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Zagadnienia rusztów płaskich nabierają coraz większego znaczenia
w związku z rozwojem dwuwymiarowych konstrukcji wstępnie sprężo-
nych i stosowaniem elementów rusztowych ścianowych i stropowych
w budownictwie mieszkaniowym.

Dotychczasowe zainteresowania badaczy dotyczyły zagadnień zgi-
nania rusztów płaskich; opracowano w związku z tym kilka metod
ścisłych i przybliżonych rozwiązania tych złożonych układów. Obecnie
punkt ciężkości zainteresowań przesuwa się w kierunku opracowania
efektywnych metod wyznaczenia sił krytycznych, powodujących wy-
boczenie rusztu, oraz złożonej pracy rusztów zginanych i równocześnie
ściskanych albo rozciąganych.

Ścisłe rozwiązanie wymienionych tu zagadnień nie nastręcza for-
malnie wielkich trudności; zagadnienie stateczności lub też równo-
czesnego zginania i ściskania prętów na sprężystych podporach (a takim
jest w gruncie rzeczy schemat statyczny rusztu) jest opracowane.
Praktyczne jednak przeprowadzenie rozwiązania natrafia nawet przy
bardzo rzadkiej siatce dźwigarów na duże trudności rachunkowe.
Dlatego też poszukiwać będziemy rozwiązań przybliżonych, starając
się to typowo nieciągłe zagadnienie mechaniki budowli doprowadzić
do zagadnienia częściowo lub całkowicie ciągłego.

Droga ta w licznych zagadnieniach mechaniki budowli doprowa-
dziła już do celu. W statyce rusztów, w odniesieniu do ich zginania,
na drogę tę wstąpił chyba jako pierwszy S. T i m o s z e n k o , [1].
W pracy niniejszej metoda S. T i m o s z e n k i została rozszerzona
na zagadnienia stateczności rusztów i uzupełniona drugą metodą,
w której ruszt zastępuje się płytą ortotropową o zerowej sztywności
na skręcanie. '
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1. Zajmijmy się najpierw rusztem najprostszym, składającym się
•z. szeregu podłużnie, o sztywności na zginanie El i długości b, oraz
z jednej poprzecznicy o sztywności na zginanie EJ i długości a.
Podłużnice niech będą rozmieszczone w jednakowym odstępie av

Niech wszystkie podłużnice będą obciążone w sposób jednakowy,
a końce ich na brzegach y = 0 i y = b w jednakowy sposób podparte,
przy czym wyłączamy tu możliwość braku podpór wzdłuż jednego
lub obu brzegów. Krzyżujące się pręty połączone są ze sobą za po-
mocą przegubów.

Obciążenie z podłużnie przenosi się częściowo na skrajne podpory
podłużnie, częściowo na dźwigar poprzeczny.

Rozważmy dwa krzyżujące się pręty, jedną z podłużnie oraz po-
przecznicę. Na podłużnice tę działa obciążenie zewnętrzne p oraz
reakcja podporowa X występująca w miejscu skrzyżowania podłużnicy
z poprzecznicą. Na poprzecznicę działają siły X (z przeciwnym niż na
podłużnice zwrotem) oraz podłużna siła ściskająca S.

s.
El

S ĵ j f f ^
• ' j .

'A 1 T

Rys. 1

Ugięcie punktu skrzyżowania prętów wyrazić można następującym
związkiem:

Tutaj <510 oznacza ugięcie podłużnicy w punkcie skrzyżowania belek,
wywołane w układzie podstawowym (X = 0) obciążeniem zewnętrz-
nym, a 6n oznacza ugięcie tego samego punktu podłużnicy, wywołane
w układzie podstawowym stanem X = l.
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Przy dostatecznie gęstym rozmieszczeniu podłużnie zastąpić mo-
żemy siły skupione X obciążeniem ciągłym X= ąa^.

Z równania (1.1) otrzymamy zatem

(1.2) m ^ ^ + qM,,, ^'=~t
b u j o i C

Ugięcie zginanej i jednocześnie ściskanej podłużnicy wyznaczamy
z równania różniczkowego

W przypadku rozciągającej siły w poprzecznicy należy w równaniu
(1.3) zmienić znak siły S.

Wyrażając funkcję q(x) w równaniu (1.3) za pomocą związku (1.2)
otrzymamy

(1.4) EJta

Zauważmy, że iloraz <510/&tt wyraża reakcję podporową środkowej
podpory podłużnicy trójprzęsłowej, wywołaną obciążeniem zewnętrz-
nym p, w założeniu, że podpora ta (w punkcie skrzyżowania się po-
dłużnicy z poprzecznicą) jest niepodatna. Wielkość 1/<5U traktować
można jako reakcję podporową środkowej podpory podłużnicy, wywo-
łaną podniesieniem tej podpory o wartość równą jedności.

Oznaczmy
po îo o _i_

ó n óii

Wtedy równanie (1.4) przyjmie postać

(1.5) EJ, a, ^ - + S, a, - ^ + pn w, - Ą.

Rozwiązanie tego równania pozwala na wyznaczenie momentów
zginających i sił tnących poprzecznicy ze wzorów

' } ~~ 1 dx 2 ' da;8 '

Ze wzoru (1.1) wyznaczymy reakcję nadliczbową

co pozwoli na określenie momentów i sił tnących w dowolnym prze-
kroju podłużnie.
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Równanie (1.5) traktować możemy jako równanie różniczkowe od-
kształconej poprzecznicy, spoczywającej na sprężystym podłożu typu
W i n k l e r a o module podłoża @nlau ściskanej siłą osiową Sv przy
obciążeniu pionowym o jednostajnej intensywności Rj/dj. W przypadku
szczególnym, gdy S1 = 0 równanie (1.5) jest identyczne z równaniem
wyprowadzonym przez S. T i m o s z e n k ę dla zginania rusztów.

Rozwiązaniem równania (1.5) jest

(1.7) wx (x) = wl (x) + A, sinace+ A2cosax-\-Aa sin fix-{- AĄ cos fix, .

gdzie

a ivi(x) jest całką szczególną równania niejednorodnego (1.5).
Szczegółowiej zajmiemy się przypadkiem swobodnego podparcia

poprzecznicy.
Rozłóżmy ugięcie w(x) oraz stałą wartość Rj w szereg trygono-

metryczny

(1.8)
n.isinanx,

• sin an x.

a„
njT\

Wyznaczymy z równania (1.5) stałe An,\.

A"A = nn(EJ aa*—Satf~
Zatem

(1.9) w,(x)r- 4 R ? a ' V s i n a « x

gdzie

Na. podstawie wzoru (1.9.) możemy zauważyć, że siła ściskająca S,
zwiększa ugięcie, a zmniejsza je siła rozciągająca.
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Powyższe rozważania dają się bez trudu uogólnić na ruszt o r
poprzecznicach.

Załóżmy, że poprzecznice posiadają różne sztywności i obciążone
są różnymi siłami ściskającymi.

Równanie różniczkowe fc-tej poprzecznicy przyjmie postać

gdzie

q

Wielkości X* związane są z ugięciem fc-tej poprzecznicy związkiem.

(1.11) wk = 6ko+ % Xtdkt (k = l,2,..,r).

Rozwiązujemy powyższy układ względem X*.
Otrzymamy

i=r l=zr

(1.12) Xft — ^ (j3« to/ + j9»< ó/o) = ^ i3'* * " '— R * ^k = *' 2 ' - ' r ) -

Tutaj wielkość R^ traktować można jako reakcję podporową w punk-
cie k podłużnicy o r + 2 podporach, wywołaną obciążeniem zewnętrz-
nym podłużnie, a wielkość /3,-ft jako reakcję podporową i-tej podpory
tej samej podłużnicy, wywołaną przesunięciem podpory k o wartość
10* = ' — 1 .

Wstawiając związek (1.12) do równania (1.10) otrzymamy układ
równań różniczkowych

'—r

(1.13) a^EJ,--^ +a,Sk~^+ ^ ^ w ^ ^ ( k - 1 , 2 r).

Powyższy układ równań doprowadzić można drogą eliminacji funkcji
lisa, io8, ...,UJr do równania różniczkowego dla jednej tylko funkcji wt

rzędu 4r.
Ograniczymy się tu jedynie do przypadku swobodnego podparcia

wszystkich poprzecznie.
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Załóżmy i tu, że

2^ A„,ksina„x, Rl = JJ R°i',n sin anx,
(1=1,2,.,. 11=1.2,...

gdzie

Rl,^S ( » - 1 , 8 , 8 , . . . ) .

Założenie to spełnia wszelkie warunki brzegowe zagadnienia.
Wprowadzając związki (1.14) do równania (1.13) otrzymamy dla

wyznaczenia wielkości An.k układ równań liniowych

(1.15) (a, EJk an - - a, S„ al) A„,k + ^ fal An, t — t&.H

(fc = l,2,...,r; n —1,3,...).

Rozwiązując powyższy układ równań względem An,k mamy

i=r

An, li — ^j O.i,j, a Rn, i .
fc=l

Z pierwszego związku (1.14) uzyskamy

(1.16) w,{= 2 J2J 2
(1=1,8,... W=

W wielu zagadnieniach technicznych dotyczących rusztów wysuwane
jest zagadnienie ich stateczności.

Zajmijmy się przypadkiem gęsto żebrowanego rusztu o jednej
poprzecznicy. Dla siły podłużnej S, większej od krytycznej, ruszt
dozna wygięcia opisanego równaniem różniczkowym jednorodnym

(1.5.1) EĄa

Załóżmy wl = Ai,n sina«x, co spełnia warunki swobodnego pod-
parcia i równanie różniczkowe (1.5.1).

Uzyskujemy z (1.5.1) następujący związek:
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Stąd otrzymamy siłę krytyczną

ir
Zajmijmy się tym przypadkiem szczegółowiej. Wielkość fin zależy

od geometrycznych i sprężystych właściwości podłużnie i od odległości
poprzecznicy od osi x:

gdzie % = J/a/b.
Po prostych przekształceniach napiszemy wzór (1.17) w postaci

gdzie

e b ' J:a, jr4 '

Ustalmy wielkość EJ1 i b; niech zmienia się Q = a/b, k oraz n.
Otrzymamy rodzinę krzywych wieńcowych, których rzędne dają nam
najmniejsze wartości siły krytycznej.

Na rysunku 2 naniesiono krzywe (1.18) dla następujących trzech
przypadków:

(1) podłużnice na końcach swobodnie podparte,
(2) podłużnice wzdłuż brzegu y = 0 zupełnie utwierdzone, a wzdłuż

brzegu y = b swobodnie podparte,
(3) podłużnice na obu końcach utwierdzone zupełnie.
Dla powyższych trzech przypadków założono, że poprzecznica znaj-

duje się na osi symetrii podłużnie.
Dla przypadków (l)-(3) mamy

Wreszcie przyjęto
48 Ib

Najmniejsze wartości Sk otrzymamy dla stosunku boków Q — ajb —
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Tym odciętym odpowiadają wartości

Wartości te są niezależne od liczby półfal n.

5.0

4.0

3.0

2.0

m.
EJT'

' \

3.02

5,0

u / u
i / V A33

1/7=/

A-;

-

0,5 1,0 1,5 10 2.5

Rys. 2

3.0 3,5 4.0

Odcięte punktów przecięcia gałęzi o. parametrach n oraz n -\-1
przyjmują wartość

a rzędne

,/fc72n 2+2n+l
n)

Dla rusztu o r poprzecznicach odkształcenie układu, dla sił więk-
szych od krytycznych, charakteryzowane jest układem równań róż-
niczkowych
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d'1 da v̂ f
(1.19) a, EJ„ -T-Jr + a, S* - j - £ + V ^ (. W / = 0 (fc = 1,2,..., r).

Przy poprzecznicach swobodnie podpartych rozwiązujemy układ
równań (1.19) wstawiając

żon = Ah. „ sin a„ x (k = 1, 2, ...,r).

•Otrzymamy wówczas z równania (1.19) układ równań

Układ tych równań jednorodnych będzie tylko wtedy niesprzeczny,
gdy wyznacznik układu będzie równy zeru. Otrzymamy stąd, przy
stałym stosunku sił podłużnych, wielomian r-tego stopnia.

Najmniejszy pierwiastek wielomianu daje najmniejszą wartość siły
krytycznej.

Równanie (1.20) obejmuje obszerną klasę przypadków szczególnych,
jak np. ruszty, w których w szeregu poprzecznie nie działają siły
osiowe lub w których działają siły rozciągające i ściskające. Założyć
musimy jednak, że co najmniej jedna z sił Sk (k = l, 2, ...,r) jest siłą
ściskającą.

Kilka przykładów objaśni nam tok postępowania przy wyznaczaniu
sił krytycznych.

Zajmijmy się rusztem o dwu jednakowych i w jednakowych od-
ległościach położonych poprzecznicach, ściskanych siłą S.

Ze względu na symetrię powierzchni odkształcenia będzie to^tUa
o tym samym A\, n = A2. u •

Z równania (1.20) otrzymamy zatem

co prowadzi do związku

Ct 71 TT d

Przy założeniu swobodnego podparcia podłużnie łatwo znajdziemy, że

« El ,. l l f i „ E I
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Po prostych przekształceniach otrzymamy z (1.21)

(1.22) Sk=—£F

gdzie

3 ~

Dla pądłużnic obustronnie utwierdzonych jest

At ==-
E l
b8 ' 5

(1.22.1)

gdzie
b3

1621 b
Jj^Tt4 '

Rozpatrzmy teraz ruszt składający się z szeregu podłużnie oraz
z trzech poprzecznie o jednakowym przekroju i w jednakowych od-
stępach rozmieszczonych, ściskanych jednakową siłą S.

Otrzymamy układ równań

(1.23)

(aj. E J, a* — Saj a« + 0n) Ai, „

jS3i-Ai,« + [ch.fiJ\ a* — S«i a

A2,;I + (a, EJi a« —

2,« + /S18 A H . » = = 0,

2,« + /323 •AB.H = 0,

« + j8M) A3,„ — 0.

Ze względu na symetryczną, względem y = b/2, postać wyboczenia
rusztu jest A\,n = A^n.

Przyrównanie do zera wyznacznika układu równań (1.23) prowadzi,
do równania kwadratowego względem S, którego mniejszy pierwiastek
daje siłę krytyczną

(1.24)
, ^

Ib

W przypadku podłużnie na końcach swobodnie podpartych jest

23 „ 32 22 „ 9
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El 1 fi

(1.25)

Po prostych przekształceniach napiszemy (1.24) w postaci

24,3374 Ib
/Co '

Dla podłużnie utwierdzonych zupełnie mamy

1 3 2 105
42

oraz

(1.25.1)

= _ § 4 - _ 3 6
is 4 2 y, P » - 4 2

, 124,35 Ib

I I

7t4 J , a , '

Wreszcie dla czterech poprzecznie ściskanych siłą S otrzymamy,,
wykorzystując symetrię postaci wyboczenia względem osi y = b/2,
układ dwu równań

(a, EJ, '& — Sa1<

{fi„ + |8M) Ai.« + (o, E J , QH — S a, a,2, + ,92 a+0B 8) Ą, „ = 0.

Rozwiązanie powyższego układu równań daje

(1.26)
I b

Wu + y™ — V(Ya — YMT + 4 Vn\

Zważywszy, że dla swobodnego podparcia podłużnie jest

0« —3_44
P11 • 2 0 9 Y 209 209 209 y '

488
209

367
209

E l

022 ia = 0t2 + 013.
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otrzymamy

(1.27) JA
J, a,

Dla utwierdzenia zupełnego podłużnie otrzymamy

_ 656
~ 209~ Y>

512
209

415
"209 y>

fet = '

168 48
209

379
209

= 750
EJ

y.y> • i) I

12 — P\2 +
oraz

(1.27.1)
99,908 Ifc>

J, a,'

Przy większej ilości poprzecznie rozwiązanie układu równań (1.20)
natrafia na znaczne trudności rachunkowe. W przypadku większej

ilości poprzecznie o jednakowym prze-
kroju, ułożonych w równych odstępach
i ściskanych jednakową siłą S, uzyskać
możemy wybitne uproszczenia rozwiąza-
nia traktując ruszt jako płytę ortotropową
o zerowej sztywności na skręcanie (rys. 3).

Równanie powierzchni ugięcia takiej
j płyty dla q>q/„- ma postać, [2] i [3 | ,

1

\
->•

EJ

£7

• 0 , -

Rys. 3
Q'u> _ Q

Tutaj w jest rzędną powierzchni ugięcia, Dx i Dy sztywnościami zginania
płyty w kierunku osi x i y oraz qx obciążeniem ściskającym w kie-
runku osi x, jednostajnie rozłożonym na krawędziach x — 0 i x = a.

Przejście od płyty do rusztu charakteryzują następujące związki:

(1.30)

Równanie (1.29) napisać możemy w postaci

(1.31)
EJ *tj£ _L &1 ^ 4. JL
b, dxl o, ' dy* b,
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Rozwiązania równania (1.31) poszukujemy w postaci

(1.32) w(x,y) = X(x)Y(y),

Wstawiając (1.32) do równania (1.31) otrzymamy

/ 1 3 3 )
 E J ^ , S * " E l Y*v

Jest rzeczą widoczną, że równania (1.33) rozdzielić można na
układ dwu równań powiązanych ze sobą parametrem X:

lub

(1.34) ylV

A1 a,
El

ft)1 Y

y

= 0

-0,

gdzie eo'1 = Xia1/EI.
Zajmijmy się pierwszym z tych równań. Postać tego równania

jest analogiczna do równania różniczkowego drgań swobodnych pręta.
Stąd wniosek, że dla q > q/„- podłużnice przyjmą postać identyczną
z postaciami drgań własnych pręta o długości b i sztywności El/a^

Ponieważ wyboczenie rusztu w kierunku osi y nastąpi przy jednej
półfali, interesować nas będzie najmniejsza wartość parametru co = co1.

Z teorii drgań prątów mamy kolejno:

b(01 = 7t dla pręta w przekrojach y = 0 i y = b swobodnie pod-
partego,

bco| = 4,730 dla pręta w przekrojach y — 0 i y = b zupełnie
utwierdzonego,

b ą = 3,927 dla pręta w przekroju y = 0 zupełnie utwierdzonego,
a w przekroju y = b swobodnie podpartego,

b co1 = 1,875 dla pręta w przekroju y = 0 zupełnie utwierdzonego,
a w przekroju y = b swobodnego.

Wprowadzając oznaczenie v1 = hcoi napiszemy drugie z równań

(1.34) w postaci

(1.35) f Ą J
Oznaczając
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otrzymamy rozwiązanie równania (1.35) w postaci

(1.37) X = A sin ax + B cos ax + C sin fix + D cos /}.x,
gdzie

(1.38) a,0 =
Z (1.38) wynika, że
(1.39)-' afJ =

Dla zadanych warunków brzegowych w przekrojach x = 0 i x=a
otrzymamy układ czterech równań jednorodnych wzglądem A,...,D.
Przyrównanie do zera wyznacznika układu daje równanie przestępne
jako warunek wyboczenia.

W równaniu tym, dzięki pierwszemu związkowi (1.39), wyelimi-
nujemy parametr /3, tak że równanie będzie funkcją samego a. Naj-
mniejszy pierwiastek tego równania daje najmniejszą wartość siły
krytycznej, którą obliczymy z drugiego wzozu (1.39).

Zauważmy, że równanie (1.35) jest identyczne z równaniem róż-
niczkowym wyboczenia pręta o sztywności EJ, leżącym na spręży-
stym podłożu o module C = vib1I/a1Jb'1.

Zajmiemy się tu szczegółowo przypadkiem swobodnego podparcia
poprzecznie w przekrojach x = 0 i x = a. Rozwiązaniem równania
będzie tu

(1.40) X(x) A i (

Wstawiając (1.40) do (1.35) otrzymamy związek

z którego po prostych przekształceniach otrzymamy siłę krytyczną
w postaci

gdzie

• > c - K I b <
K/ 1 — .

\nI Ja,

(1.43)

Dla r poprzecznie jest
/ ł A

Ib
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Zatrzymamy się na przypadku rusztu, którego podłużnice są na
brzegach y = 0 i y = b swobodnie podparte. Wtedy

(1.43.1) • n,
Ib

Jo,(r+1)"

W tablicy 1 podajemy wartości fc dla r = l , 2, 3, 4, wyliczone ze
wzoru (1.43.1), oraz wartości k, wyliczone dla tego samego przypadku
(uprzednio przedstawionym sposobem). Zauważmy przy tym, że bu-
dowa wzorów dla S, otrzymana obiema metodami, jest, z uwzględ-
nieniem współczynników k, identyczna.

Tablica i

r

k~ [wzór (1.43.1)]

ja, ' W Z 0 1 T f1-18)-
fc ^r1- (1.22), (1.25)

1° i (1.27)]

1

1/2 = 0,50

^ = 0,49277
n

2

1/3 = 0,333

^~- ~ 0,33262

3

1/4 = 0,25

?ii3i? = 0,24985

4

1/5 = 0,20

19,4772 _

Stwierdzamy, że nawet w skrajnym przypadku jednej poprzecz-
nicy otrzymujemy niezbyt różniące się między sobą wartości ?c i k.
Jest rzeczą widoczną, że ze wzrostem ilości poprzecznie różnice między
wynikami uzyskanymi za pomocą obu metod szybko maleją.

Dla rusztu swobodnie podpartego wzdłuż brzegów x = 0 i x = a,
a wzdłuż brzegów y = 0 i y = b utwierdzonego zupełnie nie uzy-
skamy tak nieznacznych różnic jak w przypadku rusztu z wszystkimi
brzegami swobodnie podpartymi.

Tablica 2

r

fc ^ [wzór (1.43)]

k - ^ (1.22.1), (1.25.1)
J b i (1.27.1)]

1 2

3\ 7Z } '

—•= 1,6631

3 4

1(^)11,3627

124,35

ł ( ~ ) L l ' 0 9 0

" f 8 ^ 1.026

Jednak i tu jest rzeczą widoczną, że dla r ^ 4 z powodzeniem
zastąpić można ruszt modelem płyty ortotropowej o zerowej sztyw-
ności na skręcanie. Wykonane przeliczenia wykazują, że dla rusztów
o innych niż tu podano warunkach brzegowych na krawędziach x~0.
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x — a, y = 0 i y = b otrzymamy dostatecznie dokładne wyniki, zastę-
pując ruszt o czterech poprzecznicach płytą ortotropową o zerowej
wartości sztywności na skręcanie.

Rozpatrzmy jeszcze szczególny przypadek rusztu na wszystkich
brzegach swobodnie podpartego, w którym 1/^ = 1/^. Wtedy fc = l
oraz

Najmniejszą wartością siły krytycznej będzie

<1.44) S = - ^ ^ - dla g = 1,2,3,...00.

Model płyty ortotropowej nakłada jednak znaczne ograniczenia na
rozwiązania. W przypadku rusztu o różnych odstępach poprzecznie
i podłużnie, o różnych przekrojach prętów i wreszcie przy różnych
siłach ściskających duże usługi oddać może metoda energetyczna.

Jako podstawę rozwiązania przyjmiemy kryterium energetyczne,
sformułowane przez T i r a o s z e n k ą i B r y a n a , [5] i [6]. Opiera się
ono na zasadzie prac wirtualnych i głosi, że układ znajduje się w rów-
nowadze przy dowolnym wirtualnym przemieszczeniu, gdy zmiana
całkowitej energii jest równa zeru

(1.45) Ó/7=Ó(V+T) = 0.

Tutaj V jest pracą odkształcenia, a T pracą sił podłużnych. Ze
związku (1.45) wynika bezpośrednio, że 11= V + T = ekstremum.
Tak postawione zadanie wariacyjne rozwiążemy stosując metodę
W. Ritza, [7].

Powierzchnię ugięcia rusztu przyjmiemy w postaci podwójnego
szeregu

(1-46) w (x, y) = £ Z
n = l m=l

Funkcje X„(x) i Ym(y) przyjmiemy tak, aby spełniały równania
różniczkowe

(1.47) X,',V - łn Xn = O , Y!,y - 0% Ym = O .
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Przyjęte w ten sposób funkcje przedstawiają postacie własnych
drgań poprzecznie i podłużnie. Poczyniono tu założenie, że poprzecz-
nice są podparte w obrębie każdej z czterech krawędzi rusztu w jed-
nakowy sposób.

W myśl założenia (1.46) ugięcie i-tej poprzecznicy wyrazić można
wzorem

gdzie

Bni=

a ugięcie i-tej podłużnicy wzorem

m = l

gdzie

Ami = = : Xi O-nin •"•« \P^

Całkowita energia układu przyjmuje postać

dy*
o

L)dy

Dla obliczeń urywamy szereg (1) na skończonej wartości m i n. Od
ilości przyjętych wyrazów szeregu zależy dokładność wyników. Wsta-
wiając (1.46) zauważymy, że II jest funkcją współczynników amn-
Współczynniki te należy dobrać w ten sposób, aby n{a„m) osiągało
ekstremum. Uzyskamy to ze związku

(L49)

Prowadzi on do układu m • n równań liniowych jednorodnych za-
wierających współczynnik a,m.
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Wypiszemy równanie (1.49) dla wskaźników (j, k):

a
t—r /» r «

(1.50) EEJ'\ ^BnlXlU
t-i X ' i

Yj(yi)Xk(x)dx

2
m |

S A"'iY"" (w)
i J

— £ S, %ntXn{x)
- i

(n = l,2,..., k,..., n; m = l , 2 , . . . , j , ...,m).

Ponieważ funkcje właściwe (1.47) są ortogonalne, zatem

Również
o .

d y ~

gdyż

(1-51)
n i ni + f X!,V Xhdx.

Pierwszy człon jest równy zeru ze względu na warunki brzegowe,
a drugi równa się

a,i J X„

Podobnie

o o

Funkcje X„ i Y,„ znormalizujemy w ten sposób, aby było
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Ze związku (1.51) dla n — k mamy
a a

f y " a d T _ fyWy ,
O O

Analogicznie

o o
Tak więc układ równań (1.50) przyjmie postać

(1.53) «

' = ' • /• i- m -,

,=1 J I tel J
Xk(x)dx=0

(n=l,2,.. ., k,..,,n; . m — l,2,..,, j, ...,m).

1

r

i

Z

y
1

U,

Z 1
'J////////////////

1
1,

1
i

Rys. 4

Szczegółowiej rozpatrzmy przypadek szczególny jednakowych po-
przecznie {Ji = J) i podłużnie (1/ = I) oraz jednakowych sił podłużnych
(Si = S). Ponadto niech poprzecznice i podłużnice bądą na końcach
swobodnie podparte.

Wtedy

. knx
k—sin j
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Układ równań (1.53) przyjmie postać

V1 A • knxi
X A,j sin — —

• • i CL

(1.54)

sm

Stąd wyznaczymy siłę krytyczną

(1.55) 5 = ^.^....™/-

gdzie
knXi.

Yij Sllł

1=7

Z wyrażenia (1.55) wynika, że najmniejszą wartość siły krytycznej
otrzymamy dla j — 1 .

Znaczne uproszczenia uzyskamy dla przypadku szczególnego, z za-
sady spełnionego w rusztach, mianowicie dla przypadku równych
odstępów między poprzecznicami fb = (r + l)b t ] i podłużnicami

Występujące

Yh

sumy posiadają

w wyrażeniu
t=p

Z Bki sin

postać

ku Xi
a

jnyt
b

\—i Te T i

2J Aa sin —~Y-

2J Bki sin

, ni
t+1 t+1

Napiszemy powyższą sumę w' postaci równorzędnej

1 Y1

(1.56) T 2, | cos ~ -J cos
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Dla m ^ n suma ta jest równa zeru, gdy jednocześnie (n — m)
i (n + m) są wielokrotnościami 2 (t + 1) lub gdy (n — m) oraz (n + ro)
jednocześnie nie są wielokrotnościami 2 (t + 1).

Dalej mamy
i-.t
\i . nni . rani t+12 sin -p-sin 7+J-—r-y,

gdy tylko m + n jest wielokrotnością 2 (t + 1), a

t + 1
2 s i n i

gdy jedynie (m + n) jest wielokrotnością 2 (t + 1).
Wreszcie dla m — n mamy

• '•'•;•' \i . ,2 nni _ t +1

gdy n nie jest wielokrotnością (t+1), oraz

i—t

2 sin- f X i =0,
t + 1

gdy n jest wielokrotnością (t+1).
Tak więc w przypadku gdy ruszt składa się z kilku poprzecznie

i podłużnie oraz gdy z szeregu (1.46) bierzemy tylko tyle członów,
aby był spełniony warunek, (m + n) < 2 (t +1), sumy występujące w wy-
rażeniu dla yuj sprowadzają się do jednego członu y£/ = p + l / ( r + l ) .

Zważywszy, że b = (r + l)bj oraz a = (p+l)a 1 , otrzymamy z rów-
nania (1.55)

(1.57)

gdzie

• Ja/

zgodnie ze wzorem (1.43) uzyskanym z rozpatrywania rusztu jako
płyty ortotropowej o zerowej sztywności na skręcanie.
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Nasuwa się jeszcze pytanie zasadnicze: przy ilu podłużnicach trak-
tować można poprzecznice jako spoczywające na sprężystym podłożu?
Aby odpowiedzieć na to pytanie; należy się uciec do ścisłego rozwią-
zania konkretnego przykładu i porównać wyniki z uprzednio uzyska-
nymi rezultatami, |4 | .

Wyznaczmy zatem siłę krytyczną rusztu składającego się z jednej
poprzecznicy i czterech podłużnie, a wyniki uzyskane porównajmy
z wynikami uzyskanymi ze wzorów (1.17). Jako nadliczbowe tego
czterokrotnie niewyznaczalnego układu przyjmiemy siły X, (i = 1 , 2,3, 4)
wzajemnego oddziaływania poprzecznie.

Z przyrównania do zera względnych przesunięć pionowych w punk-
tach 1, 2, 3, 4 otrzymamy układ równań

'/////////////////////////////////Z,

s
y

X

-* .

f

El

2
E3
—-

— o —

3

a,-j

4

**—

i
ii

fa i

Przyrównanie do zera wyznacz-
nika tego układu równań jest
warunkiem wyboczenia. Rozpa-

Rys. 5 trzyć należy dwa przypadki wy-
boczenia: jeden o symetrycznej,

drugi o antymetrycznej postaci ugięcia poprzecznicy. W pierwszym
przypadku jest X 1 = X 4 , X2 = X3; w drugim X, = — X4, X2 = — X;!.

Tak więc dla symetrycznej postaci wyboczenia mamy

{1.59)

Rys. 6

Tutaj wielkość <3« jest przesunięciem punktu k belki (poprzecznicy)
na dwu podporach swobodnie podpartej, ściskanej siłą S i obciążoną
siłą pionową P•= 1 w punkcie i. Przesunięcia te otrzymamy z linii
ugięcia belki ściskowej (rys. 6)
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(1.60)

sin sin
o / t s i n / t a

&' ft«—Sa dla

sin/(ft'sin//i;, ft' ft,
— = — ; =— dla

S/.ism/.i a Sa
ft-.

Wyrażenia (1.60) napisać możemy również w postaci szeregu

2 a:! V1 s i n a« ft s m a« ft(1.60.1) <5« = -

Tutaj przyjęto oznaczenia

n 4 — s n a dla ft, =~ ft-.

•Sa2

EJ u

Wielkość dn z równania (1.59) składa się z dwu części, z ugięcia
punktu >1 poprzecznicy i ugięcia punktu 1 podłużnicy, wywołanych
w układzie podstawowym statycznie wyznaczalnym stanem Xj = 1.
Podobnie rzecz ma się z wielkością (322.

Wyznacznik układu równań (1.59) przyjmie postać

71"

2T

= 0,

gdzie

a„=2

nyt . nit 3 TIJIsin — s i n — cos —

n'1 — n 2 s
«=1,2,„.

.. i;. 2nyr . TITE TUIsin -g-s in — c o s —

n'1 — n 2 s

Tutaj
«=!,*,...

na . nn nn-g-sin—cos-jj

E J TT2

: «2 "
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Wielkość /3U jest reakcją środkowej podpory podłużnicy (traktowanej
jako belka dwuprzęsłowa) dla stanu w — — 1 na środkowej podporze.

Po prostych przekształceniach otrzymamy z wyznacznika układu
równań (1.59) następujący związek:

0-n I ' 5 — (Oji + Oaa)
albo

(1.61) r = - — - - .
. nn , nn nn I /— ,

sin —— sin —r- cos —-~- 1/5 + 5 — o cos"
2 5 10 >

n* — Ti'1 s
«=i.3,...

Dla antymetrycznej postaci wyboczenia otrzymamy układ równań:

(1.62).
<528 —<528) = 0.

Rozwiązanie tego układu równań daje

(1.63) r = —Jf.
a

i/ K /« t M 7; . \

gdzie

o o Tin nn . 3 nn

2 nii nu . nn

— n2 s

nn nn nn
sin -TT- cos —r— sin^ c o s s i n .

a12 = — 2
n4 — n2 s

Związek (1.63) przekształcimy na

(1.64) r =

2
sin

5
sin^f cos

n

TlJt

2
i

•(•
—1/5 — 8cos2^—-1

3
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Na rysunku 8 naniesiono s na podstawie związków (1.61) i (1.64)
jako funkcje r. Krzywe te przecinają się tworząc przedziały, w któ-
rych mamy do czynienia z symetryczną względnie antymetryczną
postacią wyboczenia.

Linią pełną wykreślono najmniejsze wartości s w zależności od
parametru r charakteryzującego właściwości sprężyste poprzecznie
i podłużnie.

Linia AB charakteryzuje symetryczną postać wyboczenia o jednej
półfali, linia CD o trzech półfalach, linia BC i DE charakteryzuje
antymetryczną postać wyboczenia o dwu i czterech półfalach.

Przy potraktowaniu tego samego rusztu jako składającego się
z jednej poprzecznicy i ciągłego rozmieszczenia podłużnie otrzymamy
.siłę krytyczną ze wzoru (1.17)

e w T 2 J_ & 1

(1.65)

axan

Równanie to możemy napisać w postaci

n" ri* a±

Dla rozważanego tu przypadku czterech poprzecznie jest O| = a/5.
Zatem

n ii"

Wstawiając kolejno n = 1,2,3,4, otrzymamy proste

1 + f 4 + S 9 + S !• +1 6 B 8 '

Proste te naniesiono na rys. 7. Najmniejsze wartości s otrzymamy
z linii łamanej A'B'C'D'. Spostrzegamy tu dużą zgodność wyników
dla wyboczenia według jednej i dwu półfal. Dla r = 100 otrzymano
z równania (1.61) wartość s=14,4, z równania (1.65.1) wartość s = 14,64.

Procentowa różnica wynosi tu

14,40
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Jeżeli poprzestać na tej dokładności, to mamy

Zważywszy, że pu=vEI/V, otrzymamy w przypadku rusztu według
rys. 5, (v = 48):

b =

25,0

20

W

9

4

1

S

f

0

200 300

Rys. 7

W poniższej tabeli naniesiono stosunek J/I w zależności od Q = alb

p = a/b 1

0,0486

2

0,3891

3

1,3131

4

3,1126

10

48,6340

Dla utwierdzenia zupełnego podłużnie należy we wzorze (1.66)
wstawić i> = 192.

Dla rusztu o dwu poprzecznicach i czterech podłużnicach swobod-
nie podpartych jest v = 32,4; dla podłużnie zupełnie utwierdzonych
v = 162. Odpowiednio zmieni się i granica stosunku J/I,

Doprowadzimy teraz funkcję s = f(r) do postaci S = J1(Q). Przyj-
mijmy ponadto, że 481 b/n* Jax = 1, a, = a/5.

Wtedy
S b 2 ^ j ^

S~~EJn2' r ~ 5 Q'
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Na rysunku 8 naniesiono krzywe S = fl{g); dla porównania na-
kreślono funkcję S = J2(Q) według wzoru (1.18) (najniższą krzywą
z rysunku 2). Otrzymujemy tu dużą zgodność wyników dla wyboczenia
według jednej względnie dwu półfal.

w

Reasumując stwierdzić trzeba, że dla r^ lOO można już przy
czterech podłużnicach traktować poprzecznicę rusztu z dostatecznym
dla celów praktycznych przybliżeniem (dokładność < 2,0%) jako belkę
spoczywającą na ciągłym sprężystym podłożu. Warunek rSlOO jest
w konstrukcjach budowlanych na ogół spełniony.

Z powyższych rozwiązań wynika, że już przy czterech podłużnicach
można traktować poprzecznicę, z dostatecznym dla celów technicz-
nych przybliżeniem, jako belkę spoczywającą na sprężystym podłożu.

Przeliczenia dla innych stosunków 481 b/niJ1ai oraz dla dwu po-
przecznie wskazują na dużą zgodność wyników uzyskanych w sposób
ścisły i w sposób przybliżony.

2. Zajmijmy się rusztem złożonym ze znacznej ilości podłużnie
ściskanych i kilku poprzecznie. Niech podłużnice rozmieszczone będą
w jednakowym odstępie at i niech posiadają jednakowe przekroje.
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Przy wyznaczaniu siły krytycznej Su układu wychodzimy z równań
różniczkowych ugięcia poprzecznie dla S>Sk:

(2.1)
d'

W powyższym układzie wielkości §ki są funkcjami siły podłużnej S.
Zajmijmy się przypadkiem szczególnym swobodnego podparcia

wszystkich poprzecznie. Ponieważ wyboczenie nastąpi przy jednej
półfali w kierunku osi x, założyć możemy

(2.2) = Ai sm — .a

Wstawiając (2.2) do (2.1) otrzymamy

(2.3) a, + W A/ = 0

1

u

—*—

X

El

— (r—

S

s

" f i1

Przyrównanie do zera wyznacznika po-
wyższego układu równań jednorodnych pro- Rys. 9
wadzi do równania przestępnego. Najmniej-
szy pierwiastek tego równania daje wartość najmniejszej siły krytycznej.

Mimo formalnie prostego algorytmu, rozwiązanie uzyskane w po-
dany tu sposób nadaje się jedynie do przypadku jednej, dwóch i naj-
wyżej czterech poprzecznie. Trudności polegają na skomplikowanej
postaci funkcji /J*i(s) i wyznacznika układu. Dla większej ilości po-
przecznie posłużyć się można metodą energetyczną lub modelem płyty
•ortotropowej o zerowej sztywności skręcania.

Ograniczymy się do rozpatrzenia rusztu z jedną i z dwiema po-
przecznicami w założeniu swobodnego podparcia podłużnie wzdłuż
prostych y — 0 i y = b.

Punktem wyjścia dla wyznaczenia wartości j8« będzie linia wpły-
wowa ugięcia (funkcja G r e e n a) według wzoru (1.60).

Korzystając z powyższych wzorów wyznaczyć można współczyn-
niki 6ik (ugięcia punktu i podłużnicy wywołane obciążeniem P = 1
działającym w punkcie Je). Wielkości /3« są wyrazami macierzy sprzę-
żonej z macierzą wielkości &u,.
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Niech dany będzie ruszt o jednej poprzecznicy o sztywności EJ.
Niech poprzecznica ta leży w odległości y = b/2 od osi x. Układ rów-
nań (2.3) ograniczy się do jednego równania

(2.4)

Tutaj

011= T-,
0 li

gdzie

Wprowadzając oznaczenia

. „ /<b
S l n T

i sin/łb 4S '

r = la* '

E J '

EIn*' b jj, = n \ s

napisać możemy związek (2.4) w postaci

4s
(2.5)

Dla r —0, a więc w braku poprzecznicy, otrzymamy 8 = 1, tzn.
s = = El 7i2/ba.

Rys. 10

Dła r = 1 6 jest s = 4; otrzymujemy to wygięcie według dwu półfal,
z zerową wartością ugięcia na prostej y — b/2. Jest rzeczą interesującą,
że dla r > 16 nie otrzymamy już zwiększenia siły krytycznej. Wykres
s — f(r) przedstawiono na rys. 10.
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Rozważmy ruszt o dwu jednakowych poprzecznicach. Niech po-
przecznice dzielą bok b na trzy równe części.

Otrzymamy układ równań

(2.6)

Rozpatrzyć należy dwa przypadki, wyboczenie symetryczne i antyme-
tryczne. W pierwszym przypadku jest AX = A%, w drugim A^ =— A2.
Ponadto ze względu na symetrię układu jest ^ t = j322.

Dla symetrycznej postaci wyboczenia mamy

(2.7) j^p!.+ * 0.
«i o n + d12

Zważywszy, że w myśl wzorów (1.60) jest

b [d"+d^}- b^cos/ib/2" 3 '

otrzymamy po prostych przekształceniach

(2.8) r = ~ 7 = — .
JL sin u V^/3cos n \ s/6

3 7i:]/sCOS7r]/s/2

Dla postaci antymetrycznej wyboczenia jest

(2.8.1) **¥- + * \ =0,
a Oj] — o12

co prowadzi do związku

(2.9) r = ^
1 sinTt |/s/3sin7tl/s/6
9 n \/s sin TT/]/s [ 2

Na rysunku 11 przedstawiono s = f{r).
Dla r = 8 1 otrzymujemy s = 9. Odpowiada to wyboczeniu syme-

trycznemu według trzech półfal. Dla r > 8 1 nie otrzymamy już wzrostu
siły krytycznej S.
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Dla czterech poprzecznie otrzymamy układ równań

(2.10) fli—#-Aft+ y'|8*,-A1- = 0 (k —1,2,3,4).
( = 1

Układ ten napisać możemy również w postaci

(2.11)

/O 20 30 10 50

Rys. 11

60 70 80

Dla symetrycznej postaci wyboczenia otrzymamy A1=Ai i A2=AAr

a dla anty metrycznej At = — A4 i Aa ~ — -̂B-
Rozwiązanie tego układu jest identyczne jak układu równań (1.59)

i (1.62). W wyniku rozwiązania otrzymamy wzory (1.61) i (1.64>
z tym, że r ma tu inne znaczenie, mianowicie r=Ja1n

2bn/Ia'i.
Dla większej ilości poprzecznie, jednakowych i rozmieszczonych

w jednakowych odstępach, najwygodniej będzie uciec się do rozwią-
zania przybliżonego, opartego na modelu płyty ortotropowej o zerowej
sztywności na skręcanie.

Wstawiając do równania różniczkowego

(2.12)

funkcję

EJ dAiv El d^w S_
b, dxi+ a:1 dyi+ a,

w — A sin — sin ——^,a b

~
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otrzymamy

(2.13)
s

b, a1 b, b1 a, b2

Wprowadzając jak uprzednio oznaczenia

> V " • • ;;•_ .

la* s — E l TT3

oraz zakładając cztery poprzecznice (b,
(2.10.1) w postaci

(2.14) s = ri- + 5r,x-r

• b/5), napiszemy związek

Równanie to ma identyczną postać z równaniem (1.65.1). Stwier-
dzamy więc, że dla czterech i więcej poprzecznie możemy zastąpić,
z dostateczną dla celów praktycznych dokładnością, układ równań
(2.1) równaniem różniczkowym płyty ortotropowej ó zerowej sztyw-
ności na skręcanie.

3. Dla wielu przypadków wyboczenia pomocna będzie funkcja
G r e e n a (linia wpływowa) rusztu. Niech dany będzie ruszt o szeregu

podłużnie w odstępie a, oraz o jednej
poprzecznicy. Szukamy linii wpływo-
wej ugięcia punktu (x, y) poprzecznicy
dla siły P = l w punkcie (I, rj).

Ograniczymy się do przypadku swo-
bodnego podparcia poprzecznicy.

Równanie różniczkowe ugięcia po-
przecznicy ma tu postać

(3.1) atEJ

Vy
/

V

J
y

p-r

/////

im

w

X

(*.y)

EI

i

yyy/s

f •
yyy

y

Rys. 12 gdzie rt jest równe zeru, z wyjąt-
kiem odciętej x = f, dla której przyj-

muje ono wartość Ri(r/). Tutaj R?(??) jest linią wpływową reakcji
podporowej w punkcie (I, y) podłużnicy i-i jako belki na trzech pod-
porach niepodatnych.

Załóżmy

(3.2) sinanx, r, (a;) = 2RI(T?)
sin a„ ^ sin a„ x.
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Wstawiając powyższe szeregi do (3.1) uzyskamy

(3.3) An.-\(EJalan—Sa, a« -(- Bu) = —- / sina« f s ina n x.

Linia, a właściwie układ linii wpływowych, przyjmie tu postać

(o.~Ł) XD (1X̂ 1 "U\ c. 'iii — ' y ~~~ z

a ,.Ji \EJa,cS, — l
Dla ustalonego (cc, y) otrzymamy ze związku (3.4) wszystkie gałęzie

linii wpływowej ugiącia. Jest rzeczą interesującą, że linię ugięcia
otrzymujemy w postaci iloczynu funkcji r\ i funkcji f.

Przy pomocy związku (3.4) wyznaczymy linię wpływową momentów
zginających i sił tnących poprzecznicy:

(3.5) M(x,y,i,ri) = -EJ^-, T(x,y, $,r,) = -

Interesująca jest wreszcie linia wpływowa funkcji X; otrzymamy
ją ze wzoru

przy czym

(3.6.1) X (x, y; f, JJ) = u;, (x, y; ,Ł, 1?) ^ , (y) - Ri(łj) .. dla cc = f

oraz

(3.6.2) X(x,2/;f,łj) = ii;, (x,yj,ri)pn(y) dla z =£ f.

Znajomość linii wpływowych X (x, y; £, łj) pozwoli na wyznaczenie
linii wpływowych momentów i sił tnących w dowolnym przekroju
podłużnie.

Dla zagadnień statyki rusztów położyć należy 5 = 0.
Dla rusztu o r poprzecznicach uzyskamy układ równań różniczkowych

(3.7) a, EJk ~ t + a, Sk ^ + J£ ^ w = n (k = 1, 2,..., r),

gdzie rft = R° (ij) dla x = f oraz r/; = 0 dla x =̂  L
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Podstawiając jak uprzednio

£ 2R*(»?) V . •
<3.8) wk= Zi An.ksinanx, r* = — - — 2J sin a„ £ sin CC„ X

B 5 a n=1.2,...
•otrzymamy układ równań liniowych niejednorodnych

<3.9) (a, B JA af, — aj Sfc a*) A», * + £ P*' Alu' — s i n a " *
1=1 a

(k = l,2,...,r; n = 1, 2,.... oo).

Rozwiązując powyższy układ względem Ai,* i wstawiając do pierw-
szego szeregu (3.8) otrzymamy linię wpływową ugięcia Wk (x, y; i, t]).
Ogólnie stwierdzić można, że w zagadnieniach statyki (Sk = 0) szeregi
dla Wk są silnie zbieżne i dla celów praktyki inżynierskiej wystarczy
przyjąć jedynie pierwszy wyraz szeregu. W zagadnieniach jednoczes-
nego zginania i ściskania rusztu zbieżność szeregu zależy od sto-
sunku S/Skr-

Przy zdążaniu tego stosunku do jedności zbieżność szeregu maleje
i dla S — Skr szereg jest rozbieżny.

Wyprowadzone zależności pozwalają na rozwiązanie szeregu przy-
padków wyboczenia rusztu.

Niech dowolna poprzecznica, na przykład k-ta będzie podparta na
końcach a ponadto w obrębie rusztu, w punkcie o współrzędnych
{cco,T/o). W punkcie tym ustawiamy siłę P = l i żądamy, aby dla
S>Sk ugięcie w tym punkcie było równe zeru.

Warunek ten wyrazimy w postaci

(3.10) wk (x0, y0; x0, yo) = 0.

Warunek powyższy prowadzi do równania, w którym niewiadomą
będzie wielkość siły krytycznej S. Najmniejszy pierwiastek tego rów-
nania daje najmniejszą wartość siły krytycznej.

Zadanie uogólnić można na dowolną liczbę punktów podparcia
poprzecznie w obrębie rusztu oraz na podpory podatne, sprężyste.

Dla przykładu zajmijmy się przypadkiem najprostszym, mianowicie
rusztem o jednej poprzecznicy podpartej w środku rozpiętości. Załóżmy
symetrię układu.

Wtedy przy
„ 48 El

£ /2 fa)
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otrzymamy z równania (3.4) w (a/2, b/2; a/2, b/2) — 0 albo

Sa22- —'
ć—J „i Iv24~-

4 8 I b / a \ *(3.11)

Drogą prób wyznaczymy z powyższego szeregu wartość kmin, a tym
samym

c ^ n" 3 .
>~>min — 5 Aimn.

Dla

otrzymamy
in = = o,39, Omiń = = o,o9

2 Tp T

y///////////////////////////////////////////////////////////.
// I I I I i

/EJ/

'm/r.i
Sr

Rys. 13

Dalszym przykładem niech będzie ruszt o dwu poprzecznicach i wielu
podłużnicach o sztywności El oraz jednej o sztywności EJa. Przyjmując
jako nadliczbowe układu siły wzajemnego oddziaływania Y, i Y2

w punktach skrzyżowania belek uzyskamy równanie kanoniczne
w postaci

Układ ten będzie niesprzeczny, gdy

(3.13) VixVn — y i 8 = 0 .

Wartości yn, yw i yv> składają się z dwu członów:
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Wielkości 5n, <522 i óv, znajdziemy łatwo jako odpowiednie rządne
linii ugięcia podłużnicy o sztywności EJa, wielkości zaś w1(i1, r\{, £a, %)»•••
z wyprowadzonych uprzednio wzorów dla jednoczesnego zginania
i ściskania rusztu.

Podobne przykłady można by mnożyć. Stwierdzić jednak trzeba,
że w przypadku, gdy istnieją więcej niż dwie poprzecznice i podłużnice,
o innej sztywności niż pozostałe, rozwiązanie równania przestępnego
dla wyznaczenia sił krytycznych natrafia na nieomal nieprzezwycię-
żone trudności natury rachunkowej. Dlatego w bardziej złożonych
układach uciec się należy do metody energetycznej. Przy kilku po-
przecznicach o jednakowym przekroju, położonych w jednakowym od
siebie odstępie, posłużyć się można teorią płyt ortotropowych.
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P e 3 re M 3

H3 BOnPOCOB nJlOCKHX riEPEKPblTMH

B HacToamefi pa6oTe aBTop paccMaTpHBaeT Bonpoc oflHOBpeMeH-
Horo fleftcTBHa nonepeMHoro H3rn6a H CHOTHSI H npoÓJieMy ycrofi-
HHBOCTH njlOCKOrO nepeKpblTHSI. FlepeKpblTHe COCTOHT H3 MHOrHX,
Ha paBHbix paccTOHHHHx yjioweHHbix, oflHHaKOBbix 6a/iOK raaBHoro

a, noflneptbix HecKOJibKHMH nepenpecTHbiMH 6ajiKaMH.
a, HTO cnnbi B3aHMOfleHCTBHa óanKH rjiaBHoro HanpaBJieHHH

Ha nepeKpecTHbie CBSI3H 6ajiKH pa3jiox<eHbi HenpepbiBHbiM o6pa3OM,
MOH<HO npMBeCTH 3aAaMy K peiUeHMlO CHCTeMbI ^HHeMHblX AHcJj^e-
peHuwajibHbix ypaBHeHHH (1.12) H (1.19). 3 T O no3BO/i5ieT BecbMa
npoCTO nojiyHHTb He TonbKO n p o r n o nonepe^HH nyreM HHTerpHpo-

ypaBHeHHH (1.12), HO H KpHTMHecKHe CH^bi nyTeM peuieHHs
rpaHHHHoti 3aAaHH CHdeMbi ypaBHeHHH (1.19).

flOKa3aHO, HTO B cnynae nonepeHHH oflHHaKOBoro
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Ha paBHbix paccTOHHHHx u OKHMaeMbix CHJIOH S, MOWHO
6oj iee neM Tpex nepeKpecTHbix 6a.noK 3aMeHHTb CHCreMy ypas-

(1.19) flMc})cJ5epeHi],Ha.nbHbiM ypaBHeHHeM ycroHHHBOCTH o p i o -
TponHofi njiacTHHKH c HyneBbiM 3HaMeHHeM JKecTKOCTH Ha KpyneHMe
[ypaBHeHHe (1.29)]. flanee npuBeAeno o 6 m e e peuieHHe 3aAaHH npo-
AO^bHoro H3rH6a nepenpbiTHM npH noMOLun 3HepreTHHecKoro
J3,OKa3aHO, HTO, n p n OAHHaKOBbix ceneHHax nepeKpecTHbix

paBHblX paCCTOHHHHX Me>KAy HHMH H paBHblX C>KHMaK)lU,HX

pe3yjibTaTaM, noAyneHHbiM npw npHMeHeHHH MOAejiH opTOTponHoR
nnacTHHKH. HaKOHeu, npoBeAeHa AHCCKycHa HaA BonpocoM HHCjia
nonepeMHH, Heo6xoAHMbix AJISI TOTO, HTo6bi MO>KHO 6bino n p n BO-

n p o c a x npoAO^bHoro H3ra6a CMHTaTb nonepeMHHhi neYKamvmu Ha
ynpyroM ocHOBaHHH.

PeuieHHe npnBeAeHHoe BO BTopow nacTH Kacaeica c^yMaa, B KO-
TopoM jiOHHtepoHbi, pacnoJioweHHbie HenpepbiBHO, noABepraraica
CHOTHK) (43Hr. 9). 3Aecb A3HO pemeHHe p,nn njrocKoro nepeKpHTHH
c OAHOH, AsyM5i H weTbipbMH nonepeHHHaMH. Pe3yxibTaTbi, nojiyneH-
Hbie A^H seTbipex n o n e p e q u H , cpaBHHBaroTCsi c pe3y/ibTaTaMH, n o -
JiyHeHHHMH Ha MOAe^H opTOTponHofi nnacTHHKH, npuMeM AOKa3aHo
HX 6/iH3Koe coBnaAaHHe. 3 T O no3BO/i9eT 3aKjno4HTb, HTO &m Tex-
HHnecKHX uenefi M O K H O npH weTbipex H 6ojiee nonepenwHax 3aMe-
HHTb CHCTeMy AUcJjfliepeHUHajIbHblX ypaBHeHHH (2.1) OAHMM np.OCTblM

A H ^ C I J S P 6 " ^ 3 1 1 1 3 1 ^ 1 3 1 1 " 1 ypaBHeHHeM (2.18).
B nocneAHefi nacTH npHBeAeHbi /IHHHH BJinsiHHa (cjjyHKUHH

OHHMaeMoro nepeKpbiTMa n p n P l fi
nonepewHH H JioHH<epoHOB. 3T

n p o r n ó a H craTHMecKHX BCJIHHHH nepeKpbiTHa, o6y-
nroóoH Harpy3KoK; HaKOHeu, HaxoAHT npHMeHeHHe npn

KpHTHMecKon CHJIH njiocKHx nepeKpbiTHH, onepTbix no
KOHTypy, a KpoMe Toro H B MHornx TOHKax B npeAenax

S u m m a r y

SOME PROBLEMS FROM THE THEORY OF FLAT GRIDWORKS

The author discusses the problem of combined bending and com-
pression and the problem of buckling of a flat gridwork. The grid-
work consists of many evenly spaced identical beams, supported by
several transversal girders. Considering the forces acting between
the longitudinal and the transversal beams as continuously distri-
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buted along the latler, the problem can be reduced to that of solving
a system of linear differential equations (1.12) and (1.19). This per-
mits to obtain the deflections of transversal beams by integrating
Eqs. (1.12) and to find the critical forces by solving a correspon-
ding boundary problem (1.19). Next it is shown, that in the case of
transversal, evenly spaced beams of identical cross sections, com-
pressed by a force S, the system of equations (1.19) can be replaced,
for more than three transversal beams, by the equation of buckling
of an orthotropic plate whose torsional rigidity (Eq. 1.29) is equal
to zero. Further a general solution of the problem of buckling of the
gridwork, obtained by means of the energy method, is given. It is
shown that for transversal beams of identical cross sections, evenly
spaced and compressed with equal forces, the results obtained by
means of the energy method are very near those obtained by
means of the orthotropic plate model. Finally the problem of the
number of transversal beams, permitting to consider them as resting
on an elastic base is discussed.

• The results of Sec. 2 concern the case of compression of con-
tinuously distributed longitudinal bars (Fig. 9). Solutions for one,
two and four transversal beams are given. The results obtained for
four transversal beams are compared to those obtained by means of
the orthotropic plate model. The agreement is found to be good. This
permits to state that for technical purposes the system of diffiren-
tial equations (2.1) can be replaced, for four and more transversal
beams, by one simple differential equation (2.18).

Finally, in the last section, the lines of influence (the function
of G r e e n ) for a compressed gridwork are given, the force P = 1
being moved along the transversal and the longitudinal bars. This
function can be used to determine the deflection and the statical
quantities for any load; it can be equally used to find the critical
force for a gridwork supported on the baundary and at some ad-
ditional points inside.
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