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STRESS PROPAGATION IN AN INFINITE VISCOELASTIC BODY
PRODUCED BY A TIME-VARIABLE POINT FORCE

WITOLD N O W A C K I (WARSZAWA)

1. General Equations

The problem of propagation of elastic waves in a perfectly elastic
infinite body due to the action of point forces has been dealt with in
numerous papers. In 1956 G. E a s o n , J. Fulto<n and I. N. Sned-
don, [1], gave a general method for solving this problem using
F o u r i e r ' s quadruple expotential transformation.

The object of the present paper is to determine the displacements and
stresses due to the action of point forces and a centre of pressure in an
infinite viscoelastic space.

We shall consider visco-elastic bodies in which the stress-strain re-
lations are given by the equations, [2],.[3]:

(1.1) Pt(D) P8 (D) a|J> = P2(D) P3 (D) £<)) + dĄ [P,(D)P4(D)-P2(D)P8(D)] 4<>,

C
(1.2) o^-2J a(t-T) J

0 0
The linear operators P, (D) i = 1, 2, 3, 4 are expressed by the equations:

Ni

«=0
where Dn = d"/dtn denotes the n-th derivative with respect to time. In
the particular case of a perfectly elastic body, the operators Pt (D) reduce
to the first term of the sum (1.3)

aioi^l, 40) = 2/a,h O p - 1 , af = 3Ao + 2/.o,

where Ao, /i0 are L a m e ' s constants.
The relation (1.2) was given by M. A. Biot, [4], and generalized by

D. S. B e r r y, [3], to three-dimensional problems, a (t), b (t) are relaxation
functions which for a perfectly elastic body reduce toLame's constants.
Introducing the relations (1.1), (1.2) in the equations of motion, and ex-
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pressing the strains in function of the displacements, we obtain the fol-
lowing displacement equation:

(1.4) P2 (D) P, (D) uj% + J • [2 Pi (D) P] (D) + P2 (D) P, (D) | u»>w +

+ 2 PB (D) Pj (D) F, — 2 P, (D) P8 (D) jm'1' = 0,

(1.5)

where Ft denote the mass force components.
Let us assume that the visco-elastic body was at the initial moment

(t ̂  0) free, that is, it was in tke natural, unstressed state. Performing
on the Eqs. (1.1) and (1.2) the L a p l a c e transformation we obtain:

(1.6) o!j(xnp) = Z.*(p)e*ilk{x

with the following notations

(1 7) 1* l*\ - P i ip) P* (P)

(1.7) X (p) - s p
for a visco-elastic body for which the Eqs. (1.1) are valid and

(1.8) r ( p ) = pb*(p), / /(p) = pa*(p)

for a body where the Eqs. (1.2) hold.
Performing the L a p l a c e transformation on the Eqs. (1.4) aind (1.5),

we shall express them by the unique expression:

(1-9) W+p*)ul.

Let us introduce the notations:

The system of equations (1.9) then takes the form:

(1-10) ^ulkl + utkH+Fifj — p2CTalt? = 0 (2=1,2,3);

To proceed further. We perform triple F o u r i e r transformation on
the Eqs. (1.10) (in the most general three-dimensional case), the inverse
transformation giving the displacement expressed by triple F o u r i e r
integrals. This procedure is analogous to that chosen by the authors of
Ref. [1], the insignificant difference being that the expotential F o u r i e r
transformation is replaced by the sin© and cosine F o u r i e r transform-
ation. Next, after determining the F o u r i e r integrals, we shall per-
form on the displacements the inverse L a p l a c e transformation.
Accurate solution is given for a Biot body only.
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2. The Two-Dimensional and One-Dimensional Problem

Let a load F<=F0 (t) 6 (xj <5 (x2), uniformly distributed along the
xx-axis, act parallelly to the X3-axis. In this particular case, we have U3=0,
and the derivatives of the displacements U\, ii2 in the xg-direction are zero.
The system of equations (1.10) is reduced to two equations:

(2.1) PuLki + utM + nFidv — p8<r2u? = 0 (i = 1,2),

where F* =* FQ.(p) d fa) 6 (xs).
In order to solve the system of Eq, (2.1), we introduce a double

F o u r i e r integral defined by the relations:

(2.2)
u* fa, Xa, p) ~ j J Ui(au a2,p) cos a t x, cos a2 x2 da% da^ (i = 1,2),

o o

F* (x„ xa, p) = / / F0(at, aa,p) cos a, x, cos a2x2da, da2.
0 0

We have taken into consideration the fact that the displacement u* is
symmetric in relation to the planes xi = 0, X2 = 0, and that the displace-
ment u* is antisymmetric in relation to these planes. The load F* is
symmetric in relation to both planes.

Substituting the integrals (2.2) in the system of equations (2.1), we
obtain:

<2.3)
(a\ p + a\ + p 2 a2) U, — a, a2 Ó2u2 = rjF,

a'f + p2 a2) ii2 — 0.a, a2
j /52

Solving this system for uL and ua, we obtain:

{2.4)
(a? + â  + p2 a2) [a\ + Ą + p2 r 2) '

f (oj + a2 + p2 a') (a\ + a2 + p2 ra)' ^ a

Performing the integrations prescribed by (2.2) and bearing in mind that

( X t COS <Z2 X 2

a 2 4
o o

<2.5)
> C fcos a,

l*(»ux,,p;ff)-J J a 21
= T K ° ( r

we obtain the following displacements:

(2.6)
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The function Ko {rpa) appearing in these equations is a modified B e s s e 1
function of the third kind. For the stress components we obtain:

(2.7)

, , . Folp
ou + 022 = V- Kt){rpa),

The Eqs. (2.6) and (2.7) should be subjected to the inverse L a p l a c e
transformation, bearing in mind the rheologic properties of the body. Let
us consider the B i o t model of a visco-elastic body. Assuming the same
relaxation time er1 for the functions a(t), b(t), we have a (t) = fxa e~"'r

= Anc-'!'' therefore:

/ / = ,u0- *(2.8)

Thus:

(2.9) £2 = -

where

0 p ' ° p '

By q and c2 we denote the velocities of propagation of the longitudinal
and the transversal wave in a perfectly elastic body. Let us assume that
in the direction of the xi-axis an instantaneous unit; force acts. Then

(2.10)

where

(2.11)'

Bearing in mind that

Z?-1 Ko [rrn |/p (p+e)J = Y (r, t; r0),

a — r*4

ch 2,

c»(r,-tjT0)=J [1 — e - E

o
, t ' ; To) dt'
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and H (t) is H e a v i s i d e ' s function, we obtain the following equations
for stresses and strains:

Uj (*lf x2, t) — — ~ - j y (r, t; T0) + s f y (r, f; tn) dt' —
1 c I J

0

- c} | ^ [ J (t - 1 ' ) [y (r, f; T„) - y (r, f; a0) | dt' I j ,

t

o
Next,

(2.13)

+ «r?2 = n r 2 ą— y (r, t; T0),

,& — o g ^ - e

Knowing the displacements and the stresses for the instantaneous unit
force, we can determine the displacements and stresses for a force
F = Fo (t) <3 (x,) <3 (x3) varying in time in an arbitrary manner. Thus,
for instance, for the sum of the stresses we obtain:

(2.14) <r*i + cr*2 = — F(t')y(r,t';Tn)dt'.

The displacements and the stresses are particularly simple for the
force Fo (£) = Fo eia>t, that is for a force varying in time in a harmonic
manner. In this particular case, p should be replaced by ico in the Eqs.

- (2.6), (2.7) and (2.9). Thus, for instance:

(2.15) ffll + C22 = *2±$ A Ko [rr0
QTLC U3C]

Let us denote by u*(1) (i== 1, 2) the displacement due to the action of
a force directed along the Si-axis, and by ii*'21 the displacement due to
a force directed along the 22-axis.

Let us differentiate the displacements u*(1) with respect to x\. The
quantities

dx\
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may be treated as displacements in the x\ and ^-direction due to the
action of a double force whose direction coincides with the x^axis.

Similarly, the quantity

(2.17) U*W==ÓjĘ 0=1,2),

is treated as a displacement in the direction of the a?,~axis due to the
action, of a double force acting in the ;r2-direction.

Thus the quantities

(2-18) C U ?

are the displacements due to the action of the centre of pressure located
ait the origin. It can easily be verified that

(2.19)

or

Fa, sin a, x, cos aa a:, ,
„»_• „2,1 „ . - . d « i d « a .

o o

Fa, cos a, x, sin a., x*

o ó

(2.20) ,[7? = ^ A Ko (rpr) (i = 1,2).

For the B i o t model of a yisco-elastic body, and assuming that the unit
centre of pressure acts in an instantaneous manner, (F = l/jra) we obtain:

t

(2.21) e U / ( a l l « i , t ) - ~ ? - ^ r y ( r , t ; T 0 ) + » |y(r,t';T0)dt'| (i-1,2).
3

Knowing the displacements, we shall determine the stress components.
Thus, for instance:

(2.22) ^ ' ^ ) = ^ ^ ^ * o ) .

Let a load F = F0(t)d(xi) act in the plane Ą — 0 . In, this particular
case we have 2̂ = 0, u^^O. The system of equations (1.10) reduces to
the unique equation:

(2.23) f u*u + r}F* — f a2 uj = 0 .

Expressing the displacement and the force by an even F o u r i e r
integral, and bearing in mind that F = FO(P)/TI, we obtain:

(2.24, % . ( l l , p ) »
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For the B i o t model of a visco-elastic body, and in the case of an
instantaneous force, we obtain:

(2.25)

Performing the inverse L a p l a c e transformation we obtain:

<2.26)

where

<2.27)

Since

(2.28)

therefore:

n* _i—(A + -^ -

lt-&

5* t

<2.29)
<T22 (Xj, t) = or8S (Xu t) =

0 - f -
an (Xj, t).

For the force .F —F0(t) we obtain:

For the force i' = F0Cw

(2.31) ffu(^.t)

we obtain:

3. The Axially Symmetric Problem

Let a concentrated force F = Fo (t) <5(z) [<S-(r)/2 nr] directed along the
2-axis act at the origin. Substituting the stress-strain relations

(3.1)
Jdu?

Arch. Meoh. stOS. — 5
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in the equations of equilibrium

(3.2)

F* - ep* w* = 0,
I dr ^ dz ' r

we obtain the following system of displacement equations:

(3.3)

(3.4)

To solve (3.3) we introduce the double F o u r i e r - H a n k e l integral
defined by the equations: \

CO DO

u*(r,z,p) = I j ur(a,y,p)sinyzJl(ar)dady,
0 0

eo oo

w*{r,z,p)= I I w (a,y,p)cosyzJ0{ar)da dy,
o o

F* (r, z, p) = | I F(a,y,p) cos yzJ0{ar)dady,
o o

<5(r) 1 / i / \ j
-— = ^ - aJ0(arjda.

o

The assumption of the transformation (3.4) satisfies the symmetry
condition of the functions w* and F* in relation to the z = 0 plane, and
the antisymmetry condition of the displacement u* in relation to that
plane. Substituting the integrals (3.4) in the Eqs. (3.3), we obtain the
following system of equations:

2 a2 + y3 + p2 ai)Ur — ay6iw = 0,
(3.5)

whence:

(3.6)

a2 + p2 a2)w =

2 n> /S2 (a2 + y2 + P2 a2) (a2 + f + p 2
 T2) '

F0(p)7;a
* ^ ft •> n't
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Bearing in mind that

0 0

and calculating the integrals (2.4), we obtain:

(3.8) u? = -T^Sr^ ^°L U (R; P, T) - 1 (R; P, *)],

(3.9) ;p, T ) - I ( R ; P , a)]}

For an instantaneous point force [Fo(p) = l], and for the B io t model
of a visco-elastic body we obtain:

i

(3.10) ur (r, z, t) = ~ ~ - j ~ j [0 (R, t'; T0) - 0 (R, f; ao)J dt'l,
0

(3.11) to(r,z, t)=^r |x(R,t) + e(P(R, t;ffo) +

+ C2^rf^- r[<PlR.*';*o) —*(R,t';oo)i««'||,
0

where the following functions have .been introduced

(3.12)

(3.13)

R
^H(t-Rau)

^ R ^ 7 § J

Knowing the transforms of the displacements (3.8), (3.9), we can
determine the stresses from the equations:

(3.14)

*_ A* , 9ll*^L
d A -4- 2 « r

s^*'3 A*+ 2

dr
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where
A*

It can easily be verified that:

(3.15) A * - ^ ^ S " ( 3 A ' + 2 / B ' ) ^

For an instantaneous point force and for the B i o t model of a visco-
elastic body, we have:

f
Ó

(3.17) ffw(r,łt)-A^

I

~ f «~ł(ł"''l5F

(3.18) M r ^ j ^ Ź s Ś t

+f^fWtjT0)—ff(R,tjffo)— Je-•('-''> ̂ >[<P(R,t'; T0) ~

( 3 . 1 9 ) ff„(rłZ,t)^^^^|

4. The Three-Dimensional Problem

Let a point force F = F0(t)d{xl)d(x.i)d(xi) act in a space, directed in the
xj-direction. Substituting in the system of equations (1.10) the integrals

u*(xuxt,x3, p) =
OCOODO

~ J J J udau az> «3, p) cos c^ xx cos a 2 xz cos a8 x 3 dax da2 da,,
o u o

~ J J J ^a(on «2) «3> P) s i n «i Sy sin a 2 x 2 cos a3 x 3 daj da a da3,a " « 3 >
o o o '.- j
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\ ut(xuxS)x6,p) =5=
OOCXJWJ

— J ] J uB
sin a^ xx cos a2 x2 sin a s x& dat da 2

o o o

we obtain the following system of equations:

a\ + a\ + a2 + p 2 <r2) u t a 2 < — a, a 3 <52 u , =

(4.2)

Solving for u; (i = 1, 2, 3), we obtain:

(4.3)

P» (a\ + d* *o) (a\ + a\ + a2 + p2

ai a2

(a\ + a\ + a\ + p V ) (a2 + â  + â  + p 2 T2) '

"•3 (a2 + a2 + a|-j-pa o") (aj + a2 -f a| -f- p2 T2) '

Bearing in mind that

CC Teas a, x, COB a2x: cos a^ ^ = *? J (R. p_ ff)== £ 1
I I I af + at + % + P o 4 4 it

= f (v) i

-/?po

J J J
0 0 0

we can express the displacements u*(i —1,2, 3) by the equations:

(4.4)

f
4

It is seen that the equation for u* is identical with the equation for w*
of the preceding paragraph. Let us differentiate the Eqs. (4.4) with
respect to a?i. Then,
.. _> r 7 * _ duł ,. . .„ 3 1

(4.5) U ' dx"

express the displacement due to the action of a double force acting at the
origin and directed along the zi-axis.

Let us differentiate the Eqs. (4.4) with respect to x2. Then,

(4.6) ur
, duf

dx?
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express the displacement due to the action of two instantaneous forces
whose vector is directed along the X2-axis.

Let a centre of pressure act at the origin. It is identical with a system
of three double forces, of which the first acts in the direction of the
cq-axis, the second acts in the direction of the X2-axis, and the third —
in the direction of the jr3-axis.

Let us denote by u*(ft» (i = l, 2, 3) the L a p l a c e transform of the
displacement in the direction of the X/-axis due to a point force acting
in the direction of the x^-axis. Denoting by CU* (i = 1, 2, 3) the displace-
ment components due to the action of the centre of pressure, we obtain:

It can easily be found that:

For the radial displacement, we obtain:

For the B i o t model of a visco-elastic body and assuming that the action
of the compression centre is continuous in time, we obtain:

t

(4.10) CVR (R, t) = ^ ^ A L (Rj t; To) + e U (Rf f; T()) dt'l,
0

where 0lR,t;r&) is given by the Eq. (3.9).
The stresses will be obtained from the equations:

(4.11)
^ / d2 2 d , 2JMO1 d

W* RdR h RdR
If the centre of pressure varies according to the function F (t), we have
for instance:

If F(t) = Foe
iat, we have

(4.13) , l M R , t ) = p£ j [ e 5 ^
4srySojw0 0R[ R ttoo



Stress Propagation in an Infinite Viscoelastic Body 749

References

[1] G, E a s o n , J. F u l t o n and I. N. S n e d d o n , The Generation of Waves
in an Infinite Elastic Solid by Variable Body Forces, Phil. Trans. Royal Soc. Lon-
don, 955, 248 (1956).

[2] E. S t e r n b e r g, On Transient Thermal Stress in Linear Viscoelastidty,
Proc. Third U. S. Nat. Congr. appl. Mech., 1958.

[3] D. S. B e r r y , Stress Propagation in Visco-Elastic Bodies, J. Mech. Phys.
Solids, 3, 6 (1958).

[4] M. A. B i o t, Theory of Stress-Strain Relations in Anisotropic Visco-
Elastidty and Relaxations Phenomena, J. appl. Phys., 25, 11 (1954).

[5] W. N o w a c k i, Transient Thermal Stresses in Visco-Elastic Bodies (I),
Arch. Mech. stos., 5, 11 (1959).

[6] B. A. B H T K H H , n . fl. K y 3 H e i | 0 B , CnpaeouHUK no onepaąuoHHOMy UCHUC-
jienuw, Moscow 1951.

[7] A. E r d e 1 y i, W. M a g n u s , F. O b e r h e t t i n g e r , F. G. T r i c o m i,
Tables of Integral Transforms, Vol. 1, New York-Toronto-London 111954.

S t r e s z c z e n i e

ROZPRZESTRZENIANIE SIĘ NAPRĘŻEŃ WYWOŁANYCH W NIEOGRANICZONEJ
PRZESTRZENI LEPKO-SPRĘŻYSTEJ DZIAŁANIEM SIŁ SKUPIONYCH

ZMIENIAJĄCYCH SIĘ W CZASIE

Wykonując transformację L a p l a c e ' a i na równaniach przemieszcze-
niowych (1.4) i (1.5) ustawionych dla dwóch typów zależności między
stanem naprężenia i odkształcenia (1.1) i (1.2), otrzymano układ równań
przemieszczeniowych (1.10), w którym wielkości u* są funkcjami miejsca
i parametru transformacji p. Układ równań (1.10) rozwiązano przy użyciu
całki F o u r i e r a w sposób analogiczny do drogi postępowania obranej
przez autorów pracy [1] dla ciała doskonale sprężystego. Po wyznaczeniu
całek F o u r i e r a uzyskano wielkości u*, a po wykonaniu odwrotnej
transformacji L a p l a c e ' a przemieszczenia ui. W sposób szczegółowy
rozpatrzono działanie siły skupionej, działanie siły równomiernie rozło-
żonej wzdłuż linii oraz płaszczyzny, dalej działanie skupionego i linio-
wego centrum ściskania. Rozpatrzono działanie siły chwilowej, ciągłej
oraz w sposób harmoniczny zmieniającej się w czasie.

We wszystkich przypadkach, przy założeniu modelu B i o t a ciała
lepko-sprężystego, uzyskano wielkości przemieszczeń i naprężeń w po-
staci zamkniętej.
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PACnPOCTPAHEHME nEPEMEHJEHMtf B HEOrPAHMHEHHOM
nPyrOM IIPOCTPAHCTBE, B B I 3 B A H H O E flEftCTBMEM

COCPEflOTOHEHHHX nEPEMEHHBIX BO BPEMEHM CMJI

TpaHCCpopMaD(iiio J I a n j i a c a K ypaBHeHMaM B nepeMem,e-
(1.4). it (1.5), nocTpoeHHBix flJiH flsyx TMIIOB saBHCHMOCTM

M êdpopMMpOBaHHBiM cocTOHHueM (1.1) M (1-2),
ypaBHeHHił B nepeMem;eHMflx (1.10), B icoTopoił BeJiMHMHBi u* HB-
(pyHK^aMM TOHKM u napaMeTpa TpaHCcpopMarcHH p.

ypaBHeHMM (1.10) pemaeTCH npM noMomw MHTerpajia 3
aHajiorMHHtiM MeTO^y, npMMeneHHOMy aBTopOM [1], B
ynpyroro Tejia. Ilocjie pemeHMH MHTerpajioB O y p b e

u* u npwMeHaa o6paTHoe npeo6pa3OBaHMe JI a n JI a c a BBI-
npeMemeima Ut. IIoflpo6HO paccMOTpeHO ^ewcTBiie cocpeflOTOHeH-

HOM CMJIBI, fl,eMCTBne CMJIBI paBHOMepHo pacnpefleJieHHoii B^OJIB JIMHMM

H nJiocKOCTM, a TaKJKe fleiicTBMe cocpeAOToneHHoro u JiHHeiłHoro iceHTpa
ftaBjieHMH. PaccMOTpeHO fleiłCTBMe CMJIBI MMnyjiBCMBHofł, rjiaflKoił M H3Me-
Haromeiłca rapMOHMHecKM BO BpeMeHM.

Bo Bcex cjiy^aax, npMHMMaa MO^ejiB B H O T a BH3KO-ynpyroro
nepeMemeHMM M Hanpa>KeHMM nojiyneHBi B 3aMKHyT0jvr
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