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SOME DYNAMIC PROBLEMS OF THERMOELASTICITY

W I T O L D N O W A C K I (WARSZAWA)

1. Introduction

Owing to the works of M. A. B i o t , [1], M. L e s s e n , [2], P. C h a d -
w i c k and I. N. S n e d d o n, [3], a new trend in the research over
dynamic problems of thermoelasticity has been observed since 1956,
postulating a coupling between the strain field and the temperature field.
In 1958, P. C h a d w i c k and I. N. S n e d d o n , [3], analyzed in detail
the influence of the volume and thermal changes (coupled with each other)
on the form of plane harmonic waves. F. J. L o c k e 11, [4], considered
the influence of the coupled strain and temperature fields on the velocity
of propagation of Rayleigh surface waves. J. N. S n e d d o n , [5], con-
sidered the propagation of thermal stress in thin mettalic rods 1, due to
the action of periodically variable forces, and impulse, and temperature
sources at the edges of the bar. In his two papers, H. Z o r s k i , [6], [7],
was concerned with stress propagation in an infinite space due to the
action of a thermal impulse.

In this paper we shall be concerned with the solution of two problems.
The first is that of propagation of thermal stresses in a space and semi-
-space, and in a space with a spherical cavity, due to the action of a point,
linear and surface heat source varying in time in a harmonic manner. In
solving the above problem for an elastic semi-space, the solution of
a modified L a m b ' s problem is given, taking into account the coupling
between the temperature and the strain field. The second problem con-
cerns the stress propagation in an elastic space and semi-space due to the
action of point, linear and plane strain nucleus and concentrated force.

The equations of the thermoelastic medium have the form, [1], [3]:

(1.1) A«p2u + (A+/0 grad div u — e -̂ jf- = at (2/i + 3A) grad 6,

1 By the courtesy of Prof. I. N. S n e d d o n I was able to familiarise myself
with that work before it was published.
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where u is the displacement vector, 0 temperature (assuming that 0 + T
is the absolute temperature and the state 0 = 0 concerns the state where
the stresses and strains are zero)./x,X are L a m e ' s constants, g denotes
the density, a; the coefficient of thermal linear dilatation, « the coefficient
of heat conduction. Next, Q == W/QC, r] = y0 T/QCH. W is the quantity of heat
produced in the body per unit time and volume, c —• the specific heat and
y0 = at (3 X + 2 /()• Substituting in (1.1) and (1.2) the displacement function

(1.3) u = grad <Z> + rot W,

we shall reduce the system of displacement equations to the three equa-
tions:

(i A) /172 1 < B — »9 fi)
• ' \ c 2 d t 2 I — °

(1.6) •

In these equations, c1=[(A+2/u)/g]l/'2 is the velocity of propagation of the
longitudinal elastic wave, ca = (/M/e)l/a the velocity of propagation of the
transversal elastic wave and '#„ = a; (3 X -f 2 [x)l(X + 2 $.

2. The Stresses Due to the Action of Heat Sources in an Infinite Space

Let us consider the propagation of thermoelastic waves in an infinite
space, and study in turn the action of a point, linear and plane source of
heat. Let us assume that these heat sources vary in time in a periodic
manner, therefore Q (P,t) = e' w Q 0 (P), where cu is a positive real number
and denotes the frequency of heat source. In the case of periodic variation
of the heat source we have:

(2.1) . &,(P,t) = ela{&*(P), &(P,t) = ei°t®*{P), W(P,t) = eu"flP*(P).

Substituting these functions in the Eqs. (1.4)—(1.6) we obtain:

(2.2) (i72 + a 2)0* = #o<9*,

(2.3) (F2 - q) 0* — qrfv*0 = - Q n ( P ) ,

(2.4) (P2 + Ta)rot"Fł = 0,
where

a =- , Ti = -'i~> 3 = ; - - , * ) : « # . ,
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Eliminating successively from (2.2) and (2.3) the function 0* and the
function 0* we obtain.

(2.5) (F2 — q) (F2 + <r2) 0* - qeV*G* = — — (F2 + a2) <90 (P),

(2.6) {Vi q)(P2 + a 2 ) # * q e P 2 < P * = 5 Q

It suffices to solve the Eq. (2.6) because the knowledge of 0* suffices
to determine from the equation (2.2) the function 0*.

Let a point heat source Q(P,t) — e'utQod(R) act at the origin. The
most convenient way is to solve (2.6) in cylindrical coordinates. This
equation will take the form

(F2 - q) (F2 + a2) 0* - qeV20" = - - ^ d (r) 6 (2),

., d2 i d d~
dr~ r dr dz'2

<3(r).. . 1 (Tr . , ,
-r— o (Z) == ~-j aJ0 (ar) cos yzdady.

0 0

E x p r e s s i n g t h e funct ion 0* b y m e a n s of t h e F o u r i e r - H a n k e l
i n t e g r a l

co co

c c
(2.8) 0i!{r,z)= A (a, y)J 0{ar) cos yzdady,

o o
we can represent the solution of the Eq. (2.6) in the form:

(2.9) ** = - | ^ f [fracas yzdady,
2nŁx J J F(ay)() Ó

where

F (a, y) = (a2 + y'')2 + | q (1 + e) — as) (a2 + y2) — qa2 =

= (a2 + y2 + fcp (a2 + y2 +
and

fcJ + ^ = q ( l + «) — a2, f |
After performing the integrations required, we can represent the

function 0* in the closed form:

(2.10) 0* = -j-^M?- ^ (e- *•« - a"*-*)

where

R = (ra 4- Z2)i,2j' : r _ (aja 4. y2)i/2j k],2 = ai,2 + i b u , o i , 2 > 0.
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From (2.2) we obtain:

(2.11) 0* -

The knowledge of the function (P* enables the determination of the
stresses from the Eqs. [9]

IJQ **•>" I M — J - J ^> 6 i -(2.12)

In our case of spherical symmetry, we have:

(2.13)
d*&* 1

In view of the spherical symmetry of stress and temperature field we are
concerned with a modified longitudinal elastic wave, so that: ¥—0.

If the influence of the coupling between the temperature field and
the strain field is disregarded (or, in other words if £•=()), we have
kx = V<ł, ka = ia. In this case, the equations (2.10) and (2.11) become, [10],

4
(2.14)

Let a linear heat source act along the z-axis Q (P,t)-=?e'"'ł Qn{d(r)/2nr).
In this case, (2.6) becomes:

(2.15) (V2
r - q) (Vi + a") ®* ~ q«p«tf>* = - - |^° C aJ0 (ar) da,

P j -
d2

o
1 d
r dr

Expressing <2>*(r) by means of a H a n k e l integral

we represent the solution of the Eq. (2.15) in the form:

(2.16)

where

F(a) d

-a°-]a° — q e = ( a
2 + fcf) (aa + fc|). .
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Performing the integration required in (2.16), we obtain:
n .1

(2.17) #*(r) =

where K0(ki, •> r) denotes the modified Bessel function of the third kind
and zero order. From (2.2) we find that

(2.18)

The stresses <j,y will be found from the equations:

(2.19)
f

r dr

+ nor

In the particular case of s = 0, we obtain [10]:

(2.20) </>* = = - ^ ° f ° . [Ko (r j/q) — Kn (ior)] , 0* = £*• K0(r |/q).

Let in a; = 0 plane, a plane source of heat Q (P,t) = e''l''Qnd{x) act. Our
aim is to solve the equation:

Using the F o u r i e r transform we obtain the following equations for
the functions O" (x) and 0* (x):

Q & I e~l('x e~'(

2 T«ji\ 1 lii !/•

(2-23)

The stresses o-,y are given by the equations:

(2.24)

If we reject the influence of the coupling between the temperature field
and the strain field, then, [10]:

(2.25) 0* = > 0.
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Let us consider now the roots Tą, k2 of the equation:

(2.26) (7cB-f-?cf

Let us represent them in the form:

(2.27) fci,2 =

where g = co/co* is a dimensionless quantity and w* = c\lx characteristic for
the thermoelastic medium introduced by I. N. S n e d d o n, [8].

Let us observe that

where

Since

gB + M = e 4 [ ( e s — ^ a ) a + 4(2,-^i2)2e ;:i
therefore

f > 0 , e > 0 .

Introducing the auxiliary values

n , , = ... . f / r 2 I J ! \1,2 I p. .11,2 K, — t \(p1

where

Ci,2= 2 (—o2-l-e), di,2= - (QSzt

we determine the roots Jci,2 from the equations:

Ł O .

The root Jct corresponds to a modified thermal wave, 7c2 to a modified
longitudinal elastic wave because for e = 0 we have /c1 = ]/q, k2 = i<r. It
was mentioned above that we are interested only in those roots the real
part of which is positive, because only such roots concern modified thermal
and elastic waves propagating from the centre to infinity. In -their
interesting work, P. C h a d w i c k , and I. N . S n e d d o n , [3], study in
detail the behaviour of the roots ?q, k% depending on the parameter e, and
obtain approximate values for Q <g1 and Q.p-1 expanding the deter-
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minant A in power series in Q and Q-1. It is shown, that for e <C 1 we
have:

(2.28)

0 < o < 1 0 - 2 .

For Q^>1 the above authors obtained the following approximate values:

They analyzed in detail the influence of the parameter e on the velocity
of propagation of longitudinal waves and the coefficient of attenuation.
The results obtained concern the influence of the coupled temperature
field on plane harmonic waves. But it is evident that these results may
directly be transferred to cylindrical and spherical waves because in both
cases we have the same roots la, ko. For g<Ę. 1 the velocity of the modified
elastic wave is 2

i + ! • ) * ! , •

where cj denotes the velocity bf propagation of the elastic wave for the
non-coupled problem, therefore for e = 0. The coefficient of attenuation
has the form:

The quantity e being small (e= 3.56 • 10~2 for aluminium e = 2.97 • lO"4 for
steel, e = 7.33 • 10~2 for lead), it is seen that the influence of coupling of the
temperature field and the stress field on the velocity of propagation of
plane, cylindrical and spherical waves is insignificant. Small differences
are observed also in stresses in relation to those obtained for e==0.

3. Stresses Due to the Action of Heat Sources in an Elastic Semi-Space

The stress obtained or a plane source of heat acting in an infinite space
enables us to study a few examples of action of a plane source of heat in
•an elastic semi-space.

Let us consider first the action of a plane source of heat in the x = f
plane, f > 0 . Let us assume that in the x=0 plane, bounding the elastic
semi-space we have 6=0, oxx—0. These conditions will be satisfied using

2 See [3].
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the reflection method — consisting in locating in an infinite space two
plane heat sources, one positive in the x = £ plane, the other negative in
the x — — £ plane

Bearing in mind the equations (2.22), (2.23), we obtain:

1 3 1 1

k, { G '

2- -
k?
.-1-fe-(-v-s*)*,_e-(-v+||AJ) —

and
k.,

*-!)*] __ e-l>-' • l)*ij.

(3.4)
fc,

2 (*-'*>*• «-!*+*

The stresses a^-, CT^, a» will be found from (2.24). From the Eqs. (3.3) and
(3.4), it is seen that for x = 0 we have 0* — 0 and $*(0)==0. From the
first of the equations (2.24) we shall see that for &*(0)= 0 we have also
ozz(0, t) = 0 which was to be obtained.

Let a plane source of heat act in the plane x = $, £>0 of the elastic
semi-space. Let us assume that in the plane x = 0 w e have <sxx = 0 and
d0/dx = 0.

Let two positive heat sources act in the infinite space, one in the X — f
plane, the other in the x = — f plane. In this way we shall satisfy one
of the boundary conditions, the condition [d6/dx]x==0 = 0. We have:

<3-6)

~
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and

(3.7)
Zx (Kj -Ic2 i V

kg
(e-(*-fl*)-f-e-i*+fl*

fc2

Knowing the function 0*, we can determine the stress 3u = — QCO20* in the
cross-section x = 0. We obtain:

(3.9)

This stress is different from zero. Since the function $* does not satisfy
the boundary condition a*z(0) — 0, we should add to the state ay, the
state ay so chosen that the boundary conditions are satisfied. The stress
a xx will be expressed by means of the function &* satisfying the homo-
geneous equation (2.6):

(3.10)

where

(3.11)

A solution of the Eq. (3.10) is the function:

(3.12) l* = C1e-*-v + Cae

assuming that (P* — 0 at~infinity.
From the boundary condition

(3.13) a Xx (0) -f- a xx (0) =

we obtain:

Q0O _ / e~"»
ki "*2

— o

But the state of stress a*j will provoke an additional temperature field &*,
connected with the function <Z>* by the equation:

(3.15)

Hence:

(3.16) §0 9* — Ct (kf
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From the condition d&/dx = 0 for x = 0, we obtain

(3.17) 7C, (k\ + a2) C, + k2 {k\ + a2) C2 = 0.

From the equations (3.14) and (3.17), we obtain the constants Cu

(3.18)
2 ~

7c2
r i /'

e-k,i'

I M = k2 (k\ — a~) — fcj (7c| 4- o2) •

Final stresses will be obtained from the equations:

(3.19)
*L ( ( 2 ) * + 0 *

The solution of the next problem is more complicated. Let a concentrated
heat source act at the point (0, 0, f) of the elastic semi-space varying in
function of time in a harmonic manner. Let the plane 2 = 0 bounding the
semi-space be free from stress. Let us assume that 0 — 0 in this plane.

Using the reflection method we locate at the point (0,0, £) of the infinite
space a positive heat source, and at the point (0, 0, — f) a negative heat
source. In this way we shall satisfy the condition 0 = 0 and aZz = 0 in the
plane z = 0. On the other hand, the stress on will be different from zero
in this plane. Using the Eqs. (2.10) and (2.11), we find that

(320) * = - d Ę ^ ę [ i ( c ' ^ - - e - " ^ - k { e ~ h ' R ' ~ e ~
and

(a2

(a2 + g ) e - f t ' % — (o-2

where

Ri,2 = [riJr (z •+ C)2]1'2, r — (x2 + j/2)1 '2.

The stress o>/ is expressed by the relation:

(3,22) ^ - | £
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Expressing the function <P* by means of the H a n k e l - F o u r i e r integral
[using the Eq. (1.9)], we obtain:

(3.23) a% (r, z) = - ^ . A . f f ^lM y sin £ cos z dad
7i K J J F(a, y)

o o
Hence

J J (a,
o ó

o
It is seen that in the plane z = 0 we have a% (r, 0) # 0. To render the

z = 0 plane free from stress, we should solve an additional problem (gen-
eralized L a m b ' s problem). We should determine in the elastic semi-
-space (with no heat source) the state of stress ~aij so chosen that in the
2 = 0 plane the following boundary conditions are satisfied:

In an elastic semi-space the temperature field 6* will appear with the
longitudinal and transversal wave. The following wave equations should
be satisfied in the elastic semi-space:

(3.26) (V2 — q) (V2 + a2) I* — qeV2&* = 0,

(3.27) (P2 + T2)rot «P* = 0.

The temperature field 0* will be determined from the equation:

The stresses "orz, azz will be composed of two parts: the part connected with
the function Q, and that connected with the function W. According to the
Eqs. (2.12), if we pass to the system of cylindrical coordinates we have:

(3.28) a'2Z=2

The stresses connected with the function W are expressed by the relations

(3-29) 5 S i -

where e" denotes the dilatation. Bearing in mind that:)

„ „ _ a ! F 1 dW: „ _

See for instance [11].
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1 d\
c» at3) '

3)

we obtain:

(3.30)

Adding the stresses o'rz, o'rz and the stresses a«, ~oźz, and taking their
amplitudes, we obtain:

(3.31)
a /„ a2

>UórL

The function Q* will be assumed in the form of a H a n k e l integral

(3.32) 0* = [ (Ae~z<z + Be~l'z)Jn{ar) da.
ó

This integral is chosen so that the Eq. (3.26) is satisfied. The quantities
A), Aa are the roots of the equation

(3.33) A" + [a2 — q(1 + e) — 2a2] A2 + a4 — a2 [a* — q( + e|| — qcr2 = 0

and they are chosen so that the real part is positive. In this way we shall
satisfy the condition S>* = 0 at infinity.

The function W* will also be expressed by means of the H a n k e l
integral

(3.34)

where

T*= | "C(a)e-«J 0 (ar)da.
ó

According to (3,28) we obtain:

(3.35) 6* = j f [A [l\ + a2 — a2) e " l'z + B {X\ + a2 — a2) e^z} Jo (ar) da.
0 J

o

The quatities A, B, C constituting functions of the parameter a will be
determined using the boundary conditions (3.25). We obtain the following
system of equations:

a2 — a2) = 0,

(3.36) {A + B) (2/za2 — QCO*) — 2/.ivaz C = 0,

gdzie

_ e -
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Hence we find A, B, C:

A? + ffa~aa 2/ior — go)2 Al — A?

Ą = [Aj (AJ+cr* — a2) — l> (A»+a2 — a2)] 4/«wr — (2/<a2 — o«2)(r:! + a2) (Ą — AJ).

Knowing 0*, !/y*, we can find the stresses ay. The final stresses ay will be
obtained by adding <fy and ory.

If the coupling of the temperature field and the stress field is not taken
into consideration, we obtain for e — 0

/, =--I'cr 4-q, A2 = J a 2 —a 2 , X'l + a1—a'J = q-fa-, /.2 + <r — a2 = 0 .

Then, from the first of the Eqs. (3.36) it follows that A = 0, and from
(3.35) 6>* = 0. Since for e = 0 we have Jc, = | q, k2==irr, therefore for
the determination of B and C we obtain the following system of equations:

{2/icr — oor) B — 2/J.va3. C — 0,

2B V a ^ a 2 — (2a- - r a ) C ^ - ^ - 0

whence
2,ua- — owa

C = — „ B,
2uva

Tin {a1 -f q) ifxvd11 /at — CT8 — (2/«r — p w) (2a- — T2) '

Let us consider the case of action of a point source of heat at the
point (0, 0, f) of the elastic semi-space assuming that in the 2 = 0 plane
the following boundary conditions are valid:

(3.37) , or« = 0, ff«=»0, h = 0 .

Let us apply the reflection method and let a positive heat source act at
the point (0,0, | ) and (0,0, — f) of the infinite space. They will provoke
ą temperature field 0 and a state of stress 07/, The boundary conditions
<rrz = 0, d&.'dź=0 are satisfied. The stress atz remains different from
zero. The functions G>* and 0* are given by the equations:

(3.38) ®*= ~- ^ , 2 ) [-- ~~-e-~- + e "~* ' - ] ,

Arch. Mech. stos. — 10
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(3.39) (9* =
Q

kf — ty)
a2 + /cf) e-*-«- — (V + Jc|>|> -*

where

Ru = (rH(z+«s)1/2, r = .

The stress a% is expressed by the equation:

(3.40) CT^ = — 2

t< {a, y)

a + y2)1

o(ar) cos yz cos yfdady.

o o

For z = 0 w e obtain:

(3.41) oh (r, 0) =

0O0O aJo(a?") da .

To the state of stress cry, we should add the state ay, so chosen that in
the z = 0 plane the following boundary conditions are satisfied:

(3.42) «=0, a?, —0,

The stresses cr*2 and a*« are given by the Eqs. (3.31) and the functions
0\ ©*, W* by the Eqs. (3.32), (3.35) and (3.34). The constants A,B,C
appearing in these functions will be found from the boundary conditions
(3.42). We obtain the following system for the determination of A, B, C:

(3.43)

r — gar) (A+B) ~ 2nvasC +
#rtQ(1(2,Ma2 — gar)

?

+ BA2) — (2a- — T2) C — 0,

j (X\ -f a2 — a2) A + A2 (Â  + a2 — a2) B = 0.

At the point (0, C) of the elastic semi-space, let a linear source of heat
act, normal to the ccz-plane. Let us assume that the z = 0 plane bounding
the elastic semi-space is free frpm stress and, in addition, let the tem-
perature in this plane be different from zero. We require that:

(3.44) ff« = 0, <r.„ = 0, 0 = 0 for 2 = 0.
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Using the reflection method, we let a positive linear heat source act at
the point (0, £) and a negative at the point (0, — C) of the infinite space.

These sources result in a temperature 0 and stress a,-j. It can easily be
found tha t in j the z = 0 plane we have 0 — 0, azz — 0, but On^O. The
functions 0*,©* are given by the equations:

(3.45) «."• = 2 . - | ^ - _ _ [ K o ( Jc i r 3 ) - Ko(fc ar ,)- K„(ktr2)

(3.46) 9* = ̂ Tjfbfci} ^ + ^ (Ko^r^ -Ko^r , ) ) -

(Ko (k2r,) - Ko (k2r2))],
where n, 2 == (x2 + (z + C)2)1'2.

The function 0* may be expressed also by means of the double
F o u r i e r integral

(347) 0* = — - ^ - f f — ^ c o s rz fcos y («—

where

f tf, y) = (£2 + ya + fc}) (08 + r + fcj
The stress [CT*Z].=0 will be found from the equation:

(3.48)

(3
J (JC| 7C|)

In order to suppress the stress afj (x, 0), we shall add to the state of stress
a*j the state of stress a% so chosen that in the z = 0 plane the following
boundary conditions are satisfied:

(3.49) ah + a% — 0, 5^ = 0, i*==0.

The state a'ij will result in a temperature field &*, an elastic longitudinal
wave and a transversal wave. The following two-dimensional wave
equations should be satisfied:

(3.50) . (Vl—q)(P]+°2)(l>* 2tf* 0

(3.51) (Vi + r2) ro t^ 4 = 0, V] = d
dz, + di, •

The temperature 0* is connected with the function S* by the relation:

(3.52) (p\+o*)0*=do0*.
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The stresses a*z and a*i are given by the equations:

Id" d

(3.53)

The functions <£*, IP*, ©* will be taken in the following form:

(3.54) 0 * (x, z) = [ (Ae-;-2 + Be"^*) cos /3a; d/3,
ó

(3.55) Wt (x, z) = [ Ctr** sin ,8a: d/S,
ó

(3.56) #* (*,- z) = -J • | [A (A| + 0a — j82) e-^2 + B U H o2 — P'2) e~z'z} cos |Jx d/J,

0

At, A2 are the roots of the equation

and are chosen in such a way that their real parts are positive. Next we

The quantities A(/3), Bf/3), C(/3) constituting functions of the parameter /?
will be found from the boundary conditions (3.49). Bearing in mind the
relations (3.53) and (3.56), we obtain

2 tf [X, A f L B) - „ ( 2 ^ - T«J C + r
2

(3.57) ( 2 ^ _ e f l ,

I 4(J» + a2 — /Js) + B (AJ + aa - f) - 0.
Knowing the quantities A, B, C and, therefore, the functions $*, If*, we can
determine the state of stress ay. Adding a*j to afj, we obtain the stress a?/>

We can easily solve also the case where d©/dz = 0 in z —0 plane.
We place linear positive heat sources at the points (0, £), (0,—£) of the
space, satisfying the conditions d0/dz = Q, axz—0. The stress azz will be
different from zero. To the state of stress oij we add ay so chosen that
in the z = 0 plane the following conditions are satisfied:

(3.58) ff« + ff«» —0, ox, = 0, ^ = 0-

For the functions &*, S*;^\ we shall take the integral expression (3.54)
and (3.56), and the values A, B, C will be found from the conditions (3.58).
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4. The State of Stress in nn Infinite Space with a Cavity

Let the temperature on the surface R = a bounding the cavity in the
infinite elastic space be 0 (a, t) = 6>fl e'w. The functions 0* and 0*, constitut-
ing the solution of the homogeneous equation (2.6) and the equation (2.2)
may be expressed as:

(4.1) 0* = \ (Ae k>R + Be-*»«),

(4.2) (9* = --.- [A (fcj -f a") e-k>« + B (kg + 02) «-**].

Let .us assume that on the surface JR.= â  the stress <r„„ is equal to zero.
To determine the constants A B we have two boundary conditions

(4.3) (9* (a) = 0O, ^ ( a ) - - - ^ ^ + (?«"»*] = 0 ,

leading to the system of equations:

j A (fcj + <r) e-^fl + B (kl + a") e^" - 0, #0a,
I Ae-/J-fl [4 ju (1 !- afc,) — a2 co2 Q] + Be-*1*" [4 u (1 + ak2) — a2 wa g] = 0.

Solving this system of equations, we obtain:

(45) ' A=0Qa&o^~, •"• B ^ ~ 0 o a & , - ^ , -

where

A = 04 + oz) m, — (k* + a2) m,,_

Therefore: . ;

(4.6) 0* = - " ^-° [m2 e~".(«-a) - m,

(4.7) .'• - 0 * = ^•[(k*4-ff3)ina-e™*'W^') —(^ -+o t t ) t » , er*«*-«)l.

Knowledge of the function ** enables us to determine the state of stress.
We obtain: • _ - • • •

R dR
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In the particular case of e = 0, therefore, if we do not take into account
the coupling of the temperature field and the strain field, we have fcj = ]/q,
k8 = iff, Jc2

2 + 02 = O.

(4.9) Q* = l^e-[R-a)vn;

(4.10) V^jjrr&S K e-W-^o — m,

where

m, = 4 /i (H-a |/q) — a2 to2 p, m3 = 4 /t (L+aiff) — a2 co2 p.

In an analogous manner we can study the following boundary conditions:

a) &*(a) = 0o, u*R(a)

Let us study now the other type of problem. Let on the boundary sur-
face R = a of the cavity act the pressure p (a, t) = poe

l">l. We shall re-
present here also the function 0* by means of the Eq. (4.1),, and function
0* by the Eq. (4.2). Let us assume moreover that 0* = 0 for R = a. The
boundary conditions take the following form:

(4.11) & (a) = 0, or„n(a)= — H f - r — + gcy-'P = — p 0 .
L K d K J/?«=<!

The constants A, B are determined by the equations:

(4.12) A— ~Ą , B = p~—j- .

Thus:

(4.13) 0* = _ ^

(4.14) 0* = — ~?Ł^ [e-C?-")*< — e-w-Q>*»] (k| + ff
2).

If the coupling of the temperature field and the strain field is not taken
into account (e = 0), we have:

(4.15) 0* = J ^ - e-W-a)'", 0* == 0.
mR
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In an analogous manner, we can solve three further problems with
the boundary conditions:

a) 9* (a) = 0, u*R (a) = u0 — const,

b) •—j^- — = 0, u*RR (a) = — p0 = const,

c) - — — = 0 , u*R (a) = u0 = const.

5. The State of Stress and the Temperature Field Due to the Action
of Dilatation Nuclei

In a region F of the infinite space let the initial dilatation e (P, t) be
given. In this case, the system of displacement equations, after the intro-
duction of the displacement function (1.3), will become the following
system of three equations:

(5.D (PS—|ia)*-«oe-

(5.3)

In the case of an infinite space and the action of the dilatation e (P, t), we
have !P=0 . If e(P, t) = e'ffl/ e*(P), we have &{P,t) = eiat &*(P), 8(P,t) =
= e'w6>*(P).

The Eqs. (5.1) and (5.2) become:

(5.5) (F= | ^

By eliminating from (5.4) (5.5) first the function 0* and then the function
0* we obtain the respective equations:

(5.6) (P' + c W - q ) * * — qfi(72«P* = — f(P2 — q)e*,

(5.7) (P2 + a2) (P2 — q) 0* — qeP2<9* = — qij'f F2e*.

In the infinite space let a concentrated dilatation nucleus e*(R) — eod(R)
act, where d(R) is the D i r a c function. In a way analogous to that used
in the Sec. 2, we find that:
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The knowledge of the function <2>* enables us to determine the stresses
from the Eqs. (2.12).

In the particular case where rf — 0, that is if the coupling between
the temperature and the strain field is disregarded, we obtain the known
result [11]
(5.10) 0 — ~ e'M-^i 0* = o

For dilatation nuclei evenly spaced along the z-axis [e*(r) = eo<5(r)],
we have,

(5.11) 0*= 2n{$Lkt) [(K-q)K0(k,r)-(kl- q)Ko(kor)],

" k ' K ° (

If e = 0, we have:

(5.13) 0 = -^~ Kn (tor) e'at, 6 = 0 .

Finally, in the case of dilatation nuclei evenly spaced in the x = 0 plane
[e*(x) = eod(x)], we obtain:

(5.15) 9" = -

In the case when the coupling between the temperature field and the
strain field is disregarded, we obtain the familiar result4:

(5.16) 0= ef-e^i-^)! <9 = 0,

The state of stress due to the action of dilatation nuclei in an elastic
semi-space may be found in a manner analogous to what was done in § 3.

6. The Action of a Concentrated Force in an Infinite Space

Let a concentrated force P (t) = Po e'al act at the origin of cylindrical
coordinates in the direction of the z-axis. We are concerned with longitud-
inal and transversal waves'and the temperature field © in the elastic space.

The following wave equation is to be solved:

(6.1) (r/a + a2) (Fa — q) 0* — qep*®* — 0,

(6.2) (p' + £ J I £
1 See for instance [11].
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Knowing the function (2>*, we can find the temperature field from the
equation:

(6.3) 0 * = ) [v" + CT2)#*.

The functions 0*, V* will be taken in the form of the following Han-
It e l ' s integrals:

(6.4)
< ? > * = = **)jo{ar)da, z > 0 ,

<P*= I (A' ex>' + B' e*»*) J„ (ar) da, z < 0 ;
ó

(6.5)

iff* = ) Ce~ « Jo (ar) da, 2 > 0,

C e"7 Jo («r) da,

From the Eq. (6.3), we obtain:

r 0 * = x ?:
(6.6)

0 * =

n.,e l*')J0(ar)da, z > 0 ,

'tiae^*) JQ(ar)da, z < 0 ,

Til, 2 = Mt 2 T" O~ a" •

The quantities kltXa are the roots of the Eq. (3.33) assuming that they are
the roots whose real parts are positive. Next ?> = ] a2 — r-.

The constants A, A',..., C will be found from the following boundary
conditions in the z = 0 plane:

]n,*] ,o— K ] _ o = 0 , [le'l + o— [to*]_o=-0,

[0i + o-[0i_o = -O, \-dz

(6.7)
4-0

= 0,

— 0 ,

The first two conditions warrant the continuity of displacements in the
2 = 0 plane, the two next — the continuity of temperature and its gradient
in the z = 0 plane. The penultimate condition postulates the continuity
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of the shear stress a%, and the last expresses the discontinuity of the
stress o*? due to the introduction of the concentrated force.

Using the equations for displacements e*, w*, and the Eqs, (3.31), and
bearing in mind the Eqs. (6.4) and (6.6) we obtain from the boundary
conditions (6.7) the following system of equations:

- B')—-«2(C— C') = 0,

(A — A') n, + (B — B') n, = 0 ,

2A, (A + A') + 21, (B -|- B') — (2a3 — T2) (C — C) = 0,

(2/«a3 — gcJ3) (A — A' + B — B') — 2fia"v (C + C) + ^ = ° •

Solving this, we obtain:

A = _ ^ ' = f_̂  ~V—r. B = - B'=
(TI2 — Ti[) gco2 4:T; (n2 — Ti^gco2 '

Po«

(6.9)

Thus the functions $*, 6*, W* are determined in the entire elastic
space. Knowledge of the function #*, W* enables the determination of the
stress components (for instance a*z, at z from (3.31). If the influence of
coupling between the strain field and the temperature field (s = 0) is
disregarded, then: A2 = a 2 + q , Xl — ^A-a1, n1 = q + oi", n., = 0. In this
case, we obtain A = A' = 0.

(6.10) B = — B' = -p^--r C = C-

according to the known results 5.
Since A = A' = 0 and n2 = 0, it is seen from (6.6) that (9* = 0, in the

entire elastic space.
Let a load of intensity P (t) = e'w Po , uniformly distributed along the

y-axis of a rectangular system of coordinates, act in the positive sense of
the z-axis. The stress and temperature field will be functions of the
variables x and z only. The equations (6.1) and (6.2) should be satisfied,
being replaced by v\ = {d2/'óx2) + (d2/dz2).

The functions <£*, W* and 0* will be expressed by means of the follow-
ing Fourier integrals:

(6.11)
= J (Ae ;-z + Be-v)cos(3xd/5, z > 0 ,

0

0* = f (A'e^ +BV»*) cos/Szd/3, z < 0 ;

5 See for instance [11], p. 42.
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(6.12)
T* = / Ce ~vz sin fixdp, z > 0,

o

<f * = j c ' e M sin /9xd/3, z < 0 ;
o

„ {Anxe
 l'z + Btiz e^"^z) cos flxdf}, z > 0,

o
CO

1 f• (A'ni e*'z + B'n., e;-2) cos pxdfi, z < 0 ,(6.13)

where Xu Aa are the roots of the equation

A'1 + [or2 — q (1 + e) — 2/S8] A2 + fi" — /3a [a2 - q (1 + c)] — qa a = 0,
assuming that the real parts of these roots are positive. The values
A, A', ..,, C" will be obtained from the following boundary conditions ex-
pressing the continuity of displacements, temperature, and stresses in the
cross-section 2 = 0.

|tu*],o— K ! o==O,

(6.14)
az ÓZ - 0

PO(a;)==0,

cos /

From the boundary conditions (6.14), we obtain the system of equations:

(A — A' + B — B') jS — v (C + C) = 0,

;,,(A + A') + A3(B + B')+|3(C-C') = 0,

(A~A')ny + ( B - B ' ) n 3 = 0 I

jU + A') + A2 (B + B')]. — /< (/S2 + v2) (C — C) = 0,

— QO)-) {A — A'+B — B') — 2py/3 (C + C) + P° = 0 ,

Solving this equation, we obtain:

(6.16)
t = — A ' = :° «2

(n 2 —ri !

P n Tlj

In (n., — ?i,)owŁ
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In the particular case e = Q, we have ns—Q, therefore 6>* = 0, A=—A'=0
and

P P B
R = — R' — " r = C = •—--

Infix" ZnvfiT
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S t r e s z c z e n i e

PEWNE ZAGADNIENIA DYNAMICZNE TERMOSPRĘŻYSTOŚCI

W pracy rozpatrzono dwa typy zagadnień. Pierwsze zagadnienie, to wy-
znaczenie naprężeń wywołanych działaniem skupionego, liniowego i pła-
skiego źródła ciepła w przestrzeni i półprzestrzeni sprężystej przy zało-
żeniu sprzężenia pola odkształceń i temperatury. W przestrzeni sprężystej
mamy do czynienia jedynie ze zmodyfikowanymi falami cieplnymi i sprę-
żystymi podłużnymi, W przypadku półprzestrzeni sprężystej, w której
działa liniowe lub skupione źródło ciepła obok fal podłużnych występują
poprzeczne fale sprężyste.

Przy sposobności wyznaczenia stanu naprężenia dla półprzestrzeni po-
dano rozwiązanie zmodyfikowanego zagadnienia L a m b a, postulując
.sprzężenie pól odkształcenia i temperatury. W ustępie czwartym podano
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rozwiązanie zagadnienia rozprzestrzeniania się naprężeń w przestrzeni
z pustką kulistą ogrzaną na powierzchni R = a.

Drugi typ zagadnień to wyznaczenie stanu naprężenia wywołanego
w przestrzeni i półprzestrzeni sprężystej działaniem okresowo zmieniają-
cego się w czasie jądra dylatacji. Wyznaczono również stan naprężenia
wywołany działaniem sił okresowo zmieniających się w czasie przyłożo-
nych na powierzchni R — a ograniczającej pustkę. Wreszcie podano roz-
wiązanie dla przypadku siły o intensywności P (t) = eiat P„ działającej
w nieograniczonej przestrzeni sprężystej.

P e 3 to M e

HEKOTOPblE ffMHAMMHECKME 3AftA>IH TEPMCmiPyrOCTH

Tima 3a,n;aH. IlepBaH STO — onpe^ejieHHe Ha-
BŁi3BaHHbix seHCTBMeM cocpe^OTOHeHHoro, jiHHeMHoro H njio-

CKoro MCTOHHMKa Tenjia B ynpyroM npocTpaHCTBe M nojiyrrpocTpaHCTBe
npw npeflnojioaceHMM conpaaceHMii IIOJIH fledpopMai^Mii M TeMneparypHoro
nojiH. B y n p y r o M npocTapncTBe BCTpenaeMCH JIMUIB C
HblMM TepMJTTCCKHMM M C ynpyrMMII npOflOJIŁHBIMH BOJIHaMM. B
y n p y r o r o noJiynpocTpaHCTBa, B KOTOPOM seiicTByeT jiMHeMHBiń HJIM cocpe-
fl'OTOHeHHBIW MCTOHHMK Tenjia HapHMy C npOflOJIBHBIMH EOJIHaMM BblCTy-
naiOT nonepeHHbie ynpyrwe BOJIHBI.

IIo cnocoSHOCTM onpe/jejieHHfl HanpnłKeHHoro COCTOHHHH flJiH nojiy-
npocTpancTBa flaeTCH peineHHe MOflHCpMii,M:poBaHHOM 3aflaHM JIaM6a„ no-
CTyjiwpyeTCH conpHJKeHMe nojieii fledpopMarrjiH M TeMnepaTypHbix noueń.
B IIKT. 4 flaercH pen ieHne Bonpoca pacnpocTpaneHHs HanpaHieHMM B npo-
cTpaHCTBe co cdpepMHecKOM nycTOTOii HarpeToił Ha noBepxHOCTH R = a.

BTopoił Twn 3a,o;aH 9TO onpeAeJieHiie HanpameHHoro COCTOHHMH, BBI-
B ynpyroM npocTpaHCTBe M nojiynpocTpancTBe, BBi3BaHHoro

CHJI M3MeHHroin;Mxcfl nepMOflMHecKM BO BpeMeHii, npHJioaceH-
Hbix K noeepxHocTM R<=a, orpaHHHHBaiomeM nycTOTy. B 3aKJiioHeHMe

pemeHwe ^ J I H cj iynaa CKWIBI HHTeHCMBHOCTbio P(t) = e ' ! 0 / P 0 ,
B HeorpaHMHeHHOM ynpyroM npocTpaHCTBe.
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