6*, we have

1

(2.10) B=—Ar—0.

The first two boundary conditions (2.5) can be represented in the form

0 d d(ﬁ g i -
oz’ 69[ dz+d +a ‘7‘?’] '

z=0

(2.11)
It is clear that these conditions can be reduced to a single condition:

I ‘P T —
(2-12) 1 az + a 3+ ‘PV fp]z=o 0.
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Expressing the function @ by the Eq. (2.3) and the function ¢ by the
Eq. (2.8), we obtain

-

(2.13) —i‘f%l""”)} age—k f BE = azsmy&'dy-—(l—v)Z(D)é”—vZ"({})—O
0

Since Z(0)=A4, Z’(0)= —(2B— A)¢§°, we obtain from the Egs.

(2.13) and (2.10)

=]

AW+ 1—2v)a _nyexp(—ktyﬂ : .
(2.14) A=——- T R e =y sinyldy;
A
Since
(2.15) fyex§(+ = J)}smw,dy— Iexp(kté]
0
| exp (— d¢) erfe (6 I/I:af—-—;—.) — exp (6¢) erfe (6 ]/k_t + —C_-Y| ,
, 21kt 2V/kt,
we have
__A+A—2aW (1
(G180 g 7t (1—9) jfé (1 1—~2 62)
00
% |exp(—d(z +0)) erfc (6 ]/k_t—i)
: /kt

—exp(—d(z—§) erfc (3 Vit + b Ifkhfq cos ax cos fydadf.

The knowledge of the function ¢ enables us to determine the stress
components (o) from the Eqs. (2.7).

Since neither the function ¢ nor its third derivatives can be expressed
in a closed form, the determination of the siress components (oy) can
only be achieved by tedious numerical methods.

Consider an instantaneous action of a heat source at the point 4 (0, 0, ¢)
in the case, where u =0, v = 0, w = 0 in the plane z = 0.
Proceeding as in the previous case, we verify easily, assuming @
according to the Eq. (2.2), that in the plane z =0
0| ()%

(2.17) i 0, B=-—| =0.
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The displacements w are different from zero. The state (o) should
be superposed over the state (¢i), the components of which are expressed
by the Eqgs. (2.4a), (2.4b).
The state under consideration concerns a semi-infinite elastic space
for T = 0 subjected to the displacement —w in the plane z == 0. For
this additional problem the boundary conditions are

(2.18) Ulz=0=10, V|=0=0, W+ W|:=0=0.

Since the displacement components are related to the function ¢
by the equations

T 1 C}"!_ql U____l—l-_‘v d{ﬂ
o E dxdz’ o E dyodz’
(2.19) 38 3
1"‘[“1# (1] 3(?; . ; 3
" 0:r-*+6y2+(1 29) 7],

our problem is reduced to the solution of the differential equation (2.6)

with the boundary conditions *)
(2.20) g-"‘? =0, } = 0.
dz=0

The function ¢ is assumed here in the form (2.8).

The quantities A, B, are found from the boundary conditions (2 20),
the stress components (o) from the Egs. (2.4a), (2.4b).

The final form of the stresses is determined by the relation o;;= 0+ 0j-

The case where the plane z = 0 is free from shear stresses, and the
displacements w are equal to zero in that plane, is equally easy, In de-
termining the state of stress () the following boundary conditions should
be assumed for the function g¢:

Oy Py 00|
dﬂ*ﬂg"”‘ s

Fy

T 52

[00  1+3[0% ol
Z..9 Ild’z * E |ox® , (1 —29) l/‘

= (,

z=(

(2.21)
=0.

Iaxg —l—(l—Z’PJI/

The function @ is expressed here by the Eq. (2.2) and the function ¢
by the Eq. (2.8).

If in all these cases the heat source is shifted from the point A4 (0, 0, {)
to the point A (£,9,8); x—¢&, y—n must be substituted for x,y in all
the equations of this article. If, in addition, we assume that W = 1, the

*) In the Eqs. (2.19) and (2.20), E denotes Young's modulus.
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stress components (o;) will be the Green functions of our problem.
Using these functions, we can obtain by integrating, according to the
Eq. (1.15), the stress components (o;;*), due to the action of heat sources
distributed over a finite region I" of a semi- infinite elastic space.
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