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Z zastosowań rachunku różnic skończonych
w mechanice budowli

De l'application du calcul des différences finies aux problèmes
de la mécanique de construction

W. N o w a c k i, Gdań jk

A) W wielu zagadnieniach mechaniki budowli, dających się
opisać równaniem różniczkowym, natrafiamy na poważne trudności
przy całkowaniu tego równania.

Na ogół mamy do czynienia z równaniami różniczkowymi
jednorodnymi (np. zagadnienia wyboczenia i drgania) oraz nie-
jednorodnymi (np. zginanie i drganie wymuszone).

W wypadku stałych współczynników tych równań i jednorod-
nych warunków brzegowych uzyskać możemy na ogół wzory
zamknięte.

Już jednak w tak prostym wypadku, jakim jest zginanie pręta
o zmiennym przekroju, otrzymujemy równanie różniczkowe o zmien-
nych współczynnikach; ścisłe rozwiązanie tego równania uzyskać
można tylko w nielicznych wypadkach zmienności pręta.

Te trudności omijamy na rozmaitych drogach, uzyskując roz-
wiązanie przybliżone metodą numerycznego czy wykreślnego roz-
wiązywania równań różniczkowych, czy też stosując metody ra-
chunku wariacyjnego (metoda Ritza, Galerkina, Treitza).

Spośród licznych metod rozwiązania, prostotą i dużą zdolnością
przystosowania do zmienności rozmaitych czynników (zmiana prze-
kroju, masy, obciążenia) wyróżnia się metoda rachunku różnic
skończonych.

Zastosowanie jej do statyki belki prostej jest ogólnie znane
choć w odmiennej trochę postaci, jako zagadnienie wieloboku
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sznurowego. Do problemów wyboczenia i zwichrzenia prętów do-
stosował metodę różnic skończonych H. Hencky, do teorii płyt
N. J. Nielsen i H. Marcus.*)

W naszym kraju metoda ta znajduje coraz "szersze zastosowanie,
głównie dzięki pracom prof. dr W. Wier/bickiego i jego uczniów.

W niniejszej pracy autor stawia sobie za zadanie przedstawić
w sposób jednolity i usystematyzowany rozwiązania szeregu za-
gadnień typowych dla mechaniki budowli, oraz wskazać na ana-
logię między rozwiązaniem równań różnicowych, a teorią ró wnań
całkowych.

We wszystkich omawianych zagadnieniach, tak liniowych jak
i płaskich, starał się] autor] uzyskać rozwiązanie na najprostszej
drodze, przy pomocy macierzy sprzężonej trójczłonowego względ-
nie pięcioczłonowego układu równań.

Przedstawione w tej pracy zagadnienia nie wyczerpują, rzecz
jasna, wszelkich możliwości; omówiono jedynie zagadnienia, znaj-
dujące najszersze zastosowanie w mechanice budowli.

B) Jednoczesne zginanie i ściskanie (względnie zginanie
i rozciąganie pręta)

t. Omówmy najpierw wypadek najprostszy, mianowicie pręt
na dwu podporach swobodnie podparty. Obciążenie p(x) oraz
moment bezwładności J(x) niech będzie zmienny w sposób ciągły
lub nieciągły (skokami). Znane równanie różniczkowe tego za-
gadnienia brzmi

'-T-fW • • • (0

1

Rys. i

*) II. Hencky ; Ueber. die angeniihrte Losung von Stabilitatsproblemen im.
Rauni. Der Eisenbau 1920.

H. Marcus: Die Théorie elastischer Gewebe. Berlin 1924.
N. J. Nielsen: Bcstemmelse af Spoendinger i Plader ved Anvendelse af Dif-

ferenslingninger, Kopenhaga 1920.
W. Wierzbicki: Arithmètisation des problèmes de flarabnge. Arcli. Mech.

Stos. 1949.
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W równaniu tym znak „plus" przy wielkości P odnosi się do
siły ściskającej, znak „minus" do rozciągającej siły P.

Wprowadźmy oznaczenia x = l • £;•—-=T](I), gdzie i/0 jest porów-
J(x)

nawczym momentem bezwładności.
Przy tych oznaczeniach doprowadzamy równanie (1) do po-

staci bezwymiarowej.

a)

Rozwiązanie tego równania przy zmiennej funkcji r\(£) natrafia
na ogół na duże i często nieprzezwyciężalne trudności natury
matematycznej. Rozwiązanie przybliżone tego równania najłatwiej
uzyskać można przez zastąpienie pochodnych ilorazami różnico-
wymi, a tym samym przez zamianę równania różniczkpwego na
układ równań liniowych niejednorodnych. •

Równanie (ta) możemy zastąpić układem dwu równań różnicz-
kowych

V1

— q(i) (2a)
EJ0

Ł ± y=f. (2b)
Tl(6) di" EJ»

Doprowadziliśmy w ten sposób zagadnienie do postaci analo-
gicznej z metodą momentów wtórnych Mohra. Z pierwszego bowiem
równania wyznaczamy momenty gnące (fp jest proporcjonalne do
momentu zginającego); z drugiego równania wyznaczamy ugięcie,
traktując już cp jako funkcję znaną.

Podzielmy teraz długość I na n równych części A*.

Zatem

Zastąpmy teraz pochodne

c/2cp

di*

d2y
d¥ k

Ax = ZA|

ilorazami

fc_1-2cpk-

2

n

różnicowymi •

2
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Równanie (2) doprowadzamy zatem do postaci:

! ~ ~ (3a)

(3b)

Warunki brzegowe zagadnienia (2) kształtują się następująco

y(0)=0; y ( i ) - 0 ; <p(0)=0; cp(i)=O.

Dla układu równań (3a,b) otrzymamy

9o=0; <p„=0 ; yu = 0 ; y„=0.

Lewe strony równań (3) przedstawiają związki trójczłonowe,
prawe przyjmujemy jako wartości znane.

Rozwiązanie układu równań (3a) może nastąpić przy pomocy
macierzy sprzężonej tego układu,

= — ~ 2 VEJ0 n2
 J^J

(4)

£ = l , 2 , , . . , n — l.

Podobnie i rozwiązanie układu równań (3b) daje

1 V I — P

J0n s Ami EJ0 n2

i n

— r > ili^iPife (5)
EJ 2 Z

Jeśli teraz do równania (5) wstawimy związek (4), otrzymamy
ostatecznie

> C ^ T > P (6)

(*-i,2, . . .' , n - i ) .



Tom III 1951 Z zastosowań rachunku różnic skończonych 487

Tutaj

Zauważmy, że ^=771—- }
EJ0 iv ij

przedstawia nam rzędne ugięcia belki zginanej bez udziału siły
osiowej.

Równanie (6) przedstawia analogię między rozwiązaniem równa-
nia różnicowego, a równaniem całkowym Fredholma drugiego
rodzaju. Dla n - * 0 0 równanie (6) przechodzi w równanie całkowe,
a wielkości i|i Pik, i]i ®'ik w odpowiednie rdzenie równania całkowego.

Zanim przystąpimy do omówienia macierzy ||fWJ, Hoteli do-
prowadzimy jeszcze wyrażenie pod znakiem sumy do postaci
symetrycznej.

W analogii do równań całkowych, pomnóżmy obie strony
równania (6) przez y i\k.

• Wtedy
74 v i — P/2 v i -

0 n4Z-J EJ0 TPJL-I
i

k = i, 2 , n—1,
gdzie

% / O F = / i i i "% '

Rozwiązanie równania (7) możemy uzyskać znanym z równań
całkowych sposobem iteracyjnym Neumanna.

Jako pierwsze przybliżenie przyjmijmy postać ugięcia pręta
bez udziału siły osiowej.

Wstawiając zatem 7(°) = 0 w drugiej sumie równania (7) przyj-
mujemy jako pierwsze przybliżenie

Wtedy
_ — PI2

EJ0 rr



488 W. Nowacki Arch. Mech. Stos.

Wstawiając 7k'21 pod znak sumy w ostatnim wyrażeniu równa-
nia (7) mamy

j y 3 ) =7Tfc + l £ [A =F XS Fr frl] Pifc

gdzie PJS-SPrtPfcr. :
r

Postępując w ten sposób dalej, uzyskamy szereg

=F A2}%> ± x

Możemy zatem uzyskać Yk z dowolną dokładnością. Szereg
ten jest szybkozbieżny i do zastosowań praktycznych można po-
przestać na trzech członach.

Podobne operacje wykonać można również na równaniu (6),
bowiem podane równanie iteracyjne można stosować również do'
„rdzeni" niesymetrycznych.

Podany tu sposób postępowania posiada pewne zalety, miano-
wicie łatwego wyznaczania macierzy ||Pi«:||, || fl'«c || itd.

Otóż rozwiązanie układu równań

w postaci
(9)

daje bardzo prostą postać wyrażeń (3lfc.
Mianowicie

n-k
n

n—i
n

* : H

i

k

dla

dla

. i *

n-4

k

,k

Rys. 2

(10)
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Okazuje się więc, że wartości f̂  leżą na linii „trójkątowej"
i stoją w ścisłym związku z linią wpływową mo oaentów zginających.

Macierz ||fW|| otrzymamy przez mnożenie macierzy l'fVicll przez
macierz | PMC|| . Oznaczmy to symbolicznie || ^11 = 1 Pî d2.

Macierz || P«e||j

P i l ! Pl2> P.I3> • • • Pli «-1

P2I î P22> P23> • • Pil «—1

P31î I'S2! IJ33» • • P:l, n—i

Macierz
P«— l. li Pn—li îi Pn—1,8 .- • - Pn—l> n-i.

'21 ' " 2 2 ' ^23> • • • 2. n—1

J 3 1 î U32> ' 3 3 J • • ' " 3 , n—1

" " n — l i 1. " n — l i 2, l ' n — 1 , 8 . • • • •

Dla wyznaczenia wielkości -Ô  mnożymy wartości Puc znajdu-
jące się r-tej i k-tej kolumnie przez siebie i tak przemnożone
dodajemy do siebie.

Zauważmy jeszcze, że zarówno wyrażenia P^ jak i $«<; są syme-
tryczne względem obu przekątnych macierzy.

Macierz Hoteli odpowiada macierzy sprzężonej układu równań

2 =6 ! c Mh=piÀh. . , . (11)

które powstało przez przemnożenie przez siebie macierzy układu
równań (10). Z drugiej strony układ równań (ii) odpowiada prze-
kształceniu równania różniczkowego

dllM T
6 na równanie różnicowe à.4M—bu-

Zatem macierz sprzężona, ||9ik|| związana będzie (pominąwszy
czynnik proporcjalności) z linią wpływową ugięcia belki.

Dalsze macierze występujące w równaniu (8) uzyskamy przez
kolejne mnożenie macierzy według podanego wzoru. :.
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Uwagi dotyczące macierzy pozwolą nam już oszacować zbież-
ność szeregu Neumanna.

A) W przedziale (0,n) oszacujemy wielkość (3ifó.

gdzie r\ jest największą wartością funkcji i] (i) w tym przedziale.
Łatwo wykazać, źe

Zatem szereg występujący w równaniu (8) możemy przedstawić
w postaci:

Prawa strona tej nierówności przedstawia szereg geometryczny
zbieżny w wypadku gdy

i t . j .gdyt. j .gdy P <

Ponieważ szereg majoryzujący jest zbieżny, zbieżny jest również
szereg występujący w równ. (8).

Dodać należy, że oszacowanie wartości (3^ jest dość grube,
na ogół szereg (8) będzie wykazywał lepszą zbieżność niż szereg
geometryczny (a).

Wróćmy jeszcze do równania (5).
Napiszmy je w postaci

> 9ł lii î!c = —zf—y?c ± — > TU y t Pifc. (12)

i i

Jeżeli założymy, że ugięcie belki jest znane, to rozwiązanie
układu równań da nam odpowiedź na pytanie, jakie powinno być
obciążenie belki odpowiadające założonemu wygięciu.

Równanie {12} stanowi analogię z.równaniem całkowym Fred-
holma pierwszego rodzaju. Jeżeli P jest siłą ściskającą, to równa-
nie (12) będzie posiadało sens jedynie w wypadku P mniejszego
od siły krytycznej PKT.
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2. Układ równań (3a, 3b) można rozwiązać również bez ucie-
kania się do iteracji.

Napiszmy równania (3a, b) w odmiennej trochę postaci

¥k-i-2<Pa+<PMn=~~ (13a)
EJor? .

yfc_, - (2 ± lk) yu+y^^1^ (f 3b)
TT

ft = i , 2 , . . . . , n - r l .

Rozwiązaniem tego układu równań będzie

Z-1 V

(Hb)

Tutaj || PÂ; || jest macierzą odwrotną układu równań (Hb).
Układ równań (14a, b) zastąpić można jednym równaniem

ik-1,3 n-i.

Równanie (15) jest jeszcze równaniem niesymetrycznym.

Przy oznaczeniach

znajdziemy Yk= \ Qiyik. (16)
LJ J

i

Macierz || •fl1,̂  || otrzymamy przez pomnożenie macierzy || |3i
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Zauważmy, że człony macierzy || P& || zależą od wartości Afc.
Jak się później przekonamy, człony te dla pewnych wartości

P rosną nieograniczenie — mamy wtedy do czynienia z wypad-
kiem wyboczenia pręta. Na razie odczytajmy z równania (Ifo), że
przy nieograniczenie rosnącym p\fc, ugięcie nie zależy ani od
rodzaju, ani wielkości obciążenia q^.

Dla ustalonej odszkałeonej, a w wypadku siły ściskającej po-
nadto przy założeniu ? < Pjcr równanie (16) pozwoli na wyznacze-
nie obciążenia q.

Znajomość rzędnych linii ugięcia pozwoli na wyznaczenie mo-
mentów zginających i sił tnących w każdym przekroju pręta

Mk=-EJ{x)-
EJ $ n

dx3

(17)

EJ -\8

"*" - —r — (yk-2~2yk-i+2yk+i—yk+2)- (18)

3. Znacznie trudniej kształtuje się zadanie omówione w po-
przednim ustępie w wypadku niejednorodnych warunków brzego-
wych. Są to wypadki zupełnego lub sprężystego zamocowania
pręta względnie wypadek wspornika.

Rozbicie równania (1) na układ dwóch równań (2) nie może
tu znaleźć zastosowania — nieznane są bowiem warunki brzegowe
funkcji cp (innymi słjwy nieznane są momenty utwierdzenia).
Punktem wyjścia może być jedynie równanie (1).

Przy nowym oznaczeniu - = Q (£) przekształcimy równanie (1)
0

na równanie różnicowe

yfc-2 Qfc-i — 2 yur-i {Qh-i+Qu)+yu (Ofc-i+4 Qk+efc+1)--2 yk+1 [QK+

)i±^{yk-i-2yk+yk+1) = qk.a (19)

= l, 2, . . . . n-1.

I EJon*. ° rtEJa
Warunki brzegowe kształtują się następująco:
Dla brzegu utwierdzonego zupełnie

di fc-o
£(yj^i-yfc+i)-O:' y-n-yi". (20)

2 , :
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Dla brzegu swobodnego otrzymamy z warunków brzegowych
M 0 =0; T0~0 następujące związki

Stąd

Rozwiązanie układu równań (19) nastąpić może dwojakim spo-
sobem, podobnie jak to uczyniono w wypadku belki swobodnie
w dwóch punktach podpartej.

a) Napiszmy układ równań (19) tak, aby wyrażenie ±Xk-yk

znalazło się po prawej stronie równania (19).
Rozwiązaniem wtedy będzie

y/c=a S <7i aih + IS A2 y i alk (22)

ft=l,2, , n—1. '

Tiitaj one przedstawia składniki macierzy sprzężonej układu
równań

ft-l,2....,n-I. , ( 2 3 )

Ponieważ układ tych pięcioczłonowych równań zarówno dla
warunków brzegowych (20) czy (21) jest symetryczny względem
głównej przekątnej, więc i macierz Ila^H będzie symetryczna
względem głównej przekątnej.

Układ równań (22) rozwiązać można sposobem iteracyjnym
omówionym w ustępie B 1).

b) Równaniu możemy również nadać postać

—2

£=1,2 , n-{. , (24)

Rozwiązujemy symetryczny układ równań (24) i otrzymujemy

yjc^aSq-i afk, (25)
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Wszelkie uwagi dotyczące rozwiązania równań analogicznego
zagadnienia o jednorodnych warunkach brzegowych znajdą i tu
zastosowanie. Dla stałego przekroju (TIIC=1) otrzymamy oczywiście
znaczne uproszczenia.

C) Wyboczenie pręta
1. W wypadku belki w dwóch końcach swobodnie podpartej,

rozwiązanie tego zagadnienia otrzymamy z równania (6), kładąc
w nim q=0

yfc=^Eii î'tPifc (26)
i

lub też w postaci zsymetryzowanej
IWS^PA. (27)

i '

Wyznaczenie siły krytycznej Pkr może nastąpić przy użyciu
metod jakie nam daje teoria równań całkowych Fredholma drugiego
rodzaju. Podamy tu dwa sposoby, przystosowane do naszych
rozwiązań.

a) Przyjmujemy jako pierwsze przybliżenie IV 1 '= 1. Drugie
przybliżenie znajdziemy z równania (26)

*Vs>=À2fô- 1.
i

Parametr I dobieramy tak, aby w dowolnym punkcie przedziału /
było F/2 ' = l.

Stąd

!-*'£» V - ^ . (28)

Dalszym przybliżeniem będzie

łV5>=4 s p& Y^=\V s p,ï s PS = ^ ' S P^(S).
i i r i

Parametr X znowu dobieramy tak, aby

2P$
^m-rX'ïP^-i. Stąd À" = ~i .

2 |3.(2)

Postępując tak dalej otrzymamy dla p-tego kroku
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W powyższych wzorach Py*> oznacza element macierzy ||P;}IIP.
Podany tu sposób pokrywa się ze sposobem.wykreślnym L. Vianella,
względnie ze sposobem „momentów wtórnych" prof. dr W. Wierz-
bickiego *). Sposób ten jednak prowadzi do celu tylko wtedy, gdy
postać wygięta pręta nie przecina osi x między początkiem a koń-
cem pręta (założyliśmy, że F;C

(1)T^0).

Dokładność wyznaczenia parametru X wzrasta ze wzrostem
przedziałów, na które podzieliliśmy długość /.

Dla pręta o stałym przekroju, przy podziale na 10 części,
otrzymamy dla / = 5 :
9 9 9 9

ïtëtf-12,5; £ 1^ = 131,25; 2(3l,3/= 1345,625; £(3$=13742,8125,
i i i

a ze wzoru (30a) X'--i—"0,08! V » 1 2 ' 5 =0,0952
12,5 131,25

V" = 0,09754; ^""-0,097843 P f c r-^Vr"=9,7843~^

zamiast wartości ścisłej rj<;r
= .

n—i

b) Dobieramy wielobok y(^ tak, aby

Obliczamy ^ ' - ^ ^ - V C(i}-

Z warunku, aby ^ ( F f ) ^ 1 ŁJ- z warunku ^'2^[C (l ) |2=l wyz-
naczamy X' ' '

1 ( 3 0 b )

Obliczamy dcalej K<« fc

Podobnie z warunku ^jy^ff^i wyznaczamy

1 "T^Téff3 '

*) W. Wierzbicki — „Sposób momentów wtórnych w zastosowaniu do wy-
znaczenia siły krytycznej". Przegląd Techniczny 1946. Nr 9 —10.
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Postępując tak dalej, otrzymamy przy p-tym kroku

1

Dla pręta o stałym przekroju i n=10 wyliczymy przy przy-
jęciu dla yw symetrycznej paraboli 2-go stopnia

V=0,09795 X"=0,097887.

Otrzymujemy tu szybszą zbieżność ciągu X niż poprzednim spo-
sobem.

Przy tej sposobności warto omówić prosty wypadek wybocze-
nia pręta o stałym przekroju i ocenić jak od ilości przedziałów
zależy dokładność wyznaczenia wartości krytycznej.

Wychodzimy z równania (3b) przy T) = l,

ykr-1 — 2 (31)

Rozwiązaniem tego równania różnicowego przy warunkach brze-
gowych 2/j=0; t/n

=0 będzie

v(i) A cJT. n (i — I o n 11 H2Ï
y = / i sin ^ i , ii, . . , n i ; . I ,J^;

Wstawiając powyższy związek do równania (32) dochodzimy (wy-
boczenie wg jednej półfali) do zależności

albo

I = 2 l l -cos —n

Pkr
2EJn

. 1 — cos — .
p \ /I

(33)

(33a)

Przy j

EJ ™

jrzejściu do

71=2

8,0

71 = 3

9,0

granicy otrzymamy

71=4

9,39

n = 5

9,549

n = 6

9,648

71=7

9,707

n = 8

9,773

n = 10

9,7886

n=oo

(9.8696J

Z powyższego zestawienia wynika, że dla n=8 otrzymujemy
dostatecznie dokładną wartość Pkr ; szacować należy, że ilość ośmiu
przedziałów będzie wystarczająca i dla wypadku zmiennego prze-
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kroju. Jeśli porównamy jeszcze wartość X dla n = 10 z wartościami
otrzymanymi drogą iteracji, to stwierdzimy, że sposób I-szy daje
wartości mniejsze, sposób Il-gi większe od wartości uzyskanej
z równania (33).

2. W wypadku nie jednorodny cli warunków brzegowych pręta
podlegającego ściskaniu, punktem wyjścia będzie równanie (22),
w którym położymy q% = 0

yfc-XSA«y,a««; (34)
;

Iterowanie tego równania można wykonać sposobem podanym
w poprzednim ustępie. Ze względu na przegięcie odkształconej
w pobliżu miejsca utwierdzenia pręta należałoby przyjmować po-
dział pręta na conajmniej 8 części, aby uzyskać wartość siły kry-
tycznej z dostateczną do zastosowań dokładnością.

Wróćmy jeszcze do wypadku jednoczesnego ściskania i zgina-
nia pręta.

Przy r| = 1 napiszemy równanie (13b) w postaci

n2 (a)

Wyraźmy funkcje fk i yk przy pomocy funkcji właściwych • rów-
nania jednorodnego

fc=0. (b)

Oznaczmy rozwiązania właściwe znormowane tego równania
przez y$, a przynależne im wartości właściwe przez V.

Zatem napiszemy*)

Powyższe zależności wstawiamy do równania (a); otrzymamy

{cr [A2 y W + 1 y^] - ar yjf> = 0 . # (c)

*) Fr. Bleich — E. Melan: Die gewohnlichen und partiellen Differenzen-
gleiclmngen der Baustatik. 1927.
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«
Z równania (b) znajdujemy, że A2y[;' = — Â<r> yW.
Łatwo już z równania (c) otrzymamy dla dowolnego yW prosty

związek

Ostatecznie więc
n— 1

yjr)

X—Ji«
r = l

Z równania tego odczytamy, że dla À->À(r) ugięcie yk dąży do
nieskończoności. Z drugiej strony X<r> jest związane z siłą kry-
tyczną Pkr.

Należy wykazać, że dla l-^'/S^ również wielkość (3/Jt w równa-
niu (14b) będzie dążyła do nieskończoności.

W tym celu wyraźmy ur przy pomocy funkcji tpfc i yW,
Z teorii równań różnicowych wiadomo, że

- l

n—i

y
Zatem «—i «—i

LV
,« ZJ

r=\ r-=l

albo po przekształceniu sum
n - 1 n - l

Porównywując ostatnie równanie z równaniem (14b) otrzymamy
przy założeniu Ï |=1 .

n— 1

Widzimy, że dla Ji->X(r) wielkość P*. rośnie ponad wszelką miarę.
Gdybyśmy rozpatrywali zjawisko jednoczesnego zginania i roz-
ciągania pręta,.to (3*̂  przyjmie postać

r = l
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Wreszcie p r z y zginaniu prę ta należy położyć X=0.
n—i

(r> v(r)

r = l

Ostatnie wyrażenie jest odpowiednikiem bilinearnej formy
rdzenia równania całkowego.

Powyższe rozważanie, przeprowadzone dla prostego przykładu
pręta na dwóch podporach swobodnie podpartego można w całej
rozciągłości przenieść i na inne typy podparcia, jak i na dowol-
ną zmienność przekroju. Trudności jednak wyznaczenia war-
tości A.(r) jak i funkcji yM wzrastają niewspółmiernie, tak, że wy-
znaczenie wielkości (3*A przy pomocy algorytmu Gaussa czy też
sposobem krakowi anowym wydaje się drogą najprostszą i najprę-
dzej prowadzącą do celu.

D) Drganie poprzeczne pręta
Wiele kłopotu nastręcza wyznaczanie częstotliwości drgań włas-

nych pręta o zmiennym przekroju. Zadanie to da się bez wiel-
kiej trudności rozwiązać przy pomocy rachunku różnic skończo-

rys. 3

nych. Postaramy się i tu doprowadzić rozwiązanie do postaci
takiej, z jaką mieliśmy do czynienia przy wyboczeniu pręta.

Równanie różniczkowe tego zagadnienia przy przyjętych
w ustępie B oznaczeniach, przyjmie następującą postać

dx2

J * —
Przy założeniu x—l i, —~ -=rj (£) y (x, ł) = y {x) sin cof równanie

' • i J(x)
powyższe przechodzi na

^ Ą - a - (35)
Jy
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Dla jednorodnych warunków brzegowych y (0)=y (l)=y"(0)=
=y"(l)=0 rozbijamy równanie (35) na dwa.

Odpowiednie równania różnicowe przyjmą postać

i = l , 2 , 3 , . . . , n - 1 .

Rozwiązaniem tego układu równań będzie

u u)2/4

- F r T S yłPttSi (38a>

yk=~\ -^TłtitPłfc. (38b>

Łącząc te dwa równania w jedno, otrzymamy

yH=*Sytài&tk (39)

Symetryzacja „rdzenia" równania (39) daje

*W2ftftih (40)

Sprowadziliśmy więc zagadnienie drgania pręta swobodnego, do
takiej samej postaci, jak przy wyboczeniu (wzory 26, 27).

Poza parametrem a, różnica polega jeszcze na tym, że we
wzorze (40) występuje macierz || (3tJc ||

B w miejscu tam występującej
macierzy || (3{fc ||.
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jeżeli drgania swobodne odbywają się przy udziale siły osio-
wej P ściskającej, lub rozciągającej, to równanie różniczkowe (35)
przyjmie postać:

EJ0

a odpowiednie rozwiązanie w rachunku różnic skończonych

()-ifc ± À S TU y{ plk (42)
i

PP
EJQn*

Jeżeli w równaniu tym położyć X=0, otrzymamy z równania (39),.
rozwiązanie zagadnienia drgania bez udziału siły osiowej; jeśli
natomiast postawić co = o, otrzymujemy rozwiązanie zagadnienia
wyboczenia. Równanie (42) należy interpretować w ten sposób, że
przy stałym P siła ściskająca zmniejsza, a siła rozciągająca zwię-
ksza częstotliwość drgań własnych. Odczytamy również z równa-
nia (42), że dla ściskającej siły P dążącej do Pkr [a więc dla wy-
padku, yk—h S1lłyiPłte~*"O (porównaj wzór 26)] częstotliwość drgań

i

własnych zdąża do zera.
Przy niejednorodnych warunkach brzegowych równanie róż-

niczkowe (39) doprowadzamy do następującego układu równań
różnicowych;

(43)

Jk
&=1.2, . . . . , n—i. Qk—T-

v.o

Rozwiązanie tego układu równań daje

yK^alyiOik (44)

gdzie ||a«c|| jest macierzą sprzężoną układu równań

(45)
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W wypadku jednoczesnego ściskania lub rozciągania pręta
siłą P otrzymamy

S ^ S 2 (46)

Z porównania wzorów (44) (30) i (46) wynika również, że przy
wzroście siły ściskającej (znak minus przy i) częstotliwości co ma-
leją, na odwrót wzrost siły ściskającej powoduje zwiększenie czę-
stotliwości drgań własnych*).

Rozważmy jeszcze wypadek belki swobodnie podpartej o sta-
łym przekroju, wykonującej drgania swTobodne i ściskanej stałą
siłą P.

Równanie różnicowe przyjmie tu postać

A*y f c-RAay f c-ay f c=0. (a)

Rozwiązaniem tego równania jednorodnego będzie

yk*=Asin$k (£=1,2, . . . ,n—1. (b)

Z warunku brzegowego y n = 0 otrzymamy

(3 ( i - 1 , 2 , . . . , n - i ) (c)

Wstawiając p do równania (b), a to ostatnie do równania (a)
uzyskamy

«a)=22 ( l~cos - V - 2 X ( I - c o s - \ (d)
\ nj \ nj

Jeśli A=0, to

Z tego związku wyznaczymy {n—i) kolejnych częstotliwości
drgań co<4> własnych pręta przy P = 0. Jeśli natomiast a = 0 , to

XW.

Z tego równania wyznaczymy {n—i) kolejnych sił krytycz-
nych P<«.

Równanie (d) możemy zatem napisać w postaci:

f A-

*) Przy (/,(:>0 -wielkość
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albo też

Z powyższego wynika, że ze wzrostem siły P maleje częstotli-
wość drgań własnych i dla P^Pjc zmierza do zera. Łatwo też
wykazać, że dla n->co

5 ^ ( l - lA.- .n- l ) .

W wypadku drgań wymuszonych przy udziale siły osiowej rów-
nanie różnicowe przyjmie postać

P . (g)

Rozwiązanie tego równania da się przedstawić przy pomocy
funkcji właściwych y^ i wartości właściwych a(i> równania (a).

Na podstawie analogicznych rozważań jak w ustępie C- 2.
otrzymamy

n— 1 ll—\ . . , ;>—1

i = l r - l

Tutaj
n~ 1

jest członem macierzy sprzężonej do macierzy układu równań (g).

E) Wyboczenie płyt prostokątnych

1. Rozważmy płytę prostokątną dookoła swobodnie podpartą,
obciążoną na brzegu x = 0 x — a obciążeniem q (I) rozłożonym
w sposób ciągły lub nieciągły.

Równanie różniczkowe zagadnienia brzmi

0 (47)

Zajmijmy się najpierw płytą swobodnie wzdłuż brzegów pod-
partą. Warunki brzegowe są tu bardzo proste ; mianowicie wzdłuż
wszystkich brzegó-w jest y2u; = 0 i w=^0.
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My)

Rys. 4

Jeśli przez <p oznaczamy laplasjan

dw dw _ .
» = 1- nr— = \/lW

3x 2 dy'2

to równanie (47) możemy napisać w po-
staci układu dwu równań

N
(48a)

(48b)

Równania różniczkowe (48a, b) będą
spełnione jeśli przyjmiemy

sin
a

w(x, y) = (49)

( m = l , 2 , . . . c o

Spełnione będą*również, przy tym przyjęciu, warunki brzegowe
u> (0,y) = 0; w{a,y)=0; <p(0, y)=0; <p(a,y) = O.

W ten sposób otrzymamy układ równań różniczkowych zwy-
czajnych

— a2 <I>=—— Y n (y) (50a)
dy N

ŚlL-tfY^ (50b)

a = -

Zamieniając pochodne ilorazami różnicowymi i przy podziale
boku b na n odcinków Ay uzyskamy

1 = 2 2 . Q2 Y k (5 la)

(5ib)

mirfe
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Rozwiązanie układu równań (5la, 51b) daje

iv i

albo
ł W 2 K i m * i » . (52)

N ri>

Sprowadziliśmy zatem i tu rozwiązanie do ppstaci analogicznej
do jednorodnego równania całkowego Fredliolma drugiego rodzaju.
Z układu równań wyliczymy macierz sprzężoną || (3^ || — ze względu
na trójczłonowość tych równań nie sprawi to żadnego kłopotu.
Przemnożenie macierzy przez siebie daje macierz H îklj. Przez
symetryzację „rdzenia" otrzymamy dogodną do działań arytme-
tycznych postać równania (52)

Dla stosunku a/b ^ 1 możemy się spodziewać, że wyboczenie
nastąpi według jednej półfali zarówno w kierunku x jak i y.

Położymy m=l. Dla wzrastającego stosunku - nadejdzie wreszcie
b

moment, gdy wyboczenie jest możliwe zarówno w jednej jak
i w dwóch półfalach. Dla dalszego wzrostu stosunku — otrzy-

o
mamy postać wyboczenia w kształcie dwóch półfal (m=2) itd.

Gdy obciążenie działa zarówno w kierunku x jak i y otrzy-
mamy układ równań

V ! i 2 (54a)
N 3 Ï 2 N 3y2

V2u;=(P . (54b)

Po zmianie tego układu równań na układ równań różnicowych,
rozwiązanie otrzymamy w. postaci:

Yk=lq S TU Y i i)ik - Xp V B, A* Y i 8 i k (55)
i
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N n-

jeżeli zważyć, że przy wygięciu w jednej półfali w obu kie-
runkach dla yic>0 zawsze będzie A2Fi<0, to ze wzoru (55) łatwo
stwierdzimy, że ze wzrostem lp maleje siła krytyczna lQ i na
odwrót, (przy założeniu, że oba obciążenia są ściskające). Jeśli
q(y) jest ściskaniem, p(x) rozciąganiem, to wzrost q(x) wywołuje
powiększenie siły krytycznej.

2. Dla płyty prostokątnej swobodnie podpartej w krawędziach
x=0; x=a, a utwierdzonej zupełnie czy sprężyście na pozostałych
krawędziach, nie uda się już rozbić równania (47) na układ dwóch

trójczłonowych równań. Przy przyjęciu w=Y(y) sin napisze-

my równanie (47) w postaci

dy4 dy""

mita=
a

a po przejściu z pochodnych na ilorazy różnicowe

fc+2

N n'1

A-1,2, • . . , n-L (56)

Rozwiązanie tego układu równań daje

Warunki brzegowe tego zagadnienia kształtują się tu następująco.
Dla brzegu utwierdzonego zupełnie w krawędzi y=0;

otrzymamy: K(0)=0; 7'(0)=0

względnie F 0 =0; Y^1-=Y1 (58)
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Dla brzegu swobodnego:

my=" -N ( | - ^ + \i jj—£) =-iV[7''(0)-[ia2y(0)]sina.v=0

= -iV [K'"(O)-(2-n) a2y'(0)] sin ax=0.

W rachunku różnic skończonych zatem:

(59)

1 [3 + 2 (2-]i) Q2]

3. Płyta dookoła zupełnie utwierdzona
Obciążenie q (y) dowolnie rozłożone na krawędziach x=0 i x=a.

Wychodzimy z równania różniczkowego (47). Zamienimy to rów-
nanie na układ równań liniowych. Po-
dzielmy bok a na m równych odcinków
Ax, a bok b na n odcinków Ay.

Otrzymamy
Xr (60)

na

Przyjmujemy postać wygięcia płyty
w przekroju y=const. Rzędne X r(r=l,
2 ..., m—i) traktujemy jako znane. Su-
mujemy teraz równanie (60) obustron-
nie w kierunku osi x. Otrzymamy

1
- - 4 -

1

I

!_

i
_ _i

i
- 4 .

1
1
I

1
» 1

1

1
- 4 -1

1

1
— 4

1
_ 4

1
1
1

1

- + -

y\
^ri _

i
_ j, _

!I

1
-|
1

1"~
1

T~
_*•<.

i
4 -
1

-1 —

i

i

i

i -
i

"T~
i

-f -
1

-i -'
1 £

4 -?

|
1

I
T~"

i
•t~-

i
- i —

l

1_
4

1
1

I I

L__„.b-nóy

(61) Rys.. 5

gdzie

2&
m-V

m—l
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Rozwiązaniem tego pięcioczłonowego równania w budowie swej
podobnego do równania (55) będzie

Yk - ki) S m Yi aik (62)
i

Z równania tego znajdziemy w znany sposób A(l) oraz wartości
Yk(k=U 2, , n-1).

Wartości Yn są zatem znane. Sumujemy teraz równanie (60)
w kierunku osi y.

Otrzymamy '
3 Xr A + Q1 à* Xr = ~ ^ 'lr A2 Xr (63)

gdzie
1 «—1

Rozwiązanie tego pięcioczłonowego równania daje

dń (64)
Z tego równania wyznaczamy A(2) oraz stosunki rzędnych Xr. Su-

mując równanie (60) ponownie w kierunku osi x otrzymujemy
nowe wartości A, B i z równania (61) wyznaczamy następną
wartość A(s). Iterując równanie (62) i (64) otrzymujemy ciąg war-
tości A(l), À(2) o znacznej zbieżności.

Powyższe rozważania dadzą się rozszerzyć i na wypadki płyty,
w których jedna, dwie lub trzy krawędzie są swobodne.

Duże zastosowanie znajdzie rachunek różnic skończonych do
płyt o zmiennej w sposób ciągły lub nieciągły grubości płyty oraz
do wypadków obciążenia płyt siłami skupionymi.

Omówione tu rozwiązanie zagadnień wyboczenia płyt, można
także rozszerzyć na zagadnienie drgań swobodnych płyt.

# V — - 0 (65)
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względnie na zagadnienie ogólniejsze, jak drganie płyt, podlegają
cych ściskaniu względnie rozciąganiu w jednym lub obu kierun
kach osi współrzędnych.

Poniżej podajemy trzy proste
przykłady, które pozwolą zoriento-
wać się tak w toku postępowania,
jak i w korzyściach płynących z za-
stosowań rachunku różnic skończo-
nych do statyki i dynamiki konstruk-
cji inżynierskich.

(F Przykłady
Wyboczenie płyty. Płyta kwa-

dratowa, na brzegach swobodnie
podpartą. Obciążenie q działa na
brzegach x = 0, x — a.

Podział boku b na 7 równych
części. Zmienność obciążenia okre-
śla wzór

r h\

J—>

Rys. 6

Jako pierwsze przybliżenie przyjęto krzywą Y{,0) niesymetryczną
dla [J 1 0,"a HYinetryczną dla (3 = 0. Rozpatrzono trzy wypadki
a) P « 2 ; b) _P •- i ; c) p - 0.

Przy podziale na 7 części i założeniu, że wygięcie nastąpi
w jednej półlali w kierunku osi x i y otrzymamy

a 2 n 2
02 = 2,20142.

Macierz układu równań (51 a, b) przyjmuje postać

- — = 0,20142
49

2,20142, — 1
— 1 2,20142,

i

— 1
2,20142, — 1

— 1, 2,20142, — 1
— 1 2,20142, — 1

— 1 2,20142

Dla tego układu wyznaczono najpierw przy pomocy skróco-
nego algorytmu Gaussa, macierz sprzężoną ||(%cll
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\

i
2
%
4
H
6

i

0,63894

2

0,40657
0,89503

3

0,25609
0,56377
0,98500

4

0,157201
0.346068
0,604644
0,985003

5

0,08997
0.19H073
0,346070
0,563770
0.895029

6

0,04087
0,08998
0.157203
0.256094
0,40657
0,63894

Z macierzy tej wyznaczono macierz

\

1
2
3
4
5
6

t

0.67359

2

0.84394
1.45130

3

0.7777
1,45596
1.86370

4

0.61201
1,19012
1,66186
1,86370

5

0,41245
0,81792
1,19012
1,45596
1,4130

6

0,20590
0,41245
0,61201
0,7777
0,84394
0,67359

a) Wypadek = 2 ; gh = gr0
1 - 2 - = < 7 0 i k . Obciążenie q^ od-

powiada czystemu zginaniu płyty, jako pierwsze przybliżenie
przyjmujemy krzywą niesymetryczną, przy czym rzędne jej nie
są określone równaniem — przyjęto je opierając się jedynie na
intuicji.

Wartości % i Fi01 podajemy w poniższym zestawieniu :

i

0,71424
0,31
0,2214

0,42857
0,33
0,1414

0,14286

0,275

' ,0393

—0,14286
0,200

—0,42857
0,120

—0,0285 —0,0514

—0,71429
0,06

—0,0429

i = i

Dalsze przybliżenia wyliczamy ze wzoru

Podajemy zestawienie tych przybliżeń

k=

y f c m -
y f c m -

0

0
0
0

1 | 2

0,2516
0,2440
0,2441

0,3552
0,3585
0.3507

3

0,3206
0,3310
0,3163

4

0,2708

0,2303

0.2102

Draż sumę rzędnych Yfc(r>

0,1 15
0,1246
0,1071

6

0,0335
0,0519
0,0325

0
0
0

V Yk(r)

1,2702
1,3403
1,2609
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Obliczamy parametry A kolejnych przybliżeń;

)-£-££—-1,0195,
vy,c(D

V V, (2)
X(»)= -iiL_=i062

^ = " — - - 0 , 9 4 7 6
— ' h'.

qkr=2bA77.

Wartość q'fc,- wyznaczoną przez S. Timoszenko *) metodą ener-

getyczną wynosi <7fcr—25,o
6 2

1 - —
n \

Jako pierwsze przybliżenie przyjęto wielobok Yk(0) jak dla
wypadku a). .

*-

Y*<°>=

0

i

0

0

i

0,85714

0,31

0,2657

2

0,71429

0,33

0,1357

3

0,57147

0,275

0,1571

4 ,,,

0,42857

0,200

0,0857

5

0,28572

0,120

0,0343

6

0,14286

0,06

0,0086

7

0

0
0

Podajemy dalsze przybliżenia uzyskane ze wzoru (52)

i = ! 0
0,5684
1,6770
5,0678

1,0311
3,3571

14,5049

0,9205
3,1201

10,1109

0,6713

2,3395

4,1252

. 4,4692

0,3493

1,2367

0,62290

1

0,9286
2,8787

12,6892

) = 1,295
1 ( 0 4,4692~ 3.45 ' '^ 14,609 ~ 3,2368

X _ 14,60c> 1
(31 47,1209 "3,22 '

Dla trzeciego przybliżenia otrzymamy

j t 2 bA b 2

4,4692
14,6091
47,1209

*). S Timoszenko, Theory of Elnstic Stability. 1936, sti. 355.
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Metodą energetyczną otrzymuje S. Timoszenko wartość

c) Wypadek {3=0. Obciążenie <7=const. ï|=l.
Jako pierwsze przybliżenie przyjmujemy krzywą symetryczną.

Przy dalszych przybliżeniach wystarczy wyznaczać Yfc dla trzech
pierwszych punktów.

K =
Y (0) =

•y (i) =

Yjc(2) »

0

0

0

0

1

0,4540

2,7190

17,0416

1 2

0,7820

4,903
30,7081

3

. 0,9749
6,1094

38,2916

*

2,1909

13,7314

86,0413

.X(l) 2,1909 X(S!) 13,7314

Dla drugiego przybliżenia otrzymamy

zamiast wartości scisiej

Resume

De l'application du calcul des différences finies aux problèmes
de la mécanique de construction

Ce mémoire traite de l'application du calcul des différences
aux problèmes de la mécanique de construction concernant le
flambage et la vibration des poutres et des plaques. La solution
du système des équations linéaires qu'on obtient ensubstituant
les coefficients différentiels aux dérivées dans les équations aux
différences, y est amenée à l'expression propre à l'itération. L'au-
teur envisage l'analogie advenant dans la résolution des dites
équations et dans celle des équations intégrales, ainsi que des
équations aux différences.

(Praca >plynęła do Redakcji, dnia 16. I, 1932 r.)


