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7 ZAGADNIEN TEORII RUSZTOW PLASKICH (1)

WITOLD NOWACKI (WARSZAWA)

Praca przedstawiona na zebraniu naukowym
Zakladu Mechaniki O$rodkéw Cigglych IPPT PAN w dniu 2 lutego 1954 r.

Zagadnienia rusztéw plaskich nabierajg coraz wigkszego znaczenia
w zwigzku z rozwojem dwuwymiarowych konstrukeji wstepnie sprezo-
nych i stosowaniem elementéw rusztowych &cianowych i stropowych
w budownictwie mieszkaniowym.

Dotychczasowe zainteresowania badaczy dotyczjrly zagadnien zgi-
nania rusztow plaskich; opracowano w zwigzku z tym kilka metod
Scistych 1 przyblizonych rozwigzania tych zlozonych ukladéw. Obecnie
punkt ciezkoéci zainteresowan przesuwa sie w kierunku opracowania
efektywnych metod wyznaczenia sit krytycznych, powodujacych wy-
boczenie rusztu, oraz zlozonej pracy rusztéw zginanych i réwnoczeénie
$ciskanych albo rozciaganych.

Scisle rozwigzanie wymienionych tu zagadnien nie nastrecza for-
malnie wielkich trudnoéci; zagadnienie statecznosci lub tez réwno-
czesnego zginania i §ciskania pretéw na sprezystych podporach (a takim
jest w gruncie rzeczy schemat statyczny rusztu) jest opracowane.
Praktyczne jednak przeprowadzenie rozwigzania natrafia nawet przy
bardzo rzadkiej siatce dzwigaréw na duze trudnosci rachunkowe.
Dlatego tez poszukiwaé bedziemy rozwigzan przyblizonych, starajgc
" sie to typowo nieciggle zagadnienie mechaniki budowli doprowadzi¢
do zagadnienia cze$ciowo lub calkowicie cigglego.

Droga ta w licznych zagadnieniach mechaniki budowli doprowa-
dzita juz do celu. W statyce rusztow, w odniesieniu do ich zginania,
na droge te wstapil chyba jako pierwszy S. Timoszenko, [1].
W pracy niniejszej metoda S. Timoszenki zostala rozszerzona
na zagadnienia statecznosci rusztéw i uzupelniona druga metoda,
w ktérej ruszt zastepuje sie ptyta ortotropowa o zerowej sztywnoSci
na skrecanie. |
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1. Zajmijmy sie najpierw rusztem najprostszym, sktadajagcym sie
7z szeregu podiuznic, o sztywnoSci na zginanie EI i diugosci b, oraz
z jednej poprzecznicy o sztywnosci na zginanie EJ i diugosci a.
Podluznice niech bedg rozmieszezone w jednakowym odstepie a;.

Niech wszystkie podluznice beda obcigzone w sposéb jednakowy,
a konce ich na brzegach y=0 i y=">b w jednakowy sposéb podparte,
przy czym wylaczamy tu mozliwo$¢ braku podpér wzdluz jednego
lub obu brzegow. Krzyzujace sie prety polaczone sa ze sobg za po-
mocg przegubow.

Obcigzenie z podtuznic przenosi sie cze$ciowo na skrajne podpory
podiuznic, czesciowo na dzwigar poprzeczny.

Rozwazmy dwa krzyzujace sie¢ prety, jedng z podiuznic oraz po-
przecznice, Na podluznice te dziala obcigzenie zewneirzne p oraz
reakcja podporowa X wystepujaca w miejscu skrzyzowania podtuznicy
z poprzecznica. Na poprzecznice dzialaja sitly X (z przeciwnym niz na
podiuznice zwrotem) oraz podiuzna sila Sciskajgea S.
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Ugiecie punktu skrzyzowania pretéw wyrazié mozna nastepujacym
zwigzkiem:

(L.1) ' Wy = 010 + X dy3.

Tutaj d,, oznacza ugigcie podiluznicy w punkcie skrzyzowania belek,
wywolane w ukladzie podstawowym (X =0) obcigzeniem zewnetrz-
nym, a d;; oznacza ugiecie tego samego punktu podtuznicy, wywolane
w ukladzie podstawowym stanem X =1.
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Przy dostatecznie gestym rozmieszczeniu podiuznic zastgpi¢ mo-
zemy sily skupione X obcigzeniem ciggltym X = qa,.

Z réwnamia (1.1) otrzymamy zatem
LN

(1.2) wy = 6,4+ qa, by, = '
1 1} gy Oy 4 a,d" E[.I.lﬁ.ll.

Ugiecie zgmaneg i jednoczeénie écmkane; ;yodluzmcy wyznaczamy
z réwnania rézniczkowego

dwI

d'w
(1.3) EJ. ’—I-S, d =-—,

W przypadku rozciaggajacej sity w poprzecznicy nalezy w réwnaniu
(1.3) zmienié znak sity S.

Wyrazajac funkcje q(x) w réownaniu (1.3) za pomoca zwigzku (1.2)
otrzymamy d‘

(1.4) EJ, a w' +8a 1d bt

— O

+ 511 Opr

Zauwazmy, ze iloraz (51,]/6“ wyraza reakcje podporowsa. srodkowej
podpory podluinicy ’tm]przesloweL wywolang obcigzeniem zewnetrz-
nym p, w zalozeniu, ze podpora ta (w punkcie skrzyzowania sie po-
dluznicy z poprzecznica) jest niepodatna. Wielko§é 1/d,, traktowac
mozna jako reakcje podporows Srodkowej podpory podiuznicy, wywo-
lang podniesieniem tej podpory o warto$¢ réwna jednosei.

Oznaczmy
910 1

RO = S10 R
1 (5“ ﬁll 511
Wtedy réwnanie (1.4) przyjmie postaé

da

(1.5) EJ,q, -d w’ + S, q, “" + 1y w, = RY.

Rozwigzanie tego réwnania pozwala na wyznaczenie momentow
zginajacych i sit tnacych poprzecznicy ze wzoréw
G, g
dax® ’

Ze wzoru (1.1) wyznaczymy reakcje nadliczbowa

(1.6)  M;=—EJ,

X=ﬁ dlu—‘wlﬁn R?=Q(3¢')a1:
Oy Oy

co pozwoli na okreslenie momentéw i sit tngeych w dowolnym prze-
kroju podiuznic.
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Réwnanie (1.5) traktowaé mozemy jako réwnanie rézniczkowe od-
ksztalconej poprzecznicy, spoczywajacej na sprezystym podiozu fypu
Winklera o module podioza f,/a,, Sciskanej sila osiowa S,, przy
obeiazeniu pionowym o jednostajnej intensywnosci RY/a,. W przypadku
szezegblnym, gdy S; =0 réwnanie (1.5) jest identyczne z réwnaniem
wyprowadzonym przez S. Timoszenke dla zginania rusztéw.

Rozwiagzaniem réwnania (1.5) jest

(L.7)  w,(x)=w,(x)+ A, sin ax+ A,cos ax + A, sin fax + A, cos fx,
gdzie '

o f=V o2 F Vol2P =75,

_i e ﬁﬂ
Y E5" "7 Ela’

a w; (x) jest calky szczegdlng réwnania niejednorodnego (1.5).
Szczegblowiej zajmiemy sie przypadkiem swobodnego podparcia
poprzecznicy. .
Rozlézmy ugiecie w(x) oraz stala wartos¢ R} w szereg trygono-
metryczny

wy, = Z‘ Aﬂ.1 sin iy X,
« =1 ( n:-'f)

0 3
R‘:'=4J—El 5‘ 1-sinu,,x
. 7T ﬂ:"]_..{.... n

(1.8)

Wyznaczymy z réwnania (1.5) stalte Ay :
4R

D P 3
" nx(EJ, ayat — S a,a + B,,)
Zatem
4 RY ¢! = ;
(1.9 ————et Y sin ap &
( ) wy (3-‘) EJI :-T"'Gq ”:ﬁ“"nﬁ___‘zns_i_kn, '
gdzie
S E 31“" ﬁ a-I
): ‘_1 S e _'l_ — -—-—.!.l'__._._
Sg’ F IR EJ, a7

Na podstawie wzoru (1.9) mozemy zauwazyé, ze sila sciskajaca S,
zwigksza ugiecie, a zmniejsza je sila rozciggajaca.
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Powyzsze rozwazania daja sie bez trudu uogélnié na ruszt o r
poprzecznicach.

Zalbzmy, ze poprzecznice posiadaja rézne sztywnosci i obcigzone
sa réznymi silami $ciskajacymi.

Réwnanie rézniczkowe k-tej poprzecznicy przyjmie postaé

; d!
(1.10) . ERS “’" s dmg =
gdzie
qkz? (k=1,2,...,7)-
1

Wielkosei X» zwigzane s3 z ugieciem k-tej poprzecznicy zwigzkiem

I=r

(1.11) W=+ D, Xidui (k=1,2,..,7).
=1

Rozwigzujemy powyzszy uklad wzgledem Xi.
Otrzymamy

(1 12) Xr= E [ﬁf!cwf+ﬁ!rt 0i0) = 2 ﬁ.‘kwf R" =1,2....7)%

=l

Tutaj wielko$¢ R, traktowaé mozna jako reakcje podporowg w punk-
cie k podtuznicy o r-2 podporach, wywolang obcigZeniem zewnetrz-
nym podiuznic, a wielko$¢ fli jako reakeje podporows i-tej podpory
tej samej podluznicy, wywolang przesunigeciem podpory k o wartosé
wyp = -—1,

Wstawiajac zwigzek (1.12) do réwnania (1.10) otrzymamy uklad
rownan rézniczkowych

d'l
(1.13) a,EJ,,-—a%f’f L L w"+ 2 Buiwi=RY  (k=1,2,..,7).

Powyzszy uktad rownan doprowadzi¢ mozna droga eliminacji funkceji
Wy, Wy, ..., Wy do réwnania rozniczkowego dla jednej tylko funkeji w,
rzedu 4r.

Ograniczymy sie tu jedynie do przypadku swobodnego podparcia
wszystkich poprzecznic.
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Zatézmy i tu, ze

3 0 0 7
(1L.14)  wp= Z Ay psina, x, Ry = Z Ry.u sin ap
n=1;2,.. n=1.%....
gdzie
0
4Ry
Pt (n=1,3,5,..).

Zalozenie to spelnia wszelkie warunki brzegowe zagadnienia.

Wprowadzajac zwigzki (1.14) do réwnania (1.13) ofrzymamy dla
wyznaczenia wielko$ci Ay, uklad réwnan liniowych

i=r

(115) (Ch E-L!e (I: Ay SA' C!'E!) Arr.fe + E ﬁki Au. i ZR?E.H

=1

(=12 anrs. =13k

Rozwigzujac powyzszy ukiad réwnan wzgledem A, . mamy

i=r
— {
Ap = 2, arin R, i -
=1

Z pierwszego zwigzku (1.14) uzyskamy

oo i=r
(116) Wy = 2 (Z‘ akr'.uR.I']t.f) sin Up X .

a=1.8,... \i=1

W wielu zagadnieniach technicznych dotyezacych rusztéw wysuwane
jest zagadnienie ich statecznosci.

Zajmijmy sie¢ przypadkiem gesto zebrowanego rusztu o jednej
poprzecznicy. Dla sily podiuznej S, wiekszej od krytycznej, ruszt
dozna wygiecia opisanego réwnaniem roézniczkowym jednorodnym

d' w,

(1.5.1) EJI ay —E-S—CT

d*w
+Slalﬁg_l+w‘lﬁ“=0‘

Zalozmy w; = Aji.nsina,x, co spelnia warunki swobodnego pod-
parcia i réwnanie rézniczkowe (1.5.1).
Uzyskujemy z (1.5.1) nastepujacy zwigzek:

EJ101 I'I:‘-—‘S1alai + ﬁ]_l:o .
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Stad otrzymamy sile krytyczng

EJ1 neﬂa

(1.17) Star=—10 4 fus

ania®’

Zajmijmy sie tym przypadkiem szczegélowiej. Wielkoéé By, zalezy
od geometrycznych i sprezystych wlasciwosei podtuznic i od odleglosci
poprzecznicy od osi x:

EI
ﬁl] = 'b_s‘p(ﬂl)f

gdzie 9, =y,/b.
Po prostych przeksztalceniach napiszemy wzér (1.17) w postaci

EJ’ _;2 2 2
(1.18) Syp= b;é‘(—';"—a %k)
gdzie ' ‘ .
_Ga e— 10 ¢(n)
L Joa, at

Ustalmy wielko$¢ EJ, i b; niech zmienia sie p=ua/b, k oraz n=.
Otrzymamy rodzine krzywych wiencowych, ktérych rzedne dajg nam
najmniejsze wartosci sity krytycznej.

Na rysunku 2 naniesiono krzywe (1.18) dla nastepujacych trzech
przypadkow :

(1) podiuznice na koncach swobodnie podparte,

(2) podluznice wzdluz brzegu y==_0 zupelnie utwierdzone, a wzdiuz
brzegu y =">b swobodnie podparte,

(3) podiuznice na obu koricach utwierdzone zupelnie.

Dla powyzszych trzech przypadkéw zalozono, ze poprzecznica znaj-
duje sie na osi symetrii podiuznic.

Dla przypadkéw (1)-(3) mamy

481b 109,7Ib 1921b
| _— — 1 - k= A
(1.18.1) i atdya ! atJia,’ i Jya,
Wreszeie przyjeto
48 Ib 1
mJa

Najmniejsze wartoéci Sk otrzymamy dla stosunku bokéw g =a/b=
= nk="%.
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Tym odcigtym odpowiadaja wartosSci

2EJ, »*

1.er — b2

) k.

Wartoéci te sa niezalezne od liczby pétfal n.

Sbh*
Egi
50

40~~~

30 F

20— ————m

Rys. 2

Odciete punktéw przeciecia galezi o parametrach n oraz n+1
przyjmuja wartosé )
o=k~ Y n(l+n),
a rzedne
EJ; n® /% 2n*+2n+41
oV n(l+mn)

S1,pr =

Dla rusztu o r poprzecznicach odksztalcenie ukladu, dla sil wiek-
szych od krytycznych, charakteryzowane jest ukladem réwnan réz-
niczkowych '
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i=r

dw d*w,
(1.19)  a, EJ, &},-" 0, Sk H’f +,-=21‘ Bri wi =0 (k=1,2,..,1).

Przy poprzecznicach swobodnie podpartych rozwiazujemy uklad
rownan (1.19) wstawiajge

wy = AJ{, " sin ny (k — 1} 2, anny ?‘).

Otrzymamy woéwczas z rownania (1.19) uklad réwnan

s

i=r

(1.20)  (a, EJi aﬁ —a, Sk dn) Ar.n+ Zﬁm‘Af.u:(} (le==1,2,...,7).

i=1

Uktad tych réwnan jednorodnych bedzie tylko wtedy niesprzeczny,
gdy wyznacznik ukladu bedzie réwny zeru. Ofrzymamy stad, przy
statym stosunku sil podtuznych, wielomian r-tego stopnia.

Najmniejszy pierwiastek wielomianu daje najmniejsza wartosé sity
krytycznej.

Réwnanie (1.20) obejmuje obszerna klase przypadkéw szczegblnych,
jak np. ruszty, w ktérych w szeregu poprzecznic nie- dzialajg sity
osiowe lub w ktérych dzialaja sily rozciagajace i Sciskajace. Zalozyé
musimy jednak, ze co najmniej jedna z sit S; (k=1,2,...,7) jest sila
Sciskajaca.

Kilka przykladéw objasni nam tok postepowania przy wyznaczaniu
sit krytycznych.

Zajmijmy sie rusztem o dwu jednakowych i w jednakowych od-
leglo$ciach polozonych poprzecznicach, Sciskanych silg S.

Ze wzgledu na symetrie powierzchni odksztalcenia bedzie wy=w.,
o tym samym Ay, = Az .

Z réwnania (1.20) otrzymamy zatem

[(‘i‘.l EJ[ ﬂ;l| — Sﬂ.; u:'z! "i" ﬁll + ﬁl'_)) A'I.H: 0}
co p;:;awadzi do zwigzku

(1,21) Swr= EJ]S;‘W +

(ﬁll+ﬁ13)a'2‘

n®a® a,
Przy zalozeniu swobodnego podparcia podluznic latwo znajdziemy, ze

8 EI EI
ﬁ,|=—5'-162‘g-:,—, _a

T
ﬁ]u:'—_g 162 B
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Po prostych przeksztalceniach otrzymamy z (1.21)

EJ 2 2 a
(1.22) Sh= " (Z g k;),
gdzie
e, — 32,41b
LA JI rl, .'ﬂ:l

Dla podiuznic obustronnie utwierdzonych jest

Pin =% 162%1'- 512:""162EI=
NS 8
(1.22.1) szEib;w"'— (: + i ks )
gdzie
, 1621b
fez = Jia ot

Rozpatrzmy teraz ruszt skladajacy sie z szeregu podiuznic oraz
z trzech poprzecznic o jednakowym przekroju i w jednakowych od-
stepach rozmieszczonych, $ciskanych jednakows sila S.

Otrzymamy uklad réwnan

(alEJI afdt _Sa] a?}-I-ﬁ“) Aq ""ﬁm As ‘+*,U1“ Ay = 0,
(1.23) | Bai Ava+(a EJy an — Sa, an + fus) As,n + fay As.u =0,
ﬁsl Ai,n ‘i‘ﬂs_; Az, + (ag EJl E.'l:ril = Sﬂi ai -+ ﬂm‘} Ag,u==0,

Ze wzgledu na symetryczng, wzgledem y=>0/2, postaé wyboczenia
rusztu jest Ay, = Asn.

Przyréwnanie do zera wyznacznika ukladu réwnan (1.23) prowadzi
do réwnania kwadratowego wzgledem S, ktérego mniejszy pierwiastek
daje site krytyczna

]
AS‘Jar-—EJIl:".c (—2 + _Q_Ek“) "
o0 n

Ib i
ky = 27 40‘. [(y11 + vas) — ¥ (}’11_}’32} +47t ik

(1.24)

W przypadku podiuznic na koficach swobodnie podpartych jest

23 32 22 9
ﬁn=ﬁ% 52221'4‘}': .3135—“171?; ﬁ"":l:l?’



Z zagadnien teorii rusztéw plaskich 111

El 16 s
=384F: Yin=Pun+pus, 722=7" =Py Yie=V2p.

Po prostych przeksztalceniach napiszemy (1.24) w postaci

24,3374 Tb
2 T T

(1.25) ky =

Dla podluznic utwierdzonych zupelnie mamy

132 105 84 EI
ﬂH: Eyr ﬂﬁ‘z 2 B ) ﬁl:!:_‘}_?:yl ﬁl‘! 2?' ?1*384 b‘l’

Yu="FpFu+bu V=P, }’m=‘f“l'iﬁm
oraz

(1.25.1) K 12435 Tb

nt  Jyap

Wreszcie dla czterech poprzecznic Sciskanych sila S otrzymamy,
wykorzystujagc symetrie postaci wyboczenia wzgledem osi y=1b 2,
ukiad dwu réwnan

(a, EJ, dn — S a, a;_)l + B +ﬁ14)AI..-: +(fia +ﬁm) Ay n=0,
(Pay +.82-|) Atn+ (0, EJ, an— Sa, an + Bost Bag) Az.n = 0.

Rozwigzanie powyzszego ukladu réwnan daje

)
S*"—E;:F (9 S kd),
(1.26) b

Ky = 2Ja'a, [y110 + vee — V (prn—v2a)* +4 90| -

Zwazywszy, ze dla swobodnego podparcia podiuznic jest

344 331 144 . 36 )
= 2'0_9')": Pra =~ m?” ﬁm ~ 200 Vs fra= 209 Vs
488 367 EI
oy = —— gy = ————, »="T50 ;
:H.L. 209 }") ﬂ.L 209 }’ ¥ 7 b.}

Y11= P11 + Pus Vas = faa + Pos; Yi2 = P> + B1as
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ofrzymamy
19,4772 Ib
(1.27) ley= S T.a

Dla utwierdzenia zupelnego podiuznic otrzymamy

656 415 . 168 . o 4_8 ;

b= 2‘69 Vs Bro=— 20"9 Vs Bia= 209 Vs = 209 Y

: 512 379 El

p.‘.'! —p -2_0.5 Vs ﬁﬂz: - iﬁg s r = 750 bu )

Y1 =Fu + P Pas = Pun -+ P, Pio == flya =+ Py
oraz
. 99,908 I1b

(1.27.1) ki = pr T

Przy wiegkszej ilodci poprzecznic rozwigzanie ukladu réwnan (1.20)
natrafia na znaczne trudno$ci rachunkowe. W przypadku wiekszej
iloéci poprzecznic o jednakowym prze-

-"5 E N kroju, ulozonych w réwnych odstepach
Bt = ?* i Sciskanych jednakowsa silg S, uzyskaé
B ; T na mozemy wybitne uproszczenia rozwigza-
17 t /1~ , nia traktujac ruszt jako plyte ortotropowsa
e % & Am o zerowej sztywnosci na skrecanie (rys. 3).
Mg Eixg _,_3 Réwnanie powierzchni ugiecia takiej
- ?W,,,,,,i....J_ plyty dla q=q ma postaé, [2] i [3],
’ ' 0'w J'w 0* w
Rys. 3 {129) D 8_5:_4 +Dy —a_é;, ‘}‘q—'a? =0,

Tutaj w jest rzedng powierzchni ugiecia, D. i Dy sztywnosciami zginania
ptyty w kierunku osi x i y oraz q. obcigzeniem $ciskajacym w kie-
runku osi x, jednostajnie rozlozonym na krawedziach x==0 i x=a.

Przejscie od plyty do rusztu charakieryzuja nastepujace zwiazki:

(1.30) EJ=b1Dx, EI=Q‘D};, S:qb]-
Rownanie (1.29) napisa¢ mozemy w postaci

EJ dw  EIdw S Fw

CE B am T aE T o

0.
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Rozwigzania réwnania (1.31) poszukujem_y w postaci
(1.32) w(x,y) =X (x) Y(y).
Wstawiajac (1.32) do réownania (1.31) otrzymamy

EJ XV o8 X L BT YN
(1.33) b, qub X-i--—‘—,? =0,

Jest rzeczg widoczna, ze réwnania (1.33) rozdzielic mozna na
uklad dwu réwnan powigzanych ze sobg parametrem A:

: Aa ' S b
e 1 1y L Bt s (RS
Y EIY__G X ~|—EJX—! EJX 0.
lub
by 1
v R v 1
(1.34) e otY=0, X 4 JX -+ o 5 JX-—{)

gdzie w'=121'a,/El
Zajmijmy sie pierwszym z tych réwnan. Posta¢ tego réwnania
jest analogiczna do réwnania rézniczkowego drgan swobodnych preta,
Stad wniosek, ze dla q = q#r podluznice przyjmg posta¢ identyczng
z postaciami drgan wlasnych preta o dilugosei b i sztywnosci Elfa,.
Poniewaz wyboczenie rusztu w kierunku osi y nastapi przy jednej
potali, interesowaé nas bedzie najmniejsza wartosé parametru o =w,.

Z teorii drgan pretow mamy kolejno:

bw,=a dla preta w przekrojach y=0 i y=>b swobodnie pod-
partego,

bw,=4,730 dla preta w przekrojach y=0 i y=D>b zupelnie
utwierdzonego,

bw,= 3,927 dla preta w przekroju y = 0 zupelnie utwierdzonego,
a w przekroju y=>b swobodnie podpartego,

bw,=1,875 dla preta w przekroju y = 0 zupemie utwierdzonego,
a w przekroju y=>b swobodnego.

Wprowadzajac oznaczenie », = bw, napiszemy drugie z réwnan
(1.34) w postaci

S b, I
R LS S S S
(1.35) X +EJX + Jb’*X 0.
Oznaczajac
- S ) ¥iby I
(1.36) . p= )

EJ’ A TP
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otrzymamy rozwiazanie réwnania (1.35) w postaci

(1.37) X = Asinaex+ Bcosax+C sinfix+D cos fz,
gdzie '

(1.38) wB=Ve2FV ¢4

Z (1.38) wynika, ze

(1.39) af=y, =g

Dla zadanych warunkéw brzegowych w przekrojach x=0 i x=a
otrzymamy uklad czterech réwnan jednorodnych wzgledem A,...,D.
Przyréwnanie do zera wyznacznika ukladu daje réwnanie przestgpne
jako warunek wyboczenia.

W réwnaniu tym, dzieki pierwszemu zw1azkow1 (1.39), wyelimi-
nujemy parametr f§, tak ze réownanie bedzie funkeja samego a. Naj-
mniejszy pilerwiastek tego réwnania daje najmniejsza warto$é sily
krytycznej, ktorg obliczymy z drugiego wzozu (1.39).

Zauwazmy, ze rownanie (1.35) jest identyczne z rownaniem roz-
niczkowym wyboczenia preta o sztywnosci EJ, lezgcym na sprezy-
stym podlozu o module C=1ib,I/a, Jb'.

Zajmiemy si¢ tu szczegblowo przypadkiem swobodnego podparcia
poprzecznic w przekrojach x=0 i x=a. Rozwigzaniem rbéwnania
bedzie tu

(1.40) X (x)=Asina,x (a,, = 1}(—;1) :
Wstawiajac (1.40) do (1.35) otrzymamy zwigzek

S byl

(141) ai'll EJ ﬂ'u “_ 4. T

z ktérego po prostych przeksztalceniach otrzymamy sile krytyczna
w postaci

_#EJ(n® | 5@
f— (ﬁ)" Ib,
| Ja,
Dla r poprzecznic jest

4
T (m) Ib
(3:43) k_(:m) Ja,(r+1)°

gdzie
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Zatrzymamy sie na przypadku rusztu, ktéorego podiuznice sa na
brzegach y =0 i y=> swobodnie podparte. Wtedy

(1’43'1) 7'[ = :T, k J?(T-__FT)

W tablicy 1 podajemy wartosci k dla r=1, 2, 3, 4, wyliczone ze
wzoru (1.43.1), oraz wartosci k, wyliczone dla tego samego przypadku
(uprzednio przedstawionym sposobem). Zauwazmy przy tym, ze bu-
dowa wzoréw dla S, ofrzymana obiema metodami, jest, z uwzgled-
nieniem wspéleczynnikéw k, identyczna.

Tablica 1
7 | 1 2 ‘ 3 4
J“‘ [wzér (1.43.1)] | 1/2=0,50 | 1/3=0,333 1 1/4=0,25 1/5=0,20
{wzory (L18), |ag a0 ———
Ie 38, (1.22), (1.25) L] = 0,49277 a4 =10,33262 M = (,24985 13 4'”2—0 19995
Ib i (1.27)] at at 1

Stwierdzamy, ze nawet w skrajnym przypadku jednej poprzecz-
nicy otrzymujemy niezbyt roéznigce sie miedzy soba wartoSei k i k.
Jest rzecza widoczna, ze ze wzrostem iloéci poprzecznic réznice miedzy
wynikami uzyskanymi za pomocg obu metod szybko-maleja.

Dla rusztu swobodnie podpartego wzdtuz brzegow x =0 i x =a,
a wzdluz brzegbw y=0 i y=> utwierdzonego zupelnie nie uzy-
skamy tak nieznacznych roéznic jak w przypadku rusztu z wszystkimi
brzegami swobodnie podpartymi.

Tablica 2

r \ 1 2 | 3 4
i & (et
J{,h |wzor (1.43)] 1= Ll 73\ =2, 7252l Aiie (s 1,818'7]—1 f%’——3-):1,362"." —|=—)= 1,090
2 n |4\ & | 5\ x
= l{“ zory (1.18.1), i ."—2 . 99.908
k ._)'_ﬂ_ (1.22.1), (1.25.1) 192 = 1,9711 \ !6—2 = 1,6631 | -}-—4}—5-:1.2766‘ ——— =1.026
I i(1.27.1)] at | | 7t

Jednak i tu jest rzecza widoczng, ze dla r =4 2z powodzeniem
zastapié mozna ruszt modelem plyty ortotropowej o zerowej sztyw-
noéci na skrecanie. Wykonane przeliczenia wykazuja, ze dla rusztéw
o innych niz tu podano warunkach brzegowych na krawedziach x==0,
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x=a, y=0 i y=">b otrzymamy dostatecznie dokladne wyniki, zaste-
pujac ruszt o cazterech poprzecznicach plyta ortotropowa o Zerowej
wartodei sztywnosci na skrecanie.

Rozpatrzmy jeszcze szezegblny przypadek rusziu na wszystlﬂch
brzegach swobodnie podpartego, w ktérym I/a, =J/b,. Wtedy k=1

Oraz
EJ n® 0?
S="p (92+;é)-

Najmniejsza wartoScia sily krytycznej bedzie

(1.44) s=-2~%°:—“1 dla 0=1,2,3,..00

Model plyty ortotropowej naklada jednak znaczne ograniczenia na
rozwigzania. W przypadku rusztu o réiznych odstepach poprzecznic
i podiuznie, o réznych przekrojach pretéw i wreszcie przy réznych
sitach $ciskajacych duze uslugi odda¢ moze metoda energetyczna.

Jako podstawe rozwigzania przyjmiemy kryterium energetyczne,
sformutowane przez Timoszenke i Bryana, [5] i [6]. Opiera sig
ono na zasadzie prac wirtualnych i glosi, ze ukiad znajduje sie w réw-
nowadze przy dowolnym wirtualnym przemieszezeniu, gdy zmiana
calkowitej energii jest rowna zeru

(1.45) §IT—= 8 (V+T) = 0.

Tutaj V jest pracg odksztalcenia, a T praca sit podluznych., Ze
zwigzku (1.45) wynika bezpoSrednio, ze IT=V -+ T = ekstremum.
Tak postawione zadanie wariacyjne rozwiazemy stosujac metode
W. Ritza, [T7].

Powierzchnie ugigeia rusztu przyjmiemy w postaci podwéjnego
szeregu

(146) a:' y} 2 2 Aum Xn (m Ym (y)

n=1 m=1

Funkcje X,(x) i Ya(y) przyjmiemy tak, aby spemialy réwnania
rézniczkowe

(147) Xflv'_afll Xﬂzog Y}:"—ﬁ?nYJM.:O.
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Przyjete w ten sposéb funkcje przedstawiajg postacie wiasnych
drgan poprzecznic i podtuznic. Poczyniono tu zalozenie, Ze poprzecz-
nice sa podparte w obrebie kazdej z czterech krawedzi rusztu w jed-
nakowy sposéb.

W my$l zalozenia (1.46) ugiecie i-tej poprzecznicy wyrazi¢ mozna
wzorem

Wy=y; = 2 Bm'X:l{x),

n=1

gdzie

Bui= 2 um Y m (yf) )

m=1

a ugiecie i-tej podluznicy wzorem

w-\';"i = 2' Aml Ym {y)

m=1
gdzie
Api= 2 apm Xn (x .’) .

n=1

Calkowita energia ukladu przyjmuje posta¢
b

i=r 9 9
/ 1 d Wy=y; d Wa=x; ;
n=- EJ.:f (-————) dx + + ZEI.f(dayg )dy__.
0

i=1

(1.48) i ; ;:—r Wyey;
S __—dr—l f( )

Dla obliczenn urywamy szereg (1) na skorczonej wartoéei m i n. Od
ilodci przyjetych wyrazéw szeregu zalezy dokladnosé wynikéw. Wsta-
wiajac (1.46) zauwazymy, ze II jest funkcja wspolczynnikow @
Wspolezynniki te nalezy dobraé w ten sposob, aby I7(am.) osiggato
ekstremum. Uzyskamy to ze zwigzku

011
0 Amn

(1.49) =0.

Prowadzi on do ukiadu m+n réwnan liniowych jednorodnych za-
wierajacych wspoélczynnik .
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Wypiszemy réwnanie (1.49) dla wskaznikéw (j, k):

(1.50) S{E Ji [1 l 2 Bu Xu (I)
=1 l.l 1 !

- b
i=p mn

+ Y EL f | > A (y,-}JXk () Yj W) dy —
=1 - 1

0

Y (y) Xy (x)da +

i=1

=" 2 , Si j I Z -Brm‘X:u (x)l Y_.r' (yf] X;.- (x) da =0
Bassi
]

m=1,2,.u; K iyn; m=1,2, .., j..,m)

Poniewaz funkcje wlasciwe (1.47) sa ortogonalne, zatem

a b
[ xuxpdz=0, [v.Ydy=o.
i} (1
Réwniez
| X X dze=0,
(i}
gdyz
‘.‘ a q
Ws) [ XoXide=|X.Xe— X0 X | + [ XY Xeda.
0 0

Pierwszy czlon jest rowny zeru ze wzgledu na warunki brzegowe,
a drugi réwna sie
&

fl: ’ X, Xpdx=0.
0

" Podobnie

b b
f Ym Y;dy=0, f Y:; Y;dy=0.
0 0

Funkcje X, i Y, znormalizujemy w ten sposéb, aby bylo

a

b
(1.52) [ X2 da= = [Yhay=2.
0 0 2
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Ze zwigzku (1.51) dla n=k mamy

(]

a
[ x2de = [ XN X, dx=db 2.
0 0 2

Analogicznie
b 1
0 0 2

Tak wiec ukiad réwnan (1.50) przyjmie postaé
i=r i=,

P
=
(153) X BJiBuY) ()5 ab+ ) EL AuXa(w) o ff —
=1

=1

— Z St I l Z By X;, (:.B}JY__: (y1) X:'g (x)dax=0
=1 i -

m=1,2,...; K,y M=1,2,...; T 0005 M)

% S %(M(ﬂg’i
S, . s
r r e W
oA
El; Z
7
5 A EY; 7R
S A2
g L
S, 1 1
1 xl2 !
7
amm— 1

Rys. 4

Szezegdtowiej rozpatrzmy przypadek szczegblny jednakowych po-
przecznic (J; =J) i podiuznic (I; =1I) oraz jednakowych si podiuznych
(S:=2S). Ponadto niech poprzecznice i podluznice beda na koncach

swobodnie podparte.

Wtedy
—ain 47Y =
Y,:—-sm B ﬁ} b
Bl R S KR
a a
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Uktad réwnan (1.53) przyjmie postaé

(1.54) EJaa + EIbfj F=———————Saka =0
2; Byi sin J—%yi

(k=1,2,..,n, j=1,2,..,m).

Stad wyznaczymy site krytyczng

EJ »* | k? Ib 7 o
(1055) S= b2 E yka kz! 9 I
gdzie - )
Ay Sip
a ,g{ 7 a
0= b’ VRl ==

Z Byi sm

i=1

Z wyrazenia (1.55) wynika, ze najmniejsza wartoéé sily krytycznej
ofrzymamy dla j=1.

Znaczne uproszezenia uzyskamy dla przypadku szczegdlnego, z za-
sady spelnionego w rusztach, mianowicie dla przypadku réwnych
odstepéw miedzy poprzecznicami [b=(r+1)b,] i podluznicami
le=(@+1)a]. .

Wystepujace w wyrazeniu

kaz N\ ki
AJ _'_"  Si —

:_21 i Sin ,-=§ Ajj smp+1

Vel = o= == .

jm y.* . Jo

B i i T

E ki Sin ——— ;Bk sin 1

sumy posiadaja postaé

| Y gin AL gy mai e
e R T B T G L

Napiszemy powyzszag sume w' postaci réwnorzednej

<[ (n-—m)xi m%—m)ni,]
3:58) ZI X M T T
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Dla m s n suma ta jest rowna zeru, gdy jednoczesnie (n—m)
i (n+m) sa wielokrotno$ciami 2 (t+1) lub gdy (n—m) oraz (n-+m)
jednocze$nie nie sa wielokrotno§ciami 2 (t1).

Dalej mamy

sin mai "_'_ t+1
Z sin t_——ll o — T

gdy tylko m+n jest wielokrotnoscig 2(t+1), a

Ty
Zsin nmi o mai n t41
e t-+1 t41 g

gdy jedynie (m+mn) jest wielokrotnoscia 2 (t-1).
Wreszcie dla m =mn mamy

2 2nni_t+1
t+1 2 7

gdy n nie jest wielokrotnoscig (t—]—l), oraz

Z 5 t—;; =9,

gdy n jest wielokrotnoscia (t+1).
Tak wieec w przypadku gdy ruszt sklada sie z kilku poprzecznic
i podiuznic oraz gdy z szeregu (1.46) bierzemy tylko tyle czlonéw,
aby byl speliony warunek (m + n) << 2 (t +1), sumy wystepujace w wy-
razeniu dla y; sprowadzaja sie do jednego czlonu yxi=p-1/(r+1).
Zwazywszy, ze b= (r+1)b; oraz a=(p+1)a,, otrzymamy z réw-
nania (1.55)

EJ 2 k‘z — 2
(1.57) S= a—"" (02 +k%),
gdzie
b,
k=o

zgodnie ze wzorem (1.43) uzyskanym z rozpatrywania rusztu jako
plyty ortotropowej o zerowej sztywnosci na skrecanie.
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Nasuwa sie jeszcze pytanie zasadnicze: przy ilu podiuznicach trak-
towaé mozna poprzecznice jako spoczywajgce na sprezystym podiozu?
Aby odpowiedzie¢ na to pytanie; nalezy si¢ uciec do Scisltego rozwia-
zania konkretnego przykladu i poréwnaé wyniki z uprzednio uzyska-
nymi rezultatami, [4].

Wyznaczmy zatem sile krytyczna rusztu skladajacego sie z jednej
poprzecznicy i czterech podiuznic, a wyniki uzyskane poréwnajmy
z wynikami uzyskanymi ze wzoréw (1.17). Jako nadliczbowe tego
czterokrotnie niewyznaczalnego uktadu przyjmiemy sity X; (i=1, 2, 3, 4)
wzajemnego oddzialywania poprzecznic.

Z przyrownania do zera wzglednych przesunieé pionowych w punk-
tach 1, 2, 3, 4 otrzymamy uklad réwnan '

4 7 _r =4
SRR ERR ___S:‘X,-a,-k:o (k=1,2,3,4).
—
tTilee
¥ L
x 5 4 Przyréwnanie do zera wyznacz-
; nika tego ukladu réwnan jest

warunkiem wyboczenia. Rozpa-

Rys. 5 trzy¢ nalezy dwa przypadki wy-

boczenia: jeden o symetrycznej,

drugi o antymetrycznej postaci ugiecia poprzecznicy. W pierwszym

przypadku jest X,=X,, X,=X, w drugim X,——X,, X,=—X,.
Tak wiec dla symetrycznej postaci wyboczenia mamy

Xy (051 + 050) + Xo(0y2 + 8,5) =0, .
(1.59) _ (021 =014
X, (62\ + 524) + X (032 + 60y) = 0.

P=1

s r‘—gf 7 'fik -—ILS

5, _
|

& Ex !

a

Rys. 6

Tutaj wielko$¢ o jest przesunieciem punktu k belki (poprzecznicy)
na dwu podporach swobodnie podpartej, $ciskanej sita S i obcigzona
sila pionowa P=1 w punkcie i. Przesuniecia te otrzymamy z linii
ugiecia belki Sciskowej (rys. 6)



Z zagadnien teorii rusztdw plaskich 123

__sinu&'sinpdi &' & £~ £
[ Oi Sishun 5.y dla &>§&,
(1.60)

l bm_smpf, sinpp &' &

Spsin pa Sa RiA N

Wyrazenia (1.60) napisa¢ mozemy réwniez w postaci szeregu

2a® sin ay & sin ay &

EJat, 45 . n! —sn?

(1.60.1) Opi =

dla Ek—_é.l .

Tutaj przyjeto oznaczenia
, S Sa’
K=gr ‘TRz

Wielko$¢ §,, z rownania (1.59) sklada sie z dwu czesci, z ugiecia
punktu i poprzecznicy i ugiecia punktu 1 podiuznicy, wywolanych
w ukladzie podstawowym statycznie wyznaczalnym stanem X, =1.
Podobnie rzecz ma sie z wielkoScig dss.

Wyznacznik ukladu réwnan (1.59) przyjmie postac

2
| @y + 9p7 G
: o =0,
Uy, Qow + 9
gdzie
sin A sin D% COS - AL
5 2 10
a, =2 — —nls !
n=1,2
= SmZn-rS nnc nx
5 2 10
amzz - nd"—'ﬂ."s E]
n=1,2,.. L
oo 'f‘.‘.“l’ nmw o nw
sin — sin
b 2 10
s = Tl _nfg
=120
Tutaj .
. _aﬁn S EJa
SE ’ " , u_z
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Wielkoéé f,, jest reakcjg Srodkowej podpory podiuznicy (traktowanej
jako belka dwuprzeslowa) dla stanu w=—1 na Srodkowej podporze.
Po prostych przeksztalceniach "otrzymamy z wyznacznika ukiadu
réwnan (1.59) nastepujacy zwiazek:
}'?72

Qs 1'1_5-_ (a |- + a1,)

albo
(1.61) r= L S— ;
SRR - PN T O L. (S
sin —=sin —=cos 74 (V5+5 8 cos 10)

2 S

n=1,3,...

n!—n?s
Dla antymetrycznej postaci wyboczenia otrzymamy uklad réwnan:

(6243 dl:i)

X, (611_61-|)+X§ (612——(51,,] =0,
(1.62) ‘

X (89— 0sy) __!'Xﬂ (820 — dag) = 0.

Rozwiazanie tego ukladu réownan daje

(1.63) r=———
Ao V' 5 — (@ + lsp)
gdzie
sin cos 27 sin 3—1'1'—7[
; o 5 2 10
= n—nls )
:f:'!.,?
— sin cos L sin ha
) §‘ 5 2 o
gy = — 2 1 2 ’
n'—nsg
=190
< sin 2% cos “Z gin BX
o 5 2 "o
Uy =—2 T ni—nis
1=1.8.:.:
Zwigzek (1.63) przeksztalcimy na

i nn . na na 1 nn
il ] LN ML | I T L)
sm__ 5 sin 10 cos ) 3— V5 —8cos 10

nt—n2s

(1.64) r=-—- T e ( — )

n=2.4,6,...
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Na rysunku 8 naniesiono s na podstawie zwiazkow (1.61) i (1.64)
jako funkcje r. Krzywe te przecinaja sie tworzac przedzialy, w kt6-
rych mamy do czynienia z symetryczna wzglednie antymetryczna
postacia wyboczenia.

Linig pelng wykre§lono najmniejsze wartosci s w zaleznosei od
parametru r charakteryzujacego wilasciwosci sprezyste poprzecznic
i podhluznic.

Linia AB charakteryzuje symetryczng posta¢ wyboczenia o jednej
péifali, linia CD o trzech poifalach, linia BC i DE charakteryzuje
antymetryczng postaé wyboczenia o dwu i czterech péifalach.

Przy potrakiowaniu tego samego rusziu jako skladajacego sie
Z jednej poprzecznicy i cigglego rozmieszezenia podiuznic otrzymamy
site krytyczng ze wzoru (1.17)

S=EJan+ 51‘2.
a4 iy

Réwnanie to mozemy napisa¢ w postaci

e ra
{1.65) _ s=mn +mnﬂx”a1 :

Dla rozwazanego tu przypadku czterech poprzecznic jest a,=a/5.
Zatem

.5
(1.65.1) e o

O

Wstawiajac kolejno n=1,2, 3, 4, otrzymamy proste

57 5r

5r . 5r
5:1‘1";5, 3—4"_—'— S-—-—9+9—7;§, 8——-16+16”,_,.

Proste te naniesiono na rys. 7. Najmniejsze wartoSci s otrzymamy
z linii }amanej A’ B’C’'D’. Spostrzegamy tu duza zgodno$¢ wynikéw
dla wyboczenia wedlug jednej i dwu poéifal. Dla r=100 ofrzymano
z réwnania (1.61) wartosé s=14,4, z réwnania (1.65.1) wartosc s=14,64.

Procentowa roznica wynosi tu

14,64 —14,4

=1.67%.
14,40 1,67%
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4

Jezeli poprzesta¢ na tej dokladnosci, to mamy

_ @B —
= S, = 100.

L

Zwazywszy, ze f;;, = » EI/b%, otrzymamy w przypadku rusztu wedlug
rys. 5, (v =48):

(1.66) Cr=3 g

! . 7T . e [

100 200 300 400 500 600
Rys. 7

W ponizszej tabeli naniesiono stosunek J/I w zaleznosci od p=a'b

o=a/b ‘ 1 k 2 3 ‘ 4 |10

i
!
|
= ’ 0,0486 ‘ 0,3891 l 1.3131 r 3,1126 ' 48,6340

~|

Dla utwierdzenia zupelnego podiluznic nalezy we wzorze (1.66)
wstawi¢ » = 192.

Dla rusztu o dwu poprzecznicach i czterech podiuznicach swobod-
nie podpartych jest »=32,4; dla podiuznic zupelnie utwierdzonych
»=162. Odpowiednio zmieni si¢ i granica stosunku J/I.

Doprowadzimy teraz funkcje s=f(r) do postaci S=f, (o). Przyj-
mijmy ponadto, ze 481b/='Ja, =1, a,=a/5.

Wtedy

S b* a?

S=EiA =73 ¢
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Na rysunku 8 naniesiono krzywe S =7{,(p); dla poréwnania na-
kre$lono funkcje S=1f,(p) wedlug wzoru (1.18) (najnizszg krzywag
z rysunku 2). Otrzymujemy tu duza zgodno$¢ wynikéw dla wyboczenia
wedlug: jednej wzglednie dwu poétal.

Sht
EJT*

{

40 ==~

3 f=——r—

i

f
1 [
20 VE 30 Viz 40 b
Rys. 8

Reasumujgc stwierdzi¢ trzeba, ze dla r=100 mozna juz przy
czterech podiuznicach traktowaé poprzecznice rusztu z dostatecznym
dla celéw praktycznych przyblizeniem (doktadnosé << 2,0%) jako belke
spoczywajaca na ciagtym sprezystym podiozu. Warunek =100 jest
w konstrukcjach budowlanych na ogoé! spelniony.

7 powyzszych rozwigzan wynika, ze juz przy czterech podiuznicach
mozna traktowaé poprzecznice, z dostatecznym dla celéw technicz-
nych przyblizeniem, jako belke spoczywajaca na sprezystym podiozu.

Przeliczenia dla innych stosunkéw 481b/zn'J, a, oraz dla dwu po-
przecznic wskazujg na duzg zgodno$¢ wynikow uzyskanych w sposob
Scisty i w sposéb przyblizony.

2, Zajmijmy sie rusztem zlozonym ze znacznej iloSci podiuznic
Sciskanych i kilku poprzecznic. Niech podiuznice rozmieszczone beda
w jednakowym odstepie @, i niech posiadaja jednakowe przekroje.
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Przy wyznaczaniu sity krytycznej Sp ukladu wychodzimy z rownan
roznieczkowych ugiecia poprzecznic dla S = Si:

=Y

‘ .
a” Wy -+ Z ﬁ;,,—w;z{) . (k‘__l, 2,..-,1’}-
=1

(2.1) a, EJp g
W powyzszym ukladzie wielkosci fr: sa funkcjami sily podiuznej S.

Zajmijmy sie przypadkiem szczegblnym swobodnego podparcia
wszystkich poprzecznic. Poniewaz wyboczenie nastapi przy jednej

potali w kierunku osi x, zalozyé mozemy £0
(2.2) w; = A; sin 3; : 4 E
7 £
Wstawiajge (2.2) do (2.1) otrzymamy é Er
7 !
| i=r ? = Oy =
EJk.'-'! . . { -
(23) &= At D fuls) A=0 n
= 2 g ]
Qe =12y w?); s

Przyrownanie do zera wyznacznika po- e
wyzszego ukladu réwnan jednorodnych pro- Rys. 9
wadzi do réwnania przestepnego. Najmniej-
szy pierwiastek tego réwnania daje warto$¢ najmniejszej sity krytycznej.

Mimo formalnie prostego algorytmu, rozwiagzanie uzyskane w po-
dany tu sposéb nadaje si¢ jedynie do przypadku jednej, dwodch i naj-
wyzej czterech poprzecznic. Trudnosci polegajg na skomplikowanej
postaci funkcji fri(s) i wyznacznika ukladu. Dla wiekszej iloéei po-
przecznic postuzy¢ sie mozna metodg energetyczng lub modelem plyty
ortotropowej o zerowej sztywnosci skrecania.

Ograniczymy sig do rozpatrzenia rusztu z jedng i z dwiema po-
przecznicami w zalozeniu swobodnego podparcia podiuznic wzdiuz
prostych y=0 i y=b. '

Punktem wyjscia dla wyznaczenia wartosci fi» bedzie linia wply-
wowa ugigcia (funkcja Greena) wedlug wzoru (1.60).

Korzystajac z powyzszych wzoréw wyznaczyé mozna wspolczyn-
niki d;x (ugiecla punktu i podluznicy wywolane obcigzeniem P=1
dzialajagcym w punkcie k). Wielkoéci B sa wyrazami macierzy sprze-
zonej z macierza wielkoSei d.
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Niech dany bedzie ruszt o jednej poprzecznicy o sztywnosci EJ.
Niech poprzecznica ta lezy w odleglosci y =b/2 od osi x. Uklad row-
nan (2.3) ograniczy sie do jednego réwnania

EJa,a'

(2.4) 4 B () =0.
Tutaj
2 A0
b=l g— 2 b
TR ST Susingd 4S°
gdzie
S
i
A ¥
Wprowadzajac oznaczenia
?__Jfa,n"’b“ S__'_S_E. bu=mnts
= Tdt = Elz*’ el

napisa¢ mozemy zwiazek (2.4) w postaci

(2.5) = —— =

Dla r=0, a wiec w braku poprzecznicy, otrzymamy s=1, tzn.
s == EIa%b%

-
J

‘4.'.'.'

10

160
Rys. 10

Dla =16 jest s=4; otrzymujemy to wygiecie wedtug dwu pétfal,
z zerows warto$cig ugiecia na prostej y= b/2. Jest rzecza interesujgca,
7e dla * = 16 nie otrzymamy juz zwiekszenia sity krytycznej. Wykres
s = f(r) przedstawiono na rys. 10.
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Rozwazmy ruszt o dwu jednakowych poprzecznicach. Niech po-
przecznice dzielg bok b na trzy réwne czesci.

Otrzymamy uklad réwnan
(al EJ =

A, A, =0,
- 2 ﬁn) +Bia

Bt A, +(—“—“£"—“‘i+ﬁn)A —0.

Rozpatrzyé nalezy dwa przypadki, wyboczenie symetryczne i antyme-
tryczne. W pierwszym przypadku jest A,=A4,, w drugim A,=— A,.
Ponadto ze wzgledu na symetrie ukladu jest f,; = fu..

Dla symetrycznej postaci wyboczenia mamy

aEJ A 1

& hatha

(2.7

Zwazywszy, ze w my$l wzoréw (1.60) jest

sin ub/3 cos ub/6 1

S . =
l—;(én'!'ﬁrz)— b cos ub/2 37

otrzymamy po prostych przeksztalceniach

5
1 sinmys/3cosnys/6
3 ayscosm)/s/2

(2.8) »=

Dla postaci antymetrycznej wyboczenia jest

0BJa' 1
ﬂ.lﬁ 6“'_"51-}

(2.8.1)

=0,

co prowadzi do zwigzku

8
1 sina)/s/3sinnys/6

9 wy/ssinays/2

(2.9) =

Na rysunku 11 przedstawiono s =7 (7). ‘

Dla r=81 otrzymujemy s=29. Odpowiada to wyboczeniu syme-
trycznemu wedlug trzech péial. Dla r =81 nie otrzymamy juz wzrostu
sity krytycznej S.
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Dla czterech poprzecznic otrzymamy uklad réwnan

i=4

EJ«
Ay + Zﬁk,A,—o (k=1,2,3,4).

(2.10)

Uklad ten napisaé mozemy réwniez w postaci

=4
2.11 Ori A = g
(2.11) Zm EO . EM =i (k=1,2,3,4)
|s
90
b
/
/
40 -
a
10
: : ; . PR S
10 20 30 40 50 60 70 80
Rys. 11

Dla symeirycznej postaci wyboczenia otrzymamy A,=A4, i A,=A4,,
a dla antymetrycznej A, =—A4, i A,=—A,.

Rozwigzanie tego ukladu jest identyczne jak ukladu réwnan (1. 59)
i (1.62). W wyniku rozwigzania otrzymamy wzory (1.61) i (1.64)
z tym, ze r ma tu inne znaczenie, mianowicie r=Ja, #°b*/Ia".

Dla wiekszej iloSci poprzecznic, jednakowych i rozmieszezonych
w jednakowych odstepach, najwygodniej bedzie uciec sie do rozwia-
zania przyblizonego, opartego na modelu plyty ortotropowej o zerowej
sztywnosci na skrecanie.

Wstawiajac do réwnania rézniczkowego

EJ 0'w EI d'w . S Pw
(2.12) b, 0x' ' a 0y ' a Bysﬁn
funkcje

T nm
w== Asm-——sm-——y,
a b
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otrzymamy

EJ =  EI n :r] S nta
| o S BT
(212} b, A T B, B g B

Wprowadzajge jak uprzednio oznaczenia

__Jon* b G S b2
— Ia' T EIx*

oraz zakladajac cztery poprzecznice (b, = b/5), napiszem;lr zwigzek
(2.10.1) w postaci

(2.14) s=n"+4 5r a’nd

Réwnanie to ma identyczna posta¢ z réwnaniem (1.65.1). Stwier-
dzamy wiec, ze dla czterech i wiecej poprzecznic mozemy zastapié,
z dostateczng dla celéw praktycznych dokladnoscig, uklad réwnan
(2.1) réwnaniem rézniczkowym plyty ortotropowej o zerowej sztyw-
noséci na skrecanie.

3. Dla wielu przypadkéw wyboczenia pomocna bedzie funkcja
Greena (linia wptywowa) rusztu. Niech dany bedzie ruszt o szeregu
podiuznic w odstepie a, oraz o jednej

el /‘,ﬂ" _ poprzecznicy. Szukamy linii wplywo-

wej ugiecia punktu (x, y) poprzecznicy
&’\rm -2, dla sity P=1 w punkcie (&, 7).
s . s Ograniczymy sie do przypadku swo-
0 - bodnego podparcia poprzecznicy.
Réwnanie rézniczkowe ugiecia po-
# g1 przecznicy ma tu postaé
LI 7 | 60 amr Ghesa i+
’ = ¥ 511 wy =Ty,
Rys. 12 gdzie r; jest rowne zeru, z wyjat-

kiem odcietej x=¢, dla ktbérej przyj-
muje ono wartosé Rg(a;). Tutaj RY (n) jest linia wplywowg reakcji
podporowej w punkcie (£, y) podiuznicy i-i jako belki na trzech pod-
porach niepodatnych.
Zaldzmy

(3'2} 2 Au 1 sin Oy X L (.’1’.‘) 2 RI{"I:' Z sin ay, £ sin Uy L.

n=| » n=1
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Wistawiajac powyzsze szeregi do (3.1) uzyskamy

(3 3) At (EJ ay f.v'-n Sﬂ-] w: '|' ﬁll} e 2R; (n) Z sin tp ESII'I. an .

n=1

Linia, a wlasciwie uklad linii wplywowych, przyjmie tu postaé

(Ul bt d o 2R1(y) 2“1 ~ sinaésingx
B ¢ =12,... |EJ a, a;t:__sai ar + B ()]

Dla ustalonego (x,y) otrzymamy ze zwigzku (3.4) wszystkie galezie
linii wplywowej ugiecia. Jest rzecza interesujgca, ze linie ugiecia
otrzymujemy w postaci iloczynu funkeji » i funkeji &.

Przy pomocy zwigzku (3.4) wyznaczymy linie wplywowa momentéw
zginajacych i sit tnacych poprzecznicy:

d*w d?w
(35) M(xl Y3 E:"?):_EJTJ:%: T(:I-', Y, E’?])z dmﬂl -

Interesujaca jest wreszcie linia wplywowa funkeji X; otrzymamy
ja ze wzoru

X=qa, =w, ﬁn_R?:

przy czym

(3.6.1) X (x,y; &9)=1w, (x,9; &) Bi, (y) — Rily) . dla x=¢
oraz

(3.6.2) X(x,y; &) =w, (&, &) P (y) dla x &

Znajomo$é linii wplywowych X (x,y; &%) pozwoli na wyznaczenie
linii wplywowych momentéw i sit tnacych w dowolnym przekroju
podtuznic.

Dla zagadnien statyki rusztéw polozyé¢ nalezy S§=0.

Dla rusztu o 7 poprzecznicach uzyskamy uklad rownan rézniczkowych

(37) ay EJI: cx wk +a Sk ‘I‘ 2 ﬁ:kw:-rk (k=1,2,..,7),

gdzie 1, = R} () dla x=¢ oraz r,=0 dla x #¢.
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Podstawiajac jak uprzednio

: 2RL(D) N . .
'(38) W= Z Appsina, x, Tr— —-G'. sina, £ sinay x
n=1 n=1.2,...

otrzymamy uklad réwnan liniowych niejednorodnych

0
%@?) sina, &

i=r
(39 (@EJrah—a,Sea) Annt D) fuiAni =

i=1
(k=1,2,...,7 n=1,2,..,09).

Rozwigzujac powyzszy uklad wzgledem A, 1 wstawiajgc do pierw-
szego szeregu (3.8) otrzymamy linie wplywowsa ugiecia we(x, y; &, 7).
Ogoélnie stwierdzi¢ mozna, ze w zagadnieniach statyki (Sx=10) szeregi
dla wy sa silnie zbiezne i dla celéw prakiyki inzynierskiej wystarczy
przyjaé jedynie pierwszy wyraz szeregu. W zagadnieniach jednoczes-
nego zginania i Sciskania rusztu zbiezno$¢ szeregu zalezy od sto-
sunku S/Skr.

Przy zdazaniu tego stosunku do jednoSci zbiezno$¢ szeregu maleje
i dla S==S;r szereg jest rozbiezny.

Wyprowadzone zaleznoSci pozwalaja na rozwigzanie szeregu przy-
padkéw wyboczenia rusztu.

Niech dowolna poprzecznica, na przyklad k-ta bedz1e podparta na
koricach a ponadto w obrebie rusztu, w punkcie o wspéirzednych
(x,,Y,)- W punkcie tym ustawiamy sile P=1 i zgdamy, aby dla
S = Si ugiecie w tym punkcie bylo rowne zeru.

Warunek ten wyrazimy w postaci

(3.10) We (Lo, Yo3 Loy Yo) = 0.

Warunek powyzszy prowadzi do réwnania, w ktorym niewiadoma
bedzie wielko$é sity krytycznej S. Najmniejszy pierwiastek tego row-
nania daje najmniejsza wartosé sity krytycznej.

Zadanie uog6lni¢ mozna na dowolng liczbe punktéw podparcia
poprzecznic w obrebie rusztu oraz na podpory podatne, sprezyste.

Dla przykladu zajmijmy sie przypadkiem najprostszym, mianowicie
rusztem o jednej poprzecznicy podpartej w $rodku rozpietosci. Zatézmy
symetrie ukladu.

Wtedy przy

=fE=q/2 Ui %
=&=4als, Ri(?ﬂ—‘lg ﬁ]_]:'
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otrzymamy z réwnania (3.4) w(e/2, b/2; a/2, b/2)=0 albo

oo

1 Sa*
3.11) = . Sa*
| Z nt— in? 4 2810 (_“)‘ N 3
n=138,... b

a'Ja,

Drogag prob wyznaczymy z powyZzszego szeregu wartosc Amin, 8 tym

samym

EJ =
Sr.-u'u — Rmm
a®

481b (a 4__1
ﬂ" JG.I b T
otrzymamy

lmm — 8»39; Spmin=128 39 z EJ

Dla

Rys. 13

Dalszym przykladem niech bedzie ruszt o dwu poprzecznicach i wielu
podtuznicach o sztywnoéci EI oraz jednej o sztywnosci EJa. Przyjmujac
jako nadliczbowe ukladu sily wzajemnego oddziatywania Y, i Y.
w punktach skrzyzowania belek uzyskamy rownanie kanoniczne
w postaci

(3.12) Yiyu+ Yeya=0,

Y 7u + Yayse=0.
Uklad ten bedzie niesprzeczny, gdy
(3.13) Y11 Yas— Yia = 0.
WartoSci 5, a0 1 712 Skladaja sie z dwu czlonow:
yir = 0y +wy (&, 10 &y M), Vog = Oag + Wa (&2, 73 &s, 1),
- Y1 = 0g2 + Wy (&1, 745 Ea 7a)-
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Wielkosei 0,4, 0ss 1 0,2 znajdziemy latwo jako odpowiednie rzedne
linii ugiecia podiuznicy o sztywnosci EJa, wielkosci za$ w, (&, 1 Ea, M)y e
z wyprowadzonych uprzednio wzoréw dla jednoczesnego zginania
i Sciskania rusztu.

Podobne przyklady mozna by mnozyé. Stwierdzi¢ jednak trzeba,
ze w przypadku, gdy istnieja wiecej niz dwie poprzecznice i podiuznice,
o innej sztywnosci niz pozostale, rozwigzanie réwnania przestgpnego
dla wyznaczenia sit krytycznych natrafia na nieomal nieprzezwycie-
zone trudno$ci natury rachunkowej. Dlatego w bardziej zlozonych
ukladach uciec sie nalezy do metody energetycznej. Przy kilku po-
przecznicach o jednakowym przekroju, potozonych w jednakowym od
siebie odstepie, postuzy¢ sie mozna teorig plyt ortotropowych.
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Peawoma
13 BOMPOCOB IMJIOCKMX MEPEKPBITHH

B Hacrosiie# pabore aBTOp paccMaTpMBaeT BOTPOC OfHOBpEMEH-
HOro NeWCTBHA nonepe4yHoro W3ruba v cxkaThs M npobreMy ycToOM-
YMBOCTH TJIOCKOTO MEPEKPbITHSA. [1€peKpbITHE COCTOWUT M3 MHOTHX,
Ha paBHbIX PACCTOYHUSX YIOXKEHHbIX, OJWHAKOBbIX GaNOK rNaBHOro
HanpasJieHHWsd, MNOANnepTbhiX HEeCROJBRUMH NepexkpecTHbIMH bankamu.
Cunras, 4yTO CUIbl B3aUMOMEWCTBUS Ganku TNaBHOrO HarpaBleHWs
Ha riepeKpecTHble CBA3M Ganku passiomeHbl HENnpepbIBHLIM 06pa3oM,
MOJKHO MPHBECTH 3afauy K PELIEHWIO CHCTEMbl JIMHEHHBIX Audpde-
peHuranbHbix ypasHenuit (1.12) u (1.19). D10 nossonser BecbMa
MpOCTO MOJIYYHTb HE TONBKO MpOrHG mnornepeynH MyTéM HHTErpupo-
BaHus ypasHeHnuH (1.12), HO W KpUTHYECKHE CUNLI NyTEM pelueHHs
COOTBETCTBYIOUIEH rpaHWYHOW 3amauu cucTeMbl ypaBHenuid (1.19).
lanee pokasaHo, 4To B C/iyyae MOMEpPEYUH OAMHAKOBOTO CEYEHMH,
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YNIOXKEHHbBIX Ha PaBHbIX PaCCTOAHHMAX M CKHUMAeMbIX CHIIOH S, MOMHO
nnga Gonee yeMm TPEX mepekpecTHblX 6anok 3aMEeHUTh CHCTEMY ypas-
nennh (1.19) nuddepeHuransHLIM ypaBHEHHEM YCTOMYMBOCTH OpTO-
TPOMHOW MIAaCTHHRMU C HYNEBbIM 3HauyeHWeM KECTKOCTH Ha KpyyeHue
[ypaBHenue (1.29)]. Nanee npusepeHo obuwee peweHue 3amayu npo-
nonbHOro u3rvba nepekpbiTUs NpY NOMOLUM IHEPreTHYECKOTrO METOMA.
HokrasaHo, 4TO, NP OAMHAKOBBLIX CEYEHWSX MEepeRpPecTHbIX 6anok,
NpU paBHbIX PacCTOSHUAX MEKIY HUMM U PaBHbIX CHHUMAIOLIMX CHIIaXx,
pesysbTaThl, MOJNy4YeHHbIE 3HEPreTHYeCKUM METOHOM, BecbMa OH3KM
pesynbTaTaM, MOJY4YEHHbIM MPH NPUMEHEHHUH MOLENH OpPTOTPOMHOH
nnacTMHkM, HakoHeu npoBepeHa AWCCRYcHs Hapl BOMPOCOM YMC/a
norepeyuH, HEOBXONMUMBIX [JIS TOTO, YTOObI MOKHO ObUIO MpPHU BO-
npocax MNpoAONbLHOro M3ruba cyMTaTh MOMEPEYMHbI JIesKalUMK Ha
ynpyrom OCHOBaHHH,

PeweHue mpuBefieHHOe BO BTOPOM YacCTH KacaeTcs ciydas, B KO-
TOPOM JTOHKEPOHbI, PacrnoNOMKEHHbIE HEMNpPEepbIBHO, MOJABEPralTcs
ckaTuio (pur. 9). 3mech paHoO pelleHWe ANS MAOCKOro MEPERPbITH
C OOHOH, BBYMSA W YEThIPbMS TonepeddHamd. Pesynbrartbl, nonydeH-
Hble ONs 4YeTbIpEX MoMepeyrH, CPaBHUBAIOTCA C pe3yJsibTaTaMH, To-
NYyYEHHBIMW Ha MOMOENW OPTOTPONHOM MNACTHHKH, NPUYEM JOKa3aHo
ux 6nuskoe coBnapgaHue. 3TO MO3BOJNSIET 3aKMIOYMTb, YTO ANA Tex-
HUYECKMX LeNeid MOKHO mpH 4eTbipéx u Gonee monepeyrHax 3ame-
HUTb cucTemy pupdepeHunanbHbXx ypaBHeHui (2.1) onHUM npocThiM
nuddepeHunansHbiM ypasHenuem (2.18).

B nocneatelt yactu npuseaeHbl iMHHKM BausHUS (pyHRuMH [ puHa)
C)KMMaAeMoro rneperpbiTUa Npu cune P =1, nepemeanencs Boob
MonepedyrH U JIOHKEPOHOB. Jta (PYyHKUHMS HaXOOHT MPUMEHEHHWEe Ans
onpepeneHus nporuba W CTaTHHECKUX BENWYMH MNepekpbiThs, 06y-
CNOBNEHHbIX MIOGOM HArpy3Koi; HakKOHel HaXOMWT MpPUMEHeHHe MpH
onpeneneHid KPUTHUHYECKOW CHIbl MIOCKUX MEPEKPbLITHH, ONEPTHIX NO
KOHTYPY, @ KpPOME& TOro W B MHOTMX TOYKax B NMpeAefiax neperpbiThg.

Summary

SOME PROBLEMS FROM THE THEORY OF FLAT GRIDWORKS

The author discusses the problem of combined bending and com-
pression and the problem of buckling of a flat gridwork. The grid-
work consists of many evenly spaced identical beams, supported by
several transversal girders. Considering the forces acting between
the longitudinal and the transversal beams as continuously distri-
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buted along the latler, the problem can be reduced to that of solving
a system of linear differential equations (1.12) and (1.19). This per-
mits to obtain the deflections of transversal beams by integrating
Egs. (1.12) and to find the critical forces by solving a correspon-
ding boundary problem (1.19). Next it is shown, that in the case of
transversal, evenly spaced beams of identical cross sections, com-
pressed by a force S, the system of equations (1.19) can be replaced,
for more than three transversal beams, by the equation of buckling
of an orthotropic plate whose torsional rigidity (Eq. 1.29) is equal
to zero. Further a general solution of the problem of buckling of the
gridwork, obtained by means of the energy method, is given. It is
shown that for transversal beams of identical cross sections, evenly
spaced and compressed with equal forces, the results obtained by
means of the energy method are very near those obtained by
means of the orthotropic plate model. Finally the problem of the
number of transversal beams, permitting to consider them as resting
on an elastic base is discussed.

* The results of Sec. 2 concern the case of compression of con-
tinuously distributed longitudinal bars (Fig. 9). Solutions for one,
two and four transversal beams are given. The results obtained for
four transversal beams are compared to those obtained by means of
the orthotropic plate model. The agreement is found to be good. This
permits to state that for technical purposes the system of diffiren-
tial equations (2.1) can be replaced, for four and more transversal
beams, by one simple differential equation (2.18).

Finally, in the last section, the lines of influence (the function
of Green) for acompressed gridwork are given, the force P =1
being moved along the transversal and the longitudinal bars. This
function can be used to determine the deflection and the statical
quantities for any load; it can be equally used to find the critical
force for a gridwork supported on the baundary and at some ad-
ditional points inside.
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