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SOME DYNAMIC PROBLEMS OF THERMOELASTICITY

WITOLD NOWACKI (WARSZAWA)

1. Introduction

Owing to the works of M. A. Biot, [1], M. Lessen, [2], P, Chad-
wick and I. N. Sneddon, [3], a new trend in the research over
dynamic problems of thermoelasticity has been observed since 1956,
postulating a coupling between the strain field and the temperature field.
In 1958, P. Chadwick and I. N. Sneddon, [3], analyzed in detail
the influence of the volume and thermal changes (coupled with each other)
on the form of plane harmonic waves. F. J. Lockett, [4], considered
the influence of the coupled strain and temperature fields on the velocity
of propagation of Rayleigh surface waves. J. N. Sneddon, [5], con-
sidered the propagation of thermal stress in thin mettalic rods !, due to
the action of periodically variable forces, and impulse, and temperature
sources at the edges of the bar. In his two papers, H. Zorski, [6], [7],
was concerned with stress propagation in an infinite space due to the
action of a thermal impulse.

In this paper we shall be concerned with the solution of two problems.
The first is that of propagation of thermal stresses in a space and semi-
-space, and in a space with a spherical cavity, due to the action of a point,
linear and surface heat source varying in time in a harmonic manner. In
solving the above problem for an elastic semi-space, the solution of
a modified Lamb’s problem is given, taking into account the coupling
between the temperature and the strain field. The second problem con-
cerns the stress propagation in an elastic space and semi-space due to the
action of point, linear and plane strain nucleus and concentrated force.

The equations of the thermoelastic medium have the form, [1], [3]:

(1.1) 7w+ (24-p) grad diva — o ?;i:;l = ay (2p + 34) grad O,
; 1 06 a Q(P,1)
10 D S, —_

(1.2) 726 - ot Woi diva =

1 By the courtesy of Prof. I. N. Sneddon I was able to familiarise myself
with that work before it was published.
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where u is the displacement vector, @ temperature (assuming that @ + T
is the absolute temperature and the state @=0 concerns the state where
the stresses and strains are zero).pu,A are Lame’s constants, ¢ denotes
the density, a; the coefficient of thermal linear dilatation, » the coefficient
of heat conduction. Next, @ = W/oc, n =1y, T/ocx. W is the quantity of heat
produced in the body per unit time and volume, ¢ — the specific heat and
yo=a¢ (3 A+ 2 y1). Substituting in (1.1) and (1.2) the displacement function

(1.3) u=grad @ - rot ¥,

we shall reduce the system of displacement equations to the three equa-
tions:

e 1 0 \o_
L 9N @ o QBT
(1.5 (V—;ah ngre=T
1o\ o
(1.6) p (172"—(:3 aé—) rot ¥=0.

In these equations, ¢,=[(A+2u)/e]'? is the velocity of propagation of the
longitudinal elastic wave, ¢,=(u/p)"® the velocity of propagation of the
transversal elastic wave and 9, =a: (3 A+ 2 w)/(A+ 2 ).

2. The Stresses Due to the Action of Heat Sources in an Infinite Space

Let us consider the propagation of thermoelastic waves in an infinite
space, and study in turn the action of a point, linear and plane source of
heat. Let us assume that these heat sources vary in time in a periodic
manner, therefore ‘@ (P,t)=e'“’ @,(P), where o is a positive real number
and denotes the frequency of heat source. In the case of periodic variation
of the heat source we have:

(2.1) . OP,t)=¢€'@"(P), @(P,t)=cd*(P), W(P,t) = el ¥ (P).
Substituting these functions in the Eqgs. (1.4)—(1.6) we obtain:

(2:2) (72 + o) 0" = 9,0",

(2.3) (W—@W—wwm=—@f\

{2.4} (Vﬂ __f_ .E:EJ rot T* = 0 )

where

) o® __m"' e (9-‘ _ o =
c‘f: _-CE’ Q'_'.x::' N =R
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Eliminating successively from (2.2) and (2.3) the function @* and the
function ©* we obtain.

(2.5) W2 — Q) (7 + ) 6" — qep*@* — —%wz + 0%, (P),

(2.6) (7 — @) (7 + %) &* — qep*d* — — Do ¢

., QB),  e=mpd,.

It suffices to solve the Eq. (2.6) because the knowledge of @* suffices
to determine from the equation (2.2) the function @*

Let a point heat source Q(P,t)=¢e“Q,6(R) act at the origin. The
most convenient way is to solve (2.6) in cylindrical coordinates. This
equation will take the form

(17— q) (V* + 0°) O* — qep? ¢* = — izn% Siridla);
& 0® 1 @ 0*

(2.1 U e ér har =t
a(r) 8(2) = — J f aJ, (ar) cos yzdady.

Expressing the function @* by means of the Fourier-Hankel
integral

(2.8) D (1, 2) = j f Ala,)J, (ar) cos pzdady,

we can represent the solution of the Eq. (2.6) in the form:
R QY Fe aJy (C_‘T) :
(2.9) OF = 9 ‘f Fla,) cos yzdady,
00

where
F(a,y)=(a*+9f + [q(1 + &) —*] (¢* +y') —qo° =
=(a®+ 92+ k) (®+ 9 + K},
and
k24 ki=q(l+4e)—0c* Kiki=—qo".
After performing the integrations required, we can represent the
function @* in the closed form:

. Qs — kR p—ksR
(2.10) = R — )(e e~k

where

R=(r*+22)12, r=(x>+ 92 kio=ays+ib2, @a12>0.
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From (2.2) we obtain:

¥ QH 2 k2) el — (g2 - K2} g—
(2.11) OF = 4:wR(k2 k} —|(c® + k) e (06® ki e |.
The knowledge of the function @* enables the determination of the
stresses from the Egs. [9]

[ 0 § e
(2.12) o= 2;:( AR, -'—55,1[7‘) @D+ b0 ot (4,j=1,2,3).

In our case of spherical symmetry, we have:

(4u 0D

fol
(2.13) | T R"RJF{MMJ)

d*¢* 1 do* —
| dr? TR dR)+£’“’@}‘

In view of the spherical symmetry of stress and temperature field we are
concerned with a modified longitudinal elastic wave, so that: ¥=0.

If the influence of the coupling between the temperature field and
the strain field is disregarded (or, in other words if £==0), we have
k,=y/q, ky=1o. In this case, the equations (2.10) and (2.11) become, [10],

l — plfwf
GQM)O a?&“—' e

2u

% Qﬁﬁn RV —Ria
A e s €

W _Qi] —Ri'ﬂff
i Beysame

Let a linear heat source act along the z-axis @ (P, t)==e/ Q, (6 (r)/2 ar).
In this case, (2.6) becomes:

18 W=+ 0 —qertor —— D [0, ar)aa,
g :
d? 1 d
. f— ¥
_V’“ at T g
Expressing ®*(r) by means of a Hankel integral

ca

O (1) = ] Al(a)J, (ar)da,

we represent the solution of the Eq. (2.15) in the form:

. ~ Qﬂo [GJ{)((IT)
2.16 E— . /
(2.16) D" (r) 2ax |~ F(a) da,
(1]
where

F(a)=a'+ [q(1 + &) —0°] a®— qe = (a® + I}) (® + kD).
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Performing the integration required in (2.16), we obtain:

(2.17) " (r) = -(‘fc; iy Ko llr) — K (k)]

where K (ki,»7) denotes the modified Bessel function of the third kind
and zero order. From (2.2) we find that

(2.18) 0O*()= "_"(k%o ) [(o® 1) K (ke 1) — (0 + k*lKu(k«r)l
The stresses o;; will be found from the equations:
0, =—el! (2,{{ i + umﬂqﬁ"),
£ r dr =
(2.19) ' '

) a-¢ y
—_— plw! i 3oy
Oy = (2;1 dr? + o0 @ )
In the particular case of &= 0, we obtain [10]:

(2.20) o —. &""'{"gsj o KoV — Koo, 6°= 2 K(r1/g).

Let in =0 plane, a plane source of heat @ (P, t)==e @, d(x) act. Our
aim is to solve the equation:

( d? for 0, Q0
(2.21) (-ic._,— )(dxu—l-or) —qe ddi’ —"{f 5(a).

Using the Fourier transform we obtain the following equations for
the functions @*(x) and @*(x):

(2.22) @*(x)= = [frﬁo kz)(e;:-»f ] e;:’f)’ =0
Q, ek ” el
(2.23) @*(x)= P {k2 k“}[( J_]_k?) —(a*+ k) i | =0
The stresses o;; are given by the equations:
0. = —e g’ D7,
(2.24) l | 5 -
0, =0,=— erat (2;& e -+ gm"fb*) .

If we reject the influence of the coupling between the temperature field
and the strain field, then, [10]:

. < Qo¥, (ea-xy'q e—ia ) L Qe ‘
225 (b —— —— - < - : C..) o . > 0
( ) 2%(‘1'1‘03] 2x |"fq
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Let us consider now the roots ki, ky of the equation:
(2.26)  (k2-+K2) (k*+k2) =0, ki+ki=q {'1 +e)—o® kiki=—qo®.
Let us represent them in the form:

P 1,2
(2.27) ko= é fief—gﬁlidl . A=(0%(0* — &)+ 2ip" (2— &))",
b4

e

where p = w/o* is a dimensionless quantity and o* = ¢}/« characteristic for
the thermoelastic medium introduced by I. N. Sneddon, [8].
Let us observe that

L af | 29112 .1,*2 __;‘L 2 R ]2
A=e+if, e—l/2lt92+h) +g]'?, fml_/-z-lrg - h?) gl*?,

where
g=0*(*—¢), h=20"(2—%).
Since
g* + h*='|(0* — &) + 42— §)*0'| >0,
therefore

f=0, e=0.

Introducing the auxiliary values

: 1 ’ ; 1kt
a1,2= /2 (e}, + df )12+ cip]'?,  bre= /2 [(c} o + df )2 —e1,0]',
where
=y (—ete),  dia=1 (et ],

we determine the roots kj» from the equations:

ki o= (: (ay,2 +1ibya), @a1a=>0.

The root ky corresponds to a modified thermal wave, ks to a modified
longitudinal elastic wave because for e =0 we have k,=1/a, ko =io. It
was mentioned above that we are interested only in those roots the real
part of which is positive, because only such roots concern modified thermal
and elastic waves propagating from the centre to infinity. In their
interesting work, P. Chadwick, and I. N. Sneddon, [3], study in
detail the behaviour of the roots k, ky depending on the parameter e, and
obtain approximate values for <1 and p.31 expanding the deter-

=
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minant 4 in power series in p and p~!. It is shown, that for o<1 we

have:
- :1 k, =(. ;{1 +2) g)m l(l — 2--(1%%)2) 1 i(ll + z'ilg%i E)g)],

“”

P < S
¢y = sAtee T (1+e)t2’

For p>>1 the above authors obtained the following approximate values:

% s [ e ¢ LT I

el i) o)

They analyzed in detail the influence of the parameter ¢ on the velocity
of propagation of longitudinal waves and the coefficient of atfenuation.
The results obtained concern the influence of the coupled temperature
field on plane harmonic waves. But it is evident that these results may
directly be transferred to cylindrical and spherical waves because in both
cases we have the same roots ki, k. For p<€1 the velocity of the modified
elastic wave is?

(2.28)

0<<p<C10-2

Al

# 1 ;
akg'— 2 £+19.

€= (1 + 2)(-'[1',

where ¢! denotes the velocity of propagation of the elastic wave for the
non- coupled problem, therefore for e==0. The coefficient of attenuation
has the form:

§== ; {2"—'58)92.

The quantity & being small (== 3.56 - 10~ for aluminium &= 2.97-10~% for
steel, e=="7.33-102 for lead), it is seen that the influence of coupling of the
temperature field and the stress field on the velocity of propagation of
plane, cylindrical and spherical waves is insignificant. Small differences
are observed also in stresses in relation to those obtained for &==0.

3. Stresses Due to the Action of Heat Sources in an Elastic Semi-Space

The stress obtained or a plane source of heat acting in an infinite space
enables us to study a few examples of action of a plane source of heat in
.an elastic semi-space.

Let us consider first the action of a plane source of heat in the x=
plane, £3>0. Let us assume that in the x==0 plane, bounding the elastic
semi-space we have @==0, ayv=0.These conditions will be satisfied using

? See [3].
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the reflection method — consisting in locating in an infinite space two
plane heat sources, one positive in the x= & plane, the other negative in
the = — ¢ plane

Bearing in mind the equatmns (2.22), (2.23), we obtain:

3.1) @ — . (Q_i - ]l;: (e=t—dit — g—le-t i)
— I: le"[-\""l-"'}kJ — e-w'l' §}k:) l 5 i E 2
" Q, [aa+k¥ S —(vFE ) —
(3.2) @'= 3’ ; g bilh —g—ie i)
2% (kK2—K2) | Kk, (

.!__j__}\’)
s k { — (= &”fa._...e"'(‘i }k:)], x:‘}e’

and

. Q(‘.:)_U_. 1 elv—8k, =[x 5k —
(38) O = e —k‘)lk, T e

S Y G, ATy S
a8 o=y kg][ ( )

o ""Hfz (ebe—i1t: — ¢ :.w-l-gu:,)] . x<E.
ko

The stresses oy, oyy, 02 Will be found from (2.24). From the Egs. (3.3) and

(3.4), it is seen that for x=0 we have @*=0 and @®*(0)==0. From the

first of the equations (2.24) we shall see that for @*(0) = 0 we have also

02:(0,t) =0 which was to be obtained.

Let a plane source of heat act in the plane x =§&, £=>0 of the elastic
semi-space. Let us assume that in the plane x=10 we have gu =0 and
00/0x = 0.

Let two positive heat sources act in the infinite space, one in the x = &
plane, the other in the x =-— £ plane. In this way we shall satisfy one
of the boundary conditions, the condition [00/0x].—¢=0. We have:

(35) = 70 (e (=g, 4 g—(r-+8)ky) —

— _};cl__ (e_(x—g‘]k, .+.. e—{,\-"i‘ﬂ"s)] i xr= E?
4 .

(3.6) @*=- )

l[a'-}- kl
= —|x—E)k, bt S —_—
2,{(1{,2-——-](,7] (e +e 1+]k)

= _k_ (e—(¥—8ks | e—(‘\--r-glka)], x> &
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and
pr . Qo |1 — (e
(3-7} o 95 [k;ﬂ ] ]'c[ (e Sl — @ z )._
e ,]%.(e—f.r-- Sk, + e— vt ;"H:,) I’ e E !
i Q. [ by (v—é)k,

v— (X _—
(3.8) 6O'= 2 0 —K| ‘(e + e~(xtilk)

— “';: k* (elv=8k 4 p=(¥+ ;‘rk,)] e
Knowing the function ®*, we can determine the stress o1 =— 00*®* in the

cross-section x =—10. We obtain:

. — sk, —sha
(3.9) o3e(0) = — I L, (e )

% (k — k, k|

This stress is different from zero. Since the function @* does not satisfy
the boundary condition o7;(0)==0, we should add to the state oy, the
state oy so chosen that the boundary conditions are satisfied. The stress
avx will be expressed by means of the function ®* satistying the homo-
geneous equation (2.6):

(3.10) (;J; q] (ad;_ + og)fﬁ*—qs %f—:?, =,
where - .
(3.11) ol =—pw* 0"
A solution of the Eq. (3.10) is the function:
(3.12) Q*=C,e "~ 4 Cye*
assuming that @*=0 at-infinity.
From the boundary condition
(3.13) a%x(0) + a¥e (0) =0
we obtain:
(3.14) C,+Cy+ (k?ﬂ" a (e " —%?)zo.

But the state of stress o}y will provoke an additional temperature field 0",
connected with the function @* by the e_quation:

dz AN -
(3.15) (‘ﬁg -+ U")Qb -_—'-'!90@ .

Hence:
(3'16} 190 6* — Cl lk% + Cl':z) E"k““ —‘- C2 {kg + g"’) c—’":-\'.
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From the condition d@/dx= 0 for x==0, we obtain

(3.17) k, (k! + 6% C; + k, (k3 + 0°) C, =0.

From the equations (3.14) and (3.17), we obtain the constants Cy, Cy:
Q 9k, (k3 + o) (e—k,g -~ )

Cjz_'_,,['g{_kjgaM_ K, Kk
(828) __ Qbgk, (ki + %) (eff__ ei”‘Tg)
3= #(ki—k)M 1\ Kk, ky |

L=k, 08— o) —, (63 + o).

Final stresses will be obtained from the equations:

Cpe = — szeimr ((.D'l "f' q)*) :
(3.19) {

d? * ; =) ey
Oyy= Oz = — efvt [2;1 e (D" + &%) + w® (P" + @ )]-

The solution of the next problem is more complicated. Let a concentrated
heat source act at the point (0,0,¢) of the elastic semi-space varying in
function of time in a harmonic manner. Let the plane z=0 bounding the
semi-space be free from stress. Let us assume that @ ==0 in this plane.

Using the reflection method we locate at the point (0, 0, {) of the infinite
space a positive heat source, and at the point (0,0,— ) a negative heat
source. In this way we shall satisfy the condition =0 and ¢, =0 in the
plane z=0. On the other hand, the stress .. will be different from zero
in this plane. Using the Egs. (2.10) and (2.11), we find that

*_.____Qﬁgﬂ___ i 5 R % _1_ — I Ry p—ha Ry
(3.20) o@'= de (2 — 1) [RI (c e )— Rz(e ' —g ).

and

(0° -+ Kg) e=hs®

@ (0% + K2) e=iR
(3:21)  O"= T ke —73 [

R,
(6® + K2) e~*% —(o® 4 K3) e""’R=]
R, 4

where
Ria=[r"+ @F O, r=(a+ g9

The stress oy, is expressed by the relation:

— 0* Eﬁ*
,22 * —— ————
[3 ) Orz= 2].( 37‘62 .
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Expressing the function @* by means of the Hankel-Fourier integral
[using the Eq. (1.9)], we obtain:

Lo

2
(3.23) arz (1, 2) #Q"‘?" jj (}'(IT 1 (ar )? sin pé cos yz dady.
Hence '
(3.24) arz (1, 0)= 2?:',;2"& Ij aF;T&’_(ar;} y sin y& dady =
00
Qﬁjﬂ

T ax (k2 —

kZ}J (e HVETE _ g~HVEFD) 427 (ar) da

It is seen that in the plane z=0 we have ¢} (r,0) = 0. To render the
z==0 plane free from stress, we should solve an additional problem (gen-
eralized Lamb’s problem). We should determine in the elastic semi-
-space (with no heat source) the state of stress o; so chosen that in the
z=0 plane the following boundary conditions are satisfied:

(3.25) Gr+5or=0, &L=0, 0*=0.
In an elastic semi-space the temperature field @* will appear with the
longitudinal and transversal wave. The following wave equations should
be satisfied in the elastic semi-space:
(3.26) 7*—q) (7* + 0*) O" — qep*d" =0,
(3.27) (P +7%)rot ¥*=0.
The temperature field @* will be determined from the equation:
(7® + %) O* = 0,6"*.

The stresses o, o2z will be composed of two parts: the part connected with
the function @, and that connected with the function ¥. According to the
Egs. (2.12), if we pass to the system of cylindrical coordinates we have:

(3.28) Ozz=2p (—a—,— )G) + 0 %t? y  Grz=2u 3:%
The stresses connected with the functicn ¥ are expressed by the relations.
(3.29) G =12e" + 2 a;‘;” , a,,—ﬂ(‘?“. n a(;;;")
where e” denotes the dilatation. Bearing in mind that
O w LW 10y 0w 1Y,
W=y VST Ty o g oer %

3 See for instance [11).
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we obtain:

[l )
(3.30) I N 1 d,)

f JEf==te a J2 -—
HE i dr( dz* c ot*

Adding the stresses oz, o7 and the stresses o::, o7, and taking their
amplitudes, we obtain:

o

, g% = 2u (—aaz-_; == Vg) o* — {-'f!l", * 4 21"1 {;)Z ('dd = ) yr
(3.31)
( o*p* ( 0*

e AR TIL.
tr,,-—‘,udd ~1‘1ch P {r)f.

The function ®* will be assumed in the form of a Hankel integral

(3.32) OF = ]' (Ae=**+ Be *?) Jy(ar) da.
]
This integral is chosen so that the Eq. (5.26) is satisfied. The quantities
Ay, Ay are the roots of the equation
3.33) A+ [6*—q(l+e)—2a%] 2* +a' —a® |0 —q(+e)| —qo* =
and they are chosen so that the real part is positive. In this way we shall
satisfy the condition @*=0 at infinity.
The function P* will also be expressed by means of the Hankel
integral
(3.34) P*= [ C(a)e " Jy(ar)da.
0
where
v= ) a®— 1.
According to (3 28) we obtain:

(3.35) ©O*= f|A(22+a—~az)e 42 + B(A2+ ¢ —a®) e 7] Jy(ar) da.

‘The quatities A, B C constituting functions of the parameter a will be
determined using the boundary conditions (3.25). We obtain the following
system of equations:

lA(Zz o*—a’)+ B2+ o0*—da*)=0,
(3.36) l(A+ B) (2ua® —"gwx)—2ymac—0,

2 (AA, + BA;) — (20* — %) C— 90Qoa Iy

(e —Tcd)

gdzie

Iy=e EVa R _ g=Cy @+l
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Hence we find 4, B, C:

2Q e I'y v (43 + o* —a?)

(kK —K2) 4, J
B a0 = _ et —o0t  B—7
Rto—o® 7 2ua® (340" —a?)

Ay = [ (B+0* —a*) — 4,40 — o*)| 4urd® — (2pa® — ow®) (1 +a*) (22— 22).

Knowing @, ¥*, we can find the stresses a;;. The final stresses o;; will be
obtained by adding oy and oy.

If the coupling of the temperature field and the stress field is nol taken
into consideration, we obtain for £=10

w2
)

- s s F g o " o " | " " W
h=}da+q, P =)a®—d, A+o*—a'=qte®, iLte—a'=0.

Then, from the first of the Eqs. (3.36) it follows that A =0, and from
(3.35) @*=0. Since for e=0 we have k, =='q, k, =10, therefore for
the determination of B and C we obtain the following system of equations:

(2pa* — ow®) B— 2ura* C =0,

3P P A pN -——-!?'—'-Q'—’ar" -
2B} o a (2a )€ ax(a®+q) :
whence
2ua® — po*
C= .Z_r-nﬁ.r-xf" '
5 2hQET, =t

az(o® + q) 4ura’) o — o — (2ud — oo) (26 —7%)

Let us consider the case of action of a point source of heat at the
point (0,0, &) of the elastic semi-space assuming that in the z==10 plane
the following boundary conditions are valid:

de
(3.37) orz=0, owu=0, e 0.
Let us apply the reflection method and let a positive heat source act at
the point (0,0, £ and (0,0,—¢) of the infinite space. They will provoke
a temperature field @ and a state of stress ;. The boundary conditions
orz=10, 060/02==0 are satisfied. The stress o:- remains different from
zero, The functions @* and @* are given by the equations:

Quﬂn ‘e ER—p Ry, e e k,.".’._.__.e—ng?{)
e =\,

(B38) O = 1) { R, R, |

Arch, Mech. stos. — 10
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Q ' (02_+kf)_e*’f:ff. '_-_-_(_a"’—I— k)~

(3.39) O*= —f

T dmz(2—K3) | R,
(ﬂ,‘:_]_ k.;!] e---ff,r"’., e (a.‘.‘_i_ k‘;) e—.’z,f"x_»'
- = :
R, ’
where

Ryo==(""4+(zFF0)9)"2, r=(x*+y2
The stress o%: is expressed by the equation:

P T -
(3.40)  ot= 2,;((”:4 N KR

— "JHQH a3 {.2/-“"2_'_ L’mﬂ] .
= 5, ‘ ’ Fla,y) aJ, (ar) cos yz cos yldady.
0o
For z=0 we obtain:
(3.41) o%(r,0)=
&y, Yo e g [enVETR iR
e = (2pa” — w*)[—T_-——-ﬁ---,- —\| aJ,(ar) da.
2 (k2 — k2) [ SR e e ol
To the state of stress o, we should add the state o, so chosen that in
the 2 =10 plane the following boundary conditions are satisfied:
> do*
(3-42) ) 0';‘;—}—0;;:0, U?':U: dz =0,
The stresses ¢2; and a/: are given by the Egs. (3.31) and the functions
o*, @*, ¥* by the Egs. (3.32), (3.35) and (3.34). The constants A, B,C
appearing in these functions will be found from the boundary conditions
(3.42). We obtain the following system for the determination of A, B, C:

(2pa* — ow*) (A+B) — 2)va®C +
. "}”Qn{z!m:z . L‘ﬂ"") e e‘"';P'.“ﬁ_k; B
T 2an(ki—k2) TS S I SN ) A
(3.43) ! 1 2 Va*+ 1  Va*-t+k;
2(A%4, + B,) —(2¢*— ) C =0,

2 (12 + 6*—a®) A + 4, (A + o® —a®) B=0.

r

At the point (0, ) of the elastic semi-space, let a linear source of heat
act, normal to the xz-plane. Let us assume that the z==0 plane bounding
the elastic semi-space is free from stress and, in addition, let the tem-
perature in this plane be different from zero. We require that:

(3.44) 6::=0, ou:=0, =0 for 2z=0.
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Using the reflection method, we let a positive linear heat source act at
the point (0, {) and a negative at the point (0,—¢) of the infinite space.

These sources result in a temperature @ and stress o;;. It can easily be
found that in the z==0 plane we have ©=0, 0.-=0, but a,: % 0. The
functions @*,@* are given by the equations:

& Ql\ﬂll

(3.45) @*= 2':rx'(k!_—'kg}h [Ky (k1)) — Ky (ksr) — K, (Iey ) + K, (kary)|,
 ___ Ql! 1] o

(346) 0= (2 — 2 |(0* + Te§) (Ko (ki) — Ko (Fey o)) —

= (et kg) (Ko (Fes 1‘1) — K, {.IC;:?'E}” y
where 71,2 = (* + (212

The function @* may be expressed also by means of the double
Fourier integral

(3.47) = — ')"Q“ f {CDS pa cos yz [cos '};'(?ﬁ'—y}ﬁ) —~cosy (2+{)] dpdy.

where
F,p)=(+9"+ kD 4+ + k).
The stress [o%:],_, will be found from the equation:

| 02
" S —— =
(3.48) [o¥:). o =2n 4 5

=2}!_!?(|er ” f)’_ 5V R a=5) ﬁ-f-k,, d
2 ) 18— (e ® e ) sin padf .
0
In order to suppress the stress of; (x, 0), we shall add to the state of stress

o}, the state of stress o7y so chosen that in the z=0 plane the following
boundary conditions are satisfied:

(3.49) ot:+ak=0, d£=0, 6'=0.
The state o will result in a temperature field @* an elastic longitudinal

wave and a transversal wave. The following two-dimensional wave
equations should be satisfied:

(3.50) . (P @+ o) B —qerd* =0.
Sl . L 0 o
(3.51) (7§ + %) rot¥* =0, Pi=ga 35

The temperature @* is connected with the function ®* by-the relation:
(3.52) ‘ (724 o°) D* =0,6".
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The stresses of: and oy. are given by the equations:

: *g* [0 0%) ..
G't:z =T 2‘1'.1‘ d;,r;()z ( ] IP’] »

dx* 0
(3.53) Lo 5
=i 0* v
Gzz =-—2p Ot -—@m /2 +2‘“(}.rdz’
! ’ d ¥ 1 " a L3
rot ¥ = 0, ¥1,0], wi'=—- Wi, =0, ui=g Wi

The functions @*, ¥{, ®* will be taken in the following form:

oo

(3.54) @*(x, ¢}~—I Ae~ 4% - Be~##) cos fx df,
0

(8.55) ¥i(x, 2)= [ Ce—** sin flx df,
0

(3.56) O*(x, 2) -:A;; J [A(22 4 ¢® — %) e~4*+ B(A2 + o* — p*) e=**] cos fx dB,
0 :

A, Ay are the roots of the equation
Mt [0 —q(1+6) =242 2 +p — [0 —q (1 + )] — go* =0,
and are chosen in such a way that their real parts are positive, Next we
have v—]/ﬁ*-—z- '
The quantities A(B), Bif), C(f) constituting functions of the parameter £

will be found from the boundary conditions (3.49). Bearing in mind the
relations (3.53) and (3.56), we obtain

21 (h A+ Iy B)— @ — ) C + Qb (VI
, % (le; —T2) Q.
—e VR = o,

(3.57) ) (2 uf® — 0w?) (A+B) — 2 upyC =0,
A2 + o® — %)+ B(2 + o — %) = 0.

Knowing the quantities A, B, C and, therefore, the functions Q‘)' 1, we can
determine the state of stress o Adding oj; to o',;, we obtain the stress oJ}.

We can easily solve also the case where 00/dz=0 in z==0 plané.
We place linear positive heat sources at the points (0, ¢), (0, —Z) of the
space, satisfying the conditions 060/0z =0, @y.= 0. The stress . will be
different from zero. To the state of stress ¢;; we add o so chosen that
in the z=0 plane the following conditions are satisfied:

(3-58} azz_f"g'-zz =0 O'z,\:z: 0, QQ= 0 i ‘
0z
For the functlons %, @' ¥i we shall take the mtegL al expression (3. 54)

and (3.56), and the values A, B, C will be found from the conditions (3.58).
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4. The State of Stress in an Infinite Space with a Cavity

Let the temperature on the surface R ==« bounding the cav iiy in the
infinite elastic space be @ (a,t) = @, ¢/*!. The functions @* and @*, constitut-
ing the solution of the homogeneous equation (2.6) and the equation (2. 2)
may be expressed as:

(4.1) P = R;(Ae kR4 Be—:R),

(4.2) O = RU [A (K2 6%) et R 4 B (I +- %) ek k).

Let us assume that on the surface R=gq, the stress o, is equal to zero.
To determine the constants A B we have two boundary conditions

= 4 do*
(43) O @=6, k0= R# 0ot Lza:g,

leading to the system of equations:

[ A+ o*) e+ Bk + 0%) e h@ =6, 90,

4.4) i
( | Ae—"4[4 u(1-Fak,)—a® w® o] +Be"¢ [4 u (1 + ak,) — a* w? o] = 0.

Solving this system of equations, we obtain:

ka ke
(4 5) A=0,a0, 25", — 0, af; m‘j ,
where
A= (I} + 0% m, — (kF + o*) m,,
my =4 pu(l+ak,) —at oo,  my=4pu(l-+ak)—at 0o,
Therefore:
(4.6) P = @_&%ﬂn [ms e—lR—a) _ “.;.‘.1 e—-ﬂ',U?—uiI]
47 . et= . 0,c (06} - 0%) ms e=hiR=) = (Je3+ o) m, e~ AR—a)|.

R4

Knowledge of the function d’) enables us to determlne the state of stress.
We obtain: :

) @0 100 0o
e g
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In the particular case of &= 0, therefore, if we do not take info account
the coupling of the temperature field and the strain field, we have k; =}/q,
k, =10, kI + o®*=0.

v G0t _rag
(4.9) 0= R © )
¥ 0“ ‘3"90 m. e—(R—alVa — m e—(R—a)ia
(4.10) 77 @+ R |[m, e m e &
where
my=4u(l4+ayq) —a*wo, my =4 u(1+aio) —a* w®p.
In an analogous manner we can study the following boundary conditions:
do*
* o *® | —
a) O* (a) = 0,, uk (a) = l iR ‘ . 0,
dR .
b) _AER_ Wy, Tpp (@) =0,
dR
c) —Za—ﬁ=Wu, up (@) = 0.

Let us study now the other type of problem. Let on the boundary sur-
face R=a of the cavity act the pressure p (a,t)=p,e’/. We shall re-
present here also the function @* by means of the Eq. (4.1),, and function
©@* by the Eq. (4.2). Let us assume moreover that @* =0 for R =a. The
boundary conditions take the following form:

: 4 do* o
411) 0'@=0, oty (a)=— [ BAD o (p*] —
= R dR g R=a 2o

The constants 4, B are determined by the equations:

_ poateh” poaters ki + o
(4.12) A= B=— 7 e
Thus:

s [ k?®+ o
@i o= B | S et g o,
2
v P00 iR ik BT Ty
(4.14) ) T le e ] (k2 +0?).
1]

If the coupling of the temperature field and the strain field is not taken
into account (e =0), we have:

(4.15) 0t = 2% o rais  gr—y.
my R :
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In an analogous manner, we can solve three further problems with
the boundary conditions:

2 ©"(@)=0,  up(a)=mu,==const,
de*

b) d}_\g“) -={) 3 H:U\) (a) = —py = const ,
de* (a

C) .-&-I-{(_)_ =0 - 'Lt.:? (a) = Uy = const .

5. The State of Stress and the Temperature Field Due to the Action
of Dilatation Nuclei

In a region I' of the infinite space let the initial dilatation e (P, t) be
given, In this case, the system of displacement equations, after the intro-
duction of the displacement function (1.3), will become the following
system of three equations:

19
(5.1) (173.._ Cf 0@) O =49,0— &e,
' R Y e
15:2) (‘ —e| 6=y P00,
(5.3) (F’ a 0t2)mtw 0.

In the case of an infinite space and the action of the dilatation e (P, t), we
have W=0. If e(P,t)= e e*(P), we have @(P,t)= e @*(P), O (P,t)=
= et @*(P).

The Egs. (5.1) and (5.2) become:

(5.4) (P2 + o%) * = 9,0* — Ee*,
@ ] 1 32‘1‘ 21”
2 ST 2 H* — e e L
(5.5) W*—q)O*—qn' P*o* =0, &= 3 A+ 2u

By eliminating from (5.4) (5.5) first the function @* and then the function
®* we obtain the respective equations:
(5.6) (172 + 6% (P* — q) @* — qeP* @* = — £ (P* —q) €”,
(5.7) (P2 4 6®) (V2 — q) O* — qeP*0* = — qy 7 e™.
In the infinite space let a concentrated dilatation nucleus e*(R) = ¢,6(R)

act, where 0(R) is the Dirac function. In a way analogous to that used
in the Sec. 2, we find that:

18:8) B fg:k"g) [0 — @ ek — (kg —aq)e *],
e én’

(5.9) s (if e~ — g e ~:F).

R (i} —K3)
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The knowledge of the function @* enables us to determine the stresses
from the Egs. (2.12).

In the particular case where 5'=0, that is if the coupling between
the temperature and the strain field is disregarded, we obtain the known
result [11]
ent.b
(5.10) b = inR

For dilatation nuclei evenly spaced along the z-axis [e*(r) =e, d()],
we have,

erlu-‘—h’u} @* —=0.

e,

Gl O =y

) - (2 — @) Ky (k1) — (k2 — q) K, (a?)]

- «___ ebn ]2 T2
.{3.12} 0] _Zn{kf—-kg)[k‘K"(k'r) k2 K, (leyr)].

If & =0, we have:
et

(5.13) 0= 2} K, (ior) e/, @=0.

Finally, in the case of dilatation nuclei evenly spaced in the 2 = 0 plane

[e*(x) == e, 8(x)], we obtain:
2 2
b [(k—a, _’“ezi_qe-w)

44 T=3—i\ Ty ’

ey
2 (k* 2)

In the case when the coupling between the temperature field and the
strain field is disregarded, we obtain the familiar result %:

e,é
2

(5.15) EF — (kye ¥ — Joge—he¥)

(516) O = el'(m!—.\‘a}’ =0,

The state of stress due to the action of dilatation nuclei in an elastic
semi-space may be found in a manner analogous to what was done in § 3.

6. The Action of a Concenirated Force in an Infinite Space _
Let a concentrated force P (t) =P, e/’ act at the origin of cylindrical
coordinates in the direction of the z-axis. We are concerned with longitud-
inal and transversal waves and the temperature field @ in the elastic space.
The following wave equation is to be solved:

(6.1) (17* + o) (P*— q) * — qsp’“f.ﬁ* =0,
. a~ 0*
] 2 — e
(6.2) (P + rot¥ =0, pl=-—yt-- ar t 5 -

1 See for instance [11].
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Knowing the function @*, we can find the temperature field from the
equation:

(6.3) O*= . (V* + 0% 0"

The functions @*, ¥* will be taken in the form of the following Han-
kel s integrals:

Q* = ' (Ae~#* + Be=#*) J (ar)da, z=>0,
(6.4) o

¥ = l (A" e** + B' et J, (ar)da, z<=0:
(]

W= [ Ce—Jy(ar)da, 20,
f6.5] 0

= [ C'erJy(ar)da, 20,
0

From the Eq. (6.3), we obtain:

[ (An,e “* -+ Bnge *)Jy(ar)da, 2>0,
0

1
¥

|77
(6.6)
l = ;' [ (A'm, e** + B'nye**) J,(ar)de, 2<0,
0
nmo=72+ o®—al.

The quantities 4, 4, are the roots of the Eq. (3.33) assuming that they are
the roots whose real paris are positive. Next y =} a*—7*.

The constants A, 4/, ..., C’ will be found from the following boundary
conditions in the z==0 plane:

|uf]+0— [uf]—0=0, [w*]: o— |w*|-0=0,
06* 00* |
T S A I 1
(6.7)
lo¥z] o—[oF]—0=0, [o%:] .0— |02 z|—n+ Fo 5( =0,
—g%l= e .faJn(arl da.

. 0
The first two conditions warrant the continuity of displacements in the
z =0 plane, the two next — the continuity of temperature and its gradient
in the z==0 plane. The penultimate condition postulates the continuity
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of the shear stress o}z, and the last expresses the discontinuily of the
stress af. due to the introduction of the concentrated force.

Using the equations for displacements ef, w*, and the Egs. (3.31), and
bearing in mind the Egs. (6.4) and (6.6) we obtain from the boundary
conditions (6.7) the following system of equations:

(A—A)+(B—B)—r(C+C')=0,

WA+ AN+ B+ B)—a*(C—C')=0,

(6.8) ' (A—A")n 4 (B—B)n,=0,

22, (A+ A') + 24,(B + B')— (2" —*) (C—C') =0,
(2ua*—g0®) (A— A"+ B— B)—'?.par(c—i-C)l-P”a 0.

v

Solvmg this, we obtain:

. __Pya My o i Pya  my
(69) A= a= 4-‘71' (no—-n)gw" = B'= 4o (11. "'_‘T-'-)Qtf)
(oI, | 1,
drpw*

Thus the functions @* @* ¥* are determined in the entire elastic
space. Knowledge of the function @*, ¥* enables the determination of the
stress components (for instance o};, o¥: from (3.31). If the influence of
coupling between the strain field and the temperature field (e==0) is
disregarded, then: 22=a*+4q, 2=da*+ 0" n,=q+0% n,=0. In this
case, we obtain A= A’'=0.

(6.10) Bt Pt G gt
dmput®
according to the known results 5.

Since A= A"=0 and ny==0, it is seen from (6.6) that ®* =0, in the
entire elastic space.

Let a load of intensity P (t)=e’*' P,, uniformly distributed along the
y-axis of a rectangular system of coordinates, act in the positive sense of
the z-axis. The stress and temperature field will be functions of the
variables x and z only. The equations (6.1) and (6. 2) should he satisfied,
being replaced by % = (0*/dx?) + (0%/0z?).

The functions ®*, ¥* and ®* will be expressed by means of the follow-
ing Fourier integrals:

Pre
dorpyr*

Pt = J (Ae **+ Be~%?)cosfxdf, 20,
0

O* = J (A'e** + B'e*®) cosfxdf, z<0;
0

(6.11)

& See for instance: [11], p. 42.
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(6.12) 0
W= [ C'e” sinfadf, z<0;
0
1 .
8= 9 J (Anje %74 Bnye *7)cosflxdf, 2z >0,
0
]
(918 O = ; [ (A'n,e* -+ B'n,e**) cosflxdf, 2z-=0,
(1]
E‘ .
N, =2, + " —f,

where 4,, 4, are the roots of the equation

MAlo*—a(l +e) =2 2+ ' — [0 —q(1 + )] —qo* =0,
assuming that the real parts of these roots are positive. The values
A, A’ ...,C" will be obtained from the following boundary conditions ex-

pressing the continuity of displacements, temperature, and stresses in the
cross-section z=0.

[u*] 40— [u*]-%=0, |w*| . o— |w*] 0=0,
. 06* 0
(6.14) 1=, 9z L-oﬂ{f’? Jog ="

I{T:zl-e-n_hﬁtzl 0=0, |0';z] P 0— [0:;] 0+ Pd(x)=0,

5{3:)=;|1T j cos fxdf .
0
From the boundary conditions (6.14), we obtain the system of equations:

(A—A"+B—B)p—v(C+C)=0,
M(A+ A"+ 2,(B+B)+p(C—C)=0,

(A— A')n, + (B—B')n, =0,

n (A+ A)Ayn,(B+ B)=0,

2uB [A(A+ A') + 43 (B+ B')| —pu (B ++°)(C—C) =0,

(6.15)

I

* v Pr
{zﬂﬁﬂ_—emﬂ)(A—A’+B-—B)—2“1pﬂ(c_{_C}+ ,.rJ:O-
Solving this equation, we obtain:
A:F—A,=§o ( _“‘9} j  Be=—B== "‘?“ (n ?:zt} o’
= 4 4T [t 0
(6.16) 7T Ry 0w a—M)o
Pyp
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In the particular case e=0, we have n,=0, therefore =0, A=—A'=0
and
' P,f
e B Pl B0
2 nt® 2arut®
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. Stresx czen:e

PEWNE ZAGADNIENIA DYNAMICZNE TERMOSPREZYSTOSCI

W pracy rozpatrzono dwa typy zagadnien. Pierwsze zagadnienie, to wy-
znaczenie naprezen wywolanych dzialaniem skupionego, liniowego i pla-
skiego Zrédla ciepla w przestrzeni i pélprzestrzeni sprezystej przy zalo-
zeniu sprzezenia pola odksztalcen i temperatury. W przestrzeni sprezystej
mamy do czynienia jedynie ze zmodyfikowanymi falami cieplnymi i spre-
zystymi podluznymi. W przypadku pdlprzestrzeni sprezystej, w ktoérej
dziala liniowe lub skupione zrédlo ciepla obok fal podiuznych wystepuja
poprzeczne fale sprezyste.

Przy sposobnosci wyznaczenia stanu naprezenia dla pélprzestrzeni po-
dano rozwigzanie zmodyfikowanegp zagadnienia Lamba, postulujac
sprzezenie pol odksztalcenia i temperatury. W ustepie czwartym podano
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rozwigzanie zagadnienia rozprzesirzeniania sie naprezen w przestrzeni
z pustka kulistg ogrzang na powierzchni R =a.

Drugi typ zagadnien to wyznaczenie stanu naprezenia wywolanego
w przestrzeni i polprzestrzeni sprezystej dzialaniem okresowo zmieniaja-
cego sie w czasie jadra dylatacji. Wyznaczono réwniez stan naprezenia
wywolany dzialaniem sil okresowo zmieniajacych sie¢ w czasie przylozo-
nych na powierzchni R==a ograniczajacej pustke. Wreszcie podano roz-
wigzanie dla przypadku sily o intensywnosci P (t) = e’ P, dzialajacej
w nieograniczonej przestrzeni sprezystei.

Pezwwme
HEKOTOPBIE IMHAMWYHECKUE ZATAYM TEPMOVIIPYIOCTH

Paccmarpusaiorest sBa Tuma 3ajad, IlepBad 9T0 — OnNpefedeHye Ha-
NpAMKEHMI, BBISBAHHBIX JEHCTBHMEM COCPEZOTOYEHHOrO, JIMHEHOTO M IIJI0-
CKOTO MCTOYHMKA TeIJa B YOPYIOM IIPOCTPAHCTEE ¥ MNOJYIPOCTPAHCTEE
[Py IPeAoJIOKEeHNN COTIPAKEeHNH mona gedopMarii ¥ TeMIeparypHoro
nojA, B ympyrom IpocrapHCTBE BCTpedaeMcA JMINE € MOJAM(DHIMPOBaH-
HBIMM TEPMMYECKMMM M € YIOPYTMMHM TPOAOJbLHBIMII BoJNHaMu. B ciyuae
YHPYTOro IMOJIYIPOCTPAHCTBA, B KOTOPOM AEMCTBYeT JMHEHHBI MM cocpe-
J0OTOYEHHBIIl MCTOYHMK TeIJjla HapA/Ay C TIPOJOJbHLIMM BOJHAMM BBICTY-
[AI0T NOIepeYHble YyIPYIHue BOJHEL

Ilo cmocobHOCTM OupepeneHus HANPAXKEHHOTO COCTOSHUMA IJIA TIOJY-
npocTpaHcTBa AAaeTcH pelreHne MoxmduuyposaHHoM 3agadn Jlamba, mo-
CTYMPYETCHA CONpsXKeHue IoJieit xedpopMallti M TeMIepaTypHBIX TMOJel.
B nxr. 4 gaerca pelleHye BOTPOCA PACTPOCTPAHEeHNs HANPAKEHM B IPo-
cTpaHeTBE €O ccpepw{écxof& MyCTOTOJ HATPeroil Ha IOBepXHOCTH R=ua.

Bropoii TH 3agay 9To ONpejeieHye HAUPAXKEHHOTO COCTOAHMS, BhI-
3BAHHOTO B YIPYTOM IPOCTPAHCTEBE M IIOJYIIPOCTPAHCTBE, BBISBAHHOIO
HEMCTBHEeM CHJI M3MEeHSIOLMXCA NepUoAMIecyyt BO BPEMeHH, IDHJIOZKeH-
HBEIX K IIOBEPXHOCTHM R==a, orpaHmuupaionuieii mycrory. B saxmouenne
HAETCA peleHMe A CIydad CHII MHTEHCMBHOCTBIO P(t)=e'P,, neii-
CTEYIOIE)f B HEOTPAHMYEHHOM YIIPYTOM IPOCTDAHCTEE.
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