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STRESS PROPAGATION IN AN INFINITE VISCOELASTIC BODY
PRODUCED BY A TIME-VARIABLE POINT FORCE

WITOLD NOWACKI (WARSZAWA)

i. General Equations

The problem of propagation of elastic waves in a perfectly elastic
infinite body due to the action of point forces has been dealt with in
numerous papers. In 1956 G. Eason, J. Fulton and I. N. Sned-
don, [1], gave a general method for solving this problem using
Fourier's quadruple expotential transformation.

The object of the present paper is to determine the displacements and
stresses due to the action of point forces and a centre of pressure in an
infinite viscoelastic space.

We shall consider visco-elastic bodies in which the stress-strain re-
lations are given by the equations, [2], [3]:

(1.1)  P,(D)P,(D)oll = P,(D) P, (D) e + a,.j% [P, (D)P,(D)— P,(D)P,(D)] &),
!
J def?)
(1.2) a}f’: fa(t—r}asgldr—l—éﬁfb(t—r) 5 dr.
0 0

The linear operators P;(D) i=1, 2, 3,4 are expressed by the equations:

Ni
(1.3) P; (D) —— 20 a‘E‘ﬂ! Df"l, QEN:'] #0,

where D"=0"/0t" denotes the n-th derivative with respect to time. In
the particular case of a perfectly elastic body, the operators P;(D) reduce
to the first term of the sum (1.3)

al =1, ald = 2 u,, ad =1, al® =31+ 2 po,

where A, p, are Lamé’ s constants.

The relation (1.2) was given by M. A. Biot, [4], and generalized by
D.S.Berry, [3], to three-dimensional problems. a (t), b (t) are relaxation
functions which for a perfectly elastic body reduce to L am €' s constants.
Introducing the relations (1.1), (1.2) in the equations of motion, and ex-
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pressing the strains in function of the displacements, we obtain the fol-
lowing displacement equation:

(1.4) P,(D) P, (D) ul'), + ; [2 P, (D) P, (D)+ P, (D) P, (D)] u),, +

+2P3(D)P[(D)F,:'_ZPj(D)Pq(D) Qu}")-':{},
o0 0 . o
(1.5) ”a(t—z)-a; ully + [b(t—7)+ a(t— )] - ul) {de+F,— euf =0,

where F; denote the mass force components.

Let us assume that the visco-elastic body was at the initial moment
(t << 0) free, that is, it was in the natural, unstressed state. Performing
on the Egs. (1.1) and (1.2) the Laplace transformation we obtain:

(1.6) ofy(r, p)=1*(p) ellr, P) S+ 2 ely(zrip), §*(r, )= [ € f (s, ¥)dt,
0

with the following notations

o () P1(P' Py (p) — Py (p) Py (p) # () — F2(D)
for a visco-elastic body for which the Egs. (1.1) are valid and
(1.8) A* (p) = pb* (p), ©* (p) = pa* (p)

for a body where the Egs. (1.2) hold.

Performing the Laplace transformation on the Egs. (1.4) and (1.5),
we shall express them by the unique expression:

(1.9) (A*+u*) uk, o + p* ul ie— op*ul +Fl=0 (t=1,2,3).
Let us introduce the notations:
42" & i A 1 0
———=p, f=pL—1=—{, =—, o=
P p P ] # u
The system of equations (1.9) then takes the form:
{1.10) 0% uk, ni+ul ke + Fin—p*o®uf =0 (i=1,2,3)

To proceed further. We perform triple Fourier transformation on
the Egs. (1.10) (in the most general three-dimensional case), the inverse
transformation giving the displacement expressed by triple Fourier
integrals. This procedure is analogous to that chosen by the authors of
Ref. [1], the insignificant difference being that the expotential Fourier
transformation is replaced by the sine and cosine Fourier transform-
ation. Next, after determining the Fourier integrals, we shall per-
form on the displacements the inverse Laplace transformation.
Accurate solution is given for a Biot body only.
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2. The Two-Dimensional and One-Dimensional Problem
Let a load F=F;(t)d(x,)é (x;), uniformly distributed along the
xy-axis, act parallelly to the xy-axis. In this particular case, we have u;=—0,
and the derivatives of the displacements uy, us in the xy-direction are zero.
The system of equations (1.10) is reduced to two equations:

(2.1) O* uk, pi+ul pe +nFidy —p*atul =0 (i=1,2),
where F* = F,(p)d(x,)d (x.).

In order to solve the system of Eq. (2.1), we introduce a double
Fourier integral defined by the relations:

UL (Ta550) = ff"u;(a!. 0.y, D) COS @y X, COS 0y Tyday da, (i=1,2),
(2.2) il

e

l F* (x,, x4, D) r-ffﬁ‘oirzl, a3, D) COS @, T, COS a, Ty day da,.
00

We have taken into consideration the fact that the displacement uf is
symmetric in relation to the planes x; =0, x3 =0, and that the displace-
ment u) is antisymmetric in relation to these planes. The load F* is
symmetric in relation to both planes.

Substituting the integrals (2.2) in the system of equations (2.1), we
obtain:
(2.3) { (o} p*+ &} + p* 0°) &, — a a, 6* @, = 9 F,

— a, ay 6°U,+ (o2 f* + af +p* ¢®) By = 0.

Solv:ung this system for u, and u,, we obtain:

ﬁ _-_7?F —— al+ﬁsa§+p O'J —— g

(2.4) T @+t pied) &+ ad+pt ) B’
? nFal .S I_f'.'——~ﬂ1-F -
l W= f (E+a+p*dd)(d}+ai+p*e?) o o (P)

Performing the integrations presc-ribed by (2.2) and bearing in mind that
(2.5) I* (s, 25, 05 0) = [cos 000 TR x‘*d rday = 2 K, (po),
. 1y Lay Py 31+%+p
o= (;t:f 2O,

we obtain the following displacements:

1Fy(p) s
o ﬂFo(’P) ___62
2p?o* 7 Ox, O,

(2.6)

K, (rpr) — K, (rpo)].
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The function K (rpo) appearing in these equations is a modified Bessel
function of the third kind. For the stress components we obtain:

Fo(p) (A*+p*) d

i1+ oy = Fn Kﬂ('rpo]
2
@) | oti—oi— nF fop ai{xn ) — s 3 2[Ko (rpr) — K, ('rpcr)]}
. ] |
U?2=??F£(g;:: di { Ky (r P'f P P (dxa dmg) IKG (rpr) — K, (‘l‘pd)]}-

The Egs. (2.6) and (2.7) should be subjected to the inverse Laplace
transformation, bearing in mind the rheologic properties of the body. Let
us consider the Biot model of a visco-elastic body. Assuming the same
relaxation time ¢! for the functions a(t), b(t), we have a(t)=y,e—*,
b(t)=4i,c—* therefore:

' P ¥ P

2.8 =1—— 0t = gy ——.
(2.8) & jop-i-s’ H 'uop-i—s
Thus:

Ao t2p p+e s gD+te : p+e
2.9 RE= ~* = fi% = const, =", o¢'=0q i =2 .
(29) f= Yo o n fo P 0 P T 0 p
where

0g=eluo =c35?, Tu:z—#'njl_ Aﬂzc{

By ¢ and ¢, we denote the velocities of propagation of the longitudinal
and the transversal wave in a perfectly elastic body. Let us assume that
in the direction of the xy-axis an instantaneous unit force acts. Then
Fy(p)=1.

Bearing in mind that

(2.10)

' e [TTu |;.p (I;'f“i‘-']l =yt Tu}rl

-J—‘{plﬁ )Kol 7 V'p( +eJJ}=—~q:(r t; 7o),

where

sl
' y(r,t 1) = ; V me e 2 I_Ug (—-;—l- I‘;'E‘;"'_'_ra‘t_%) H (t—17,),

(2.11) Ip(2)= ]/-7—?2— ch z,

f
@t tir)= | [1—e=st=]p(r, t’;7,) dt
0
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and H (t) is Heaviside’s function, we obtain the following equations
for stresses and strains:

‘

1 b r ’
u, (xpxmﬂ—:!nég—'{?(f,t T(:)+SJ y(r,t7) dt’ —
10
, 0%
(2.12) — cf@[f(t-—t') [y (r, t';70) — y (r, ' 0) ] At l}
1
o (e 2, ) =5 ami d:r: f (t— 1) [y (r, £ 70) —  (r, ¥'; 0] dE"
Next,
#* L /]-n + o d 3
ofy + a¥y = anﬁ (E}’(’J", t; 7o),

2-':, 0*

(2.13)! ofi— o3y =_‘u°_z. —a— {y (1, t; 7o) — Py 2 [q;(r, t; o) —eq(r, t; o) !

‘A2 2
ofy = 2 ::; C? aixa{? ('ri 1A rtl) - CE (da—:t.'g i d'd_xg) [QJ(T, t;"':ﬂ}_'p (T,t; Un)] } C
Knowing the displacements and the stresses for the instantaneous unit
force, we can determine the displacements and stresses for a force
F = F,(t) 6 (x,) 6 (x,) varying in time in an arbitrary manner. Thus,
for instance, for the sum of the stresses we obtain:
!

AD+Pﬂ ‘i i ’ ‘, ’
ot 3, | FEpen i
0

(2.14) ofi + ok =

The displacements and the stresses are particularly simple for the
force F(t)=Fye', that is for a force varying in time in a harmonic
manner, In this particular case, p should be replaced by iw in the Egs.
-(2.6), (2.7) and (2.9). Thus, for instance:

* * "1 +ﬂl’l a . a

(2.15) oiL + o = gncf d.‘r1 K, [rt, Vie(e+iw)|.

Let us denote by uf® (i=1,2) the displacement due to the action of
a force directed along the x;-axis, and by ui® the displacement due to
a force directed along the xy-axis.

Let us differentiate the displacements ui) with respect to x;. The
quantities
ey OULY
(2.16) Ui ==

€T,

{i = 1) 2)’
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may be treated as displacements in the x; and xy-direction due to the

action of a double force whose direction coincides with the xj-axis.
Similarly, the quantity

dui®

*2) —

(2.17) Ui d%

is treated as a displacement in the direction of the x;-axis due to the

action: of a double force acting in the ay-direction.
Thus the quantities

(k)
(2.18) Ut = 2 a;;k (i=1, 2)

(i=1,2),

are the displacements due to the action of the centre of pressure located
at the origin. It can easily be verlfled that

Frx sina X, coS ay

(2.19) g
_n Fa, cos a, x, sin a, x,
U _ d
ff dratpe  ondh

or

Fa 0 :
(2.20) U= 127 ﬁf . Korpo) (i=1,2).

For the Biot model of a visco-elastic body, and assuming that the unit
centre of pressure acts in an instantaneous manner, (F = 1/#*) we obtain:
!

1 9 ly(‘r t; ro)-{—sjy(r,t';'ro)dt'] (i=1,2).

) npc“ dx;
]

Knowing the displacements, we shall determine the stress components.
Thus, for instance:

(222) Oy (Ils Ly, t) =

(221) Ui (-'31: Ly, t)

Mo 0?
mpci Ox,Ox,
Let a load F=F(t)d(xy) act in the plane x;==0. In this particular
case we have uy=0, u3=0. The system of equations (1.10) reduces to
the unique equation:
(2.23) Pty + g F* —p ot ut =0.

Expressing the displacement and the force by an even Fourier
integral, and bearing in mind that F = F; (p)/%, we obtain:

% _Fol@)y (cosa,x,day _ Fo(ply _,,
(2.24) uf (x,,p)= e f a“-l—p-c“ 2f3"pt prx,

75 (Tr t; TO)‘
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For the Biot model of a visco-elastic body, and in the case of an
instantaneous force, we obtain:

(2.25) @)= (1 5) g s
. [T , ol SR
P 0 U D Vot e
Performing the inverse Laplace transformation we obtain:
!
R S Y I [ % e
(2.26) wy (g ty= Sae. l;p (Cl ; t) - a.’ P (Ic] ,t) dt I,
0
where
(2 me F1 2 q/ /0 (B ufe—2)
(2.27) y (c e Iol V- c}) 1—21).
Since
du . Ouf
28 = (A" 24" " b =gt = (8
(2 ] (A4 ) Tay Ogy = dx,
therefore:
ot A t2m 0 [z
lﬂ'n(xlat)— 206, oz, (Cl t)
(2.29) I 2
Oaa (g, 1) = 0y (2, 1) = %—_}__2;0' 0y (4, t).

For the force = F(t) 6 (x1) we obtain:

r)
(2.30) oy (@ 1) = 20T 2t J F(t')y ( )
For the force I = Fyc'®! §(xy) we obtain:
ZL+2 W Xyt i (e i
(2.31) oy, (g, 1) =— '2 C,j’ﬁ elot g ¥t io(etio)

5. The Axially Symmetric Problem

Let a concentrated force F = F,(t) 6(2) [6(r)/2 ar] directed along the
z-axis act at the origin. Substituting the stress-strain relations

«[Our? ow* o [Our ur Jw*
(O'rr,aqu;u,ﬂzz)—'z (d?" ‘!_ '}' az ) ‘}“2 ( df 3 :E‘)I

e )

Arch, Mech, stos., — §

(3.1) |
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in the equations of equilibrium

KA L
Ll Aot | 0ot

we obtain the following system of displacement equations:

duf 1 out ot U g
(3.3) & (61"‘ Ty e T r-‘)+ ooz T g POW =0

P 2
Tt (a;; s )+ﬁ O i —pt ot wt =0,

To solve (3.3) we introduce the double Four i er-Hankel integral
defined by the equations: \

u* (T,z,p)=ffﬁr(a,y,p)sin?2-f1(ar)da dy,

0o 0

oo oo

w* (r.z,p)=ff’5(a,?,p) cos yzJy(ar)da dy,

(3‘4) (U]

F* (r, z,p)=fj -F-‘(u,y,p)cosyz)’o(ar)dady,
o0

oo

d 1
ﬂ=§-g;fa.fu(ar)da.

2ar
0

The assumption of the transformation (3.4) satisfies the symmetry
condition of the functions w* and F* in relation to the z=20 plane, and
the antisymmetry condition of the displacement ur in relation to that
plane. Substituting the integrals (3.4) in the Egs. (3.3), we obtain the
following system of equations:

(3.5) { (B2 a® + 9* + p* 0*) &l — ayd® = 1
— a8t + (Y + ot + pP ) B=nF, F=55F(p),
whence:
iy = _Fi(‘p}.ts?’ W b - az = T= &
(3.6) 277°F @y P o) @) B’
= (p} na B2 a® ~+y* ps o°

224" (@ +y +pdd) @+ +p' )’
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Bearing in mind that

J i .
(3 7] J I: itt;f{ﬁogsyid d?—-— I(R;p,a), 1_—_~§.e_3\’ﬂa’) R:: (zg +r3)”2.

and calculating the integrals (2.4), we obtain:
F,
68 u=720% O [1(Rp1—I1(Rp,0,
Fy(p)n 1 0* .
o QU . Wil Sl . — .
69w =SB w0+ L 19— 1Rp o))

For an instantaneopus point force [F(p)==1], and for the Biot model
of a visco-elastic body we obtain:

¢
2 .
{31[” Ur {‘rl 2, t) = 41;é &fﬁ; {11? J [Q) (Rl t’; TOJ —® {R: t'; GO)J dt'}!
1]

(3.11) w(r,z,t}=4;t~;{xm,:)+em  00) +
+ 5 3[ f[@{Rt 20) — @ (R, t'; au)]dt”

where the following functions have been mtroduced

— ‘1@‘1» R I/va R? 2)
(3.12) @ (R,t;00)= l J — —= d‘le(t—-Ran),
rm |/ v¢ — R*o?
0
(3.13) x(R,t)=——;—' a(Rﬂu] [ ( ]/t‘t )H(t_Rau)I —
) s 1,(2 Vt— R"'a;,) 1
) e ld (t—Ra,) +Rau(—z-) . ——H(t —Rau)].
-'2— l/tz = R.2 0’3

Knowing the transforms of the displacements (3.8), (3.9), we can
determine the stresses from the equations:

o A* . . our
C-"."r—3 + A +2 dl‘ "
. X . . Ur
) UW‘_.SR. _|__2 tA +2 r 3
(3.14 \ .
g:z= ‘j'_.,_“{l“_l__z ‘.a_u_"
32 0z
duy  Ow*
a:==#‘(*2_+ dr)’
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where
dw*
0z

dur

A =of+ohp+ o= (32" + 24 *)( +

It can easily be verified that:
F,(p)n
4 nfp*
For an instantaneous point force and for the Biot model of a visco-
elastic body, we have:

(3.15) A= (B2 +2u* ) L (B, ;7).

0

(3.16) Urr(’r, Z, t) =Tt dzx(R, )+ = A sz{q)(ﬂ t; 70— @(R, t; 0'0)—._
!

Ao
4ap, By
§ —e|f—t' d fy o ’ I
— e | }aE [({J(R,t,‘.':n)—@(R,t,O'u)]dt y

An 0 e 0
dau, B3 0z A Rl 2ner Or0z

3
— f e—e(—t) a_a{' [2(R,t';70) — P(R,1'; 0y)] dt’},

(3.17) opy(r,2,t) = {q (R, t; 7)— B (R, t; ) —

Ao

(3-18) O'ZZ(T!Z! t) _Z_# ﬁa a.z

J B+ {xtR 1)+
+ S Ol oR;t;70) —B(R, £ 00)— [ e+ %, [0 (R, ' “ao)dt]
o azg 16 Tp s by Oy fe dfr[ ( ,fa,‘ﬂu)—-@(R,t,O'o dt]]}

a‘l

a dzg{qj(R t Tn) Q[R:t;ﬂ'o)—‘ B

619) oulrzt= JuR, Ot 5t
i
— f C i aa [2(R, t; 75) — @{R,t’;ouldt’}.

0

4. The Three-Dimensional Problem

Let a point force F'=F(t) 6(x,) 6(x,) d (x,) act in a space, directed in the
xy-direction. Substituting in the system of equations (1.10) the integrals
uf (2, Ty, Ty, p) =

Soocana

= f_” u, (a, ay, ag, p) €Os a, Xy COS @y X, COS 0y Ty day da, day,
0uvo

(4.1) uz (x4, Ty, Ty, p) =

0 00 00

—_”.J‘ Uy (ay, ay, ag, P) sin a, &, sin a, x, cos a; T, da, da, da,
000
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l ui (x4, Xy, Ty, p) =

B9 00 o0

. f!f Ug (an @y, Ay, P) sin 0y Xy COS tg Xy sin a; Xy dal dﬂg das
o000

we obtain the following system of equations:
(8" o + 2+ o8+ p* o)y — a1y Ty — a @y Oy = 1 F,
(4.2) —a, a5 6° al—}-{af-l-ﬂg ag-f- r.'xg-l-pl2 0*) Uy — ay a; 8*uy =0,
—a, a3 8* Uy — ay ay 0* Uy +(a+ad B2 a2+ p*a®)uy = 0.
Solving for w; (i=1, 2, 3), we obtain:
':}F' (a2 + a2+ a}) p* — o} 6*+p* a®

hTp (@} +a+aj+p°o)(d}+a +at+p°7)’ T
2 Fo* ay a
(4<3 n— n 1. g —
ok B (@l +ai+d+p°e®) (& +a}+a} +p2r?)
= nFt?oa ay g - 5
BE R (@t it atpid) el tatatp) F=Fy(p) ;-

Bearing in mind that

oo oo oo

cos 0;3.’.'; COS ay Xy COS {_I_B__ma —_,nf . __E_!-__ e
f.f.f +02+a5+p 63 da ]dazdas—- 4 I(Rvp;a}— 4 Re "

B

we can express the displacements u/ (i ==1, 2, 3) by the equations:

o
uf = ”4 {p){I(R, joX )+ azz [I(R p,7) —I(R; p,a)]}
s (@ 0 —I(R;
(4.4) U= f gt da:ldxg [1(R;p,7) —I(R;p,0)l,
O L I p,7)—I(R;p, l.

It is seen that the equation for uf is identical with the equation for w*
of the preceding paragraph. Let us differentiate the Egs. (4.4) with
respect to x;. Then,
ouj
(4.5) g T

dx,

express the dispiacement due to the action of a double force acting at the
origin and directed along the xj-axis.
Let us differentiate the Egs. (4.4) with respect to xy. Then,
duf
dx,’

(t=1,2,3)

(4.6) Ul=
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express the displacement due to the action of two instantaneous forces
whose vector is directed along the wxp-axis.

Let a centre of pressure act at the origin. It is identical with a system
of three double forces, of which the first acts in the direction of the
xy-axis, the second acts in the direction of the xy-axis, and the third —
in the direction of the axy-axis.

Let us denote by uf®* (i=1,2,3) the Laplace transform of the
displacement in the direction of the x;-axis due to a point force acting
in the direction of the xy-axis. Denoting by U? (i==1, 2, 3) the displace-
ment components due to the action of the centre of pressure, we obtain:

B
au?'Ul

* —| ——
(4.7 Ul ﬁjg; ek
It can easily be found that:

nFq(p) 0
(4.8) Ul= inp' Ou I(R;p, 7).
For the radial displacement, we obtain:

nFy(p) 0
(4.9) Uk = “anp aRI(R D, 7).

For the Biot model of a visco-elastic body and assuming that the action
of the compression centre is continuous in time, we obtain:

it
1 0 i A
{410) ;:UR (R, t) —_ m ﬁl@ (R, t, Tn) + S‘fq? (R, t; ’Eﬂ) dt J,

where @(R,t;7,) is given by the Eq. (3.9).
The stresses will be obtained from the equations:

340+ 24 0° '
‘ Opp 1 Opp + 055 = 4"ﬁul-'o ( "i‘ﬁdR)@(R.t,to),
(4.11)
— An __6_3_ 2 d 2#0 1 d
U@?’_ Oy = 4 7y ﬁﬂ (dR“ | R aR R Ao R aR) (D(R t; ".I:’n}

If the centre of pressure varies according to the function F (t), we have
for instance:
!

)J‘@(R, t7)F(t—¢)dt.

1]

2
(412) opp to,, t0g= 32+2#”( +2 g

4 g o R OR
If F(t)=F,e, we have

fwit
(4.13) U (R, t) -~ :'-'nﬁ2 BR [_e— Rr, len+m}] 30::- i :
0 0
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Streszczenie

ROZPRZESTRZENIANIE SIE NAPREZEN WYWOLANYCH W NIEOGRANICZONEJ
PRZESTRZENI LEPKO-SPREZYSTEJ DZIALANIEM SIL SKUPIONYCH
ZMIENIAJACYCH SIE W CZASIE

Wykonujac transformacje Laplace’a na rownaniach przemieszcze-
niowych (1.4) i (1.5) ustawionych dla dwoéch typéw zalezno$ei miedzy
stanem naprezenia i odksztalcenia (1.1) i (1.2), otrzymano uklad réwnan
przemieszczeniowych (1.10), w ktérym wielkosci u} sa funkcjami miejsca
i parametru transformacji p. Uklad réwnan (1.10) rozwigzano przy uzyciu
calki Fouriera w sposéb analogiczny do drogi postepowania obranej
przez autoréw pracy [1] dla ciala doskonale sprezystego. Po wyznaczeniu
caleck Fouriera uzyskano wielko$ci uf, @ po wykonaniu odwrotnej
transformacji Laplace’a przemieszczenia u;. W sposéb szczegélowy
rozpatrzono dzialanie sily skupionej, dzialanie sily réwnomiernie rozlo-
zonej wzdluz linii oraz plaszczyzny, dalej dzialanie skupionego i linio-
wego centrum $ciskania. Rozpatrzono dzialanie sily chwilowej, ciagle]
oraz w spos6b harmoniczny zmieniajacej sie w czasie.

We wszystkich przypadkach, przy zalozeniu modelu Biota ciala
lepko-sprezystego, uzyskano wielkoSci przemieszczen i naprezenn w po-
staci zamknietej.
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PeswomMme

PACIIPOCTPAHEHME TEPEMEINEHWMIA B HEOTPAHUYIEHHOM
BA3KO-YIIPYIOM IIPOCTPAHCTBE, BEI3BBAHHOE JEMCTBUEM
COCPEJOTOYEHHBIX INEPEMEHHBIX BO BPEMEHW CHJI

[Mpumenas rtpancgopmaimio Jlangaca K ypaBHEHMAM B IE€pEMEILe-
mmax (1.4) u (1.5), HOCTPOEHHBIX INA ABYX THMIIOB 3aBMCHMOCTH MEXRAY
HaIPAKEHHBIM ¥ JedopMupoBaHHEIM cocroguuem (1.1) m (1.2), moaydena
cucrema ypaBHenuii B nepemenjennax (1.10), B KoTOpo# BeIMUMHLI Ui AB-
JaoTea (PYHKIMAMM TOYKM M Iapamerpa TpaHcdopMaiuii p.

Cucrema ypasuenwmit (1.10) peuraerca npu nomoluy uHTerpaja P yphbe
METOZOM aHaJOTMYHBIM METOAY, NpHMMEHEHHOMy asTopom [l1], B ciaydae
uzeassHo yupyroro Tena. Ilocse pemennus uaTerpajyos © y p b e II0JydYeHBI
nepeMelnenus U ¥ npuMeHas obparTHoe npeobpasosanye Jlamiaaca Bbl-
Bogarca npemernenuda ;. IlogpobHo paccMOTpeHO AEMCTBME COCPEeH0TOdeH-
HOM CHMIEBI, JelcTBMEe CUJBI PABHOMEPHO PacIpe/lesleHHONM BJAOJb JIMHUMA
M ILIOCKOCTH, & TaKIKe HEHCTBME COCPeJOTOYEHHOTO ¥ JIMHEAHOro LeHTpa
JaBineHuA. PaccMOTPEHO AeiCTBMe CHJIBI MMIIYJIBCHBHOM, IIamKO 1 M3Me-
HAMOLIEICA rapMOHMYECKY BO BPEMEHM.

Bo Bcex caywaax, mpuHMMaa Mojienk B moTa BA3KO-yupyroro Tea,
BEJIMYMHEI NEPEMEILEeHNI M HAIIPAYKEHNA NOJIY4YeHbl B 3aMKHYTOM BHJIE.
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