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STAN NAPRĘŻEŃ WYWOŁANY W PRZESTRZENI SPRĘŻYSTEJ
DZIAŁANIEM CHWILOWEGO ŹRÓDŁA CIEPŁA

Zagadnienie jest traktowane w sposób quasi-statyczny, tzn. z po-
minięciem efektów dynamicznych wywołanych zmianami temperatury
ciała. W pierwszej części pracy rozpatrzono wpływ chwilowego punk-
towego źródła ciepła w przestrzeni sprężystej nieograniczonej, uzys-
kując przy tym wyrażenie określające funkcje Greena dla rozpatry-
wanego zagadnienia. Na podstawie uzyskanych w ten sposób wyników
rozwiązano następnie zagadnienia szczególne dotyczące chwilowego
punktowego źródła ciepła w półprzestrzeni sprężystej oraz chwilowych
źródeł liniowych i płaskich w przestrzeni i półprzestrzeni sprężystej.

1. Chwilowe źródło ciepła w nieograniczonej przestrzeni sprężystej

Niech w punkcie A (f, t], C) sprężystej przestrzeni izotropwej wy-
tworzona zostanie w chwili t — O ilość ciepła Q — Wg c, gdzie W jest
wydajnością źródła ciepła, a ? i c oznaczają, odpowiednio, gęstość i ciepło
właściwe ośrodka sprężystego. Pole temperatury opisane jest równa-
niem różniczkowym

(1) V*T = i - - ^ ,

gdzie: T(x,y,z)t) — temperatura w punkcie B{x,y,z) w chwili t, «== )Jgcr

X —i współczynnik przewodnictwa właściwego.
Pole temperatur wywołane działaniem skupionego, chwilowego źró-

dła ciepła w punkcie A (f, v\, f) określa wzór1)
R2

gdzie R2 = (x •- | ) s + (y - nf + (z - ff ,
albo wyrażenie całkowe

[285]
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(3) T - %-fff e-xt (K"+ '*+ yl) cos a {x +
o o o

— | ) cos j8 (y — rj) cos y (z — f) da dj8 dy .

W celu oznaczenia stanu naprężeń wygodnie będzie się posłużyć tak
zwanym potencjałem termosprężystego odkształcenia <5. Związany jest
on ze stanem przemieszczeń o składowych u, v i w zależnościami'

(4) U ~ -r— , V = — 1 W = -r— .

Wprowadzając związki (4) do trzech równań przemieszczeniowych
teorii sprężystości sprowadzić je.możemy do jednego równania2)

(5) V20 - ^ ^ a{I ,w 1 — v

gdzie: v — liczba Poissona,
at — współczynnik rozszerzalności liniowej.

Równanie (5) jest słuszne przy pominięciu efektów dynamicznych;
w równaniach przemieszczeniowych teorii sprężystości pomijamy przy-
spieszenia przemieszczeń. Zagadnienie traktujemy więc jako quasi-sta-
tyczne. .

Różniczkując związek (5) względem czasu i korzystając z równa-
nia (1) otrzymamy

(6) K

skąd

(7) 0 = — — atx fTdt .

Ze związków (1) i (7) uzyskamy zależność

(8) V & = •

Składowe stanu naprężeń związane są z potencjałem termospręży-
stego odprężenia zależnościami2)

dt

/ d 0\ !d20 1 d0
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ff— -2G|VM>
(9)

gdzie G oznacza moduł odkształcenia postaciowego.
W celu wyznaczenia składowych stanu naprężeń wyznaczamy całkę

szczególną równania (5) i wstawiamy ją do związków (9). Na ogół całka
ta nie spełnia wszelkich warunków brzegowych. W takim przypadku
dodamy do stanu naprężeń a tak dobrany stan naprężeń o, aby wszelkie
warunki brzegowe były spełnione. Naprężenie ostateczne uzyskamy two-
rząc sumy odpowiednich składowych stanów a oraz a .

Widoczne jest, że zgodnie z wzorami (2) i (7) całka szczególna równa-
nia (5) przyjmie postać

albo

X

X cos a (a; — | ) cos (3 (y — rj) cos y (2 — C) da d/9 dy.

Całkę (10) przy podstawieniu u — . doprowadzimy do postaci

/-, «s ^ 1 + v W r e - " ,
^ ; 1 - v 1 M J / w

Ponieważ

J w"1^ exp (— u) du = ]/JI (1 — erf \fu) = ^71 erfc y'u",

zatem
. 1 O , , 1 +v W „_, . R(13) 0=-—^—at-A—R a e r f c -==• .

Wstawiając całkę szczególną <Z> do związków (9) oraz wprowadzając
oznaczenie

„ _ ! + , GW
1 — v 2n
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otrzymamy

(14a)

N
Ra erfc R expf 1 +

R2

Rexp I — R2

4«t

V
I dwa analogicznie zbudowane wzory dla <% i as

oraz
3JV

(x — i) {y-i)\ erfc
t

(14b)

i dwa analogiczne wyrażenia dla ffxs i OTJ2,

Widoczne jest, że naprężenia normalne i styczne znikają w nieskoń-
czoności dla dowolnej chwili t. Nie znikają one jednak dla t = oo przy
skończonych wartościach x, y i z i w tych warunkach mamy

(15a) axx"*> — " R2

i dwa analogicznie zbudowane wzory dla a„,M i azzfi

oraz

(15b)
3 N / "

.~ = -fir (x -
i dwa analogiczne równania dla ff,2,» i o„s,^, •

Jeżeli ostatnie naprężenia odejmiemy od naprężeń przedstawionych
wzorami (14a) i (14b), to uzyskamy składowe naprężeń spełniające wszel-
kie warunki brzegowe, a mianowicie

(16a)

JL

— erf-

3 (z —
W

Rexp -

R
7 = exp [

R2 \

-[it — {J. —

i dwa analogicznie zbudowane wzory dla
oraz
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(16b)

R2 erf R

i dwa analogiczne równania dla erI3 i aVi •
Szczególnie prosto przedstawiają się wzory na składowe stanu naprę-

żeń we współrzędnych biegunowych przy kulistej symetrii odkształce-
nia. Umieszczając źródło ciepła w początku układu współrzędnych mamy
wówczas

(17)

gdzie

_ 2W _ . . R
0 = —^- R-1 erf c — 7 = - ,

G 2/t

R = / x 2 + y* + sza .

Składowe stanu naprężeń wyrażają się wzorami

(18) = a ^ = 2 G

Syjj. = 0 , = 0 .

We wzorach tych

(19)
~dR R

ĆLR R

gdzie ii£ jest przemieszczeniem w kierunku promienia R.
Zważywszy ponadto, że dla t = oo naprężenia powinny być równe

zeru, otrzymamy równania (18) w postaci

8JVI R
R exp I -= ^ 1 ) ,

(20)
Rexp —

. R \
erf —=- — 7 =

TR<p = OR» = <J#,p = 0 .
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Na rysunku la, b i c przedstawione są wykresy funkcji T, aRR i a
w zależności od promienia R dla kilku parametrów & = 4xt.

Jeżeli we wzorach (16a) i (16b) założyć W = 1, to będą one przedsta-
wiały funkcje Greena naszego zagadnienia. Znajomość tych funkcji
umożliwia rozwiązanie zagadnienia ogólniejszego, mianowicie wyznacze-
nie składowych a*j stanu naprężeń wywołanych w dowolnym punkcie
B(x,y,z) działaniem chwilowych źródeł ciepła w (f,??,C) rozłożonych
w obszarze skończonym F przestrzeni sprężystej.

Stosując zasadę superpozycji otrzymamy składowe ay ze związków

(21) a% {x,y,z,t) =JJfw (£>VĆ) au (x,y,z; £,rj,£; t)

2. Chwilowe źródło ciepła w półprzestrzeni sprężystej

Niech w punkcie A (0, 0, f) półprzestrzeni sprężystej działa chwilowe
źródło ciepła o wydajności W. Wyznaczyć należy składowe stanu naprę-
żeń przy założeniu wolnego od naprężeń brzegu z = 0, który stanowi
płaszczyznę ograniczającą półprzestrzeń. Ponadto żądamy, aby dla z = 0
było T — 0. Warunki brzegowe • naszego zagadnienia mają zatem postać
(22) CT„ = 0 , cra = O, ozv = 0 i T = 0 dla z = 0 ,

Pierwszy i ostatni warunek będzie spełniony, jeśli w nieograniczonej
przestrzeni sprężystej umieścimy w punkcie A (0, 0, f) dodatnie, a w punk-
cie A'(0, 0, — C) ujemne źródło ciepła.

Dla takiego układu źródeł, antysymetrycznie umieszczonych wzglę-
dem płaszczyzny z = 0, korzystając z wzoru (13) otrzymamy

(23) 0 = ^ a ( - ^ ( K r * erfc - Ł - R?erfc
1 v 4 u \ 2 /rt 2 ]/

gdzie R!.2 = ̂  + y2 + (z±?) 2 -

Dla dalszych rozważań dogodnie będzie przedstawić funkcję (23)
przy pomocy całki Fouriera

(24) o o o .
•X cos ax cos j3y [cos y[z — £) — cos y (z + £)] da dp dy .

Składowe stanu naprężeń wywołane działaniem dwóch źródeł anty-
symetrycznie umieszczonych względem płaszczyzny z = 0 łatwo wyzna-
czymy przy pomocy wzorów (16a) i (16b). I tak, przykładowo,
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N
«.1»T

Tj2
til

exp jr—
4 >••*•

4-
(25a)

(RS -

x R2— erf

<»,» = 3 W x v -pi
(25b)

Rx

2]/xt J

_Rj_
4«t

2i/« (

Li
6""^

1 R\\ . R2

. 6 «•

Funkcja 5P nie spełnia tu wszystkich warunków brzegowych. W płasz-
czyźnie z = 0 nie znikają naprężenia da, i a1/2. W celu zniesienia tych
naprężeń należy rozwiązać dodatkowe zadanie. Należy w półprzestrzeni
sprężystej (przy T = 0) wyznaczyć stan naprężeń ffy wywołany działa-
niem naprężeń tnących —axl i —aIJZ przyłożonych w płaszczyźnie 2 = 0.
W zadaniu tym mają być spełnione warunki

(26) „—0 i o 3 3 = dla z = 0 .

Naprężenia 0^ wywołane działaniem źródła ciepła w punkcie A(0, 0, f)
półprzestrzeni sprężystej uzyskamy przez superpozycję naprężeń
<% i Ot).

W celu wyznaczenia składowych stanu naprężeń ff« w półprzestrzeni
sprężystej posłużymy się funkcją przemieszczeniową B. G. Galerkina3).
Sprowadza ona układ trzech równań różniczkowych przemieszczenio-
wych do jednego równania biharmonicznego

(27) V 2 V > - 0 ,

przy czym składowe stanu naprężeń cry wyrażone są zależnościami

(28) ł '
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1
dx dy dz ' °M da;

Funkcję przemieszczeniową przyjmiemy w postaci całki Fouriera

(29) (p = J j Z(a,p,z) cos ax cos /3y da d/?,
o o

gdzie Z = (A + Bdz) e~d*, d = / a 2 + /?2,

a A i B są funkcjami parametrów a i /3.
Trzeci warunek brzegowy (26) prowadzi [co łatwo sprawdzić wstawia-

jąc (29) do (rM z wzoru (28)] do związku
(30) (2 - v) Z'(0) <52 - (1 — r) Z'"(0) = 0 .
Ponieważ Z'(0) = (B - A)<3 i Z'"(0) = (3B - A)6\ zatem

Dwa pierwsze warunki brzegowe (26) przedstawić można w postaci

dx dy dz dx2 dy2

Widoczne jest, że sprowadzają się one do jednego warunku

(33) = 0 .
2 = 0

Wyrażając, funkcję $ wzorem (24) i fukcję c? wzorem (29) uzyskamy

4W(1 + v ) , ^ '

(34)
— ( 1 — v) Z (0) «52 — vZ"(0) = 0 .

Ponieważ Z(0) = A i Z"(0) = — (2B - A)(52, zatem z równań (34) i (31)
otrzymamy

— 3 ' i ^iS2 /

v */
o

(35) :
B = - A ( 1 - 2 ) / ) .
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Ponieważ

/

(36)

zatem

-jf- exp (xtd2) | exp (— <5f) erfc j

- exp (ÓC)erfc o'
2\/x

(37) x I exp [ - 6 (z + £)] erfc (d \fat - — ^ =
I \ 2 ]/«t

exp [ — <5 (2 — C)] erfc I <5|/?<F -) ^=—11
, \ 2 V *t / J

cos ax cos

Znajomość funkcji <p daje już możność wyznaczenia składowych
stanu naprężenia atl z wzorów (28). Ponieważ ani funkcja q>, ani jej
trzecie pochodne nie dają się wyrazić w postaci zamkniętej, wyznaczenia
składowych srtanu naprężeń Oi, można dokonać tylko żmudnym sposo-
bem numerycznym.

Rozważmy przypadek działania chwilowego źródła ciepła w punk-
cie A(0,0, f) w przypadku, gdy w płaszczyźnie z = 0 składowe prze-
mieszczeń u = 0, v = 0 i w = 0.

Postępując podobnie jak w przypadku poprzednim' i przyjmując
funkcję <P według wzoru (23) łatwo sprawdzimy, że w płaszczyźnie z = 0

(38)
dx * , o

- 00
v = - —

dy
= 0

Różnymi od zera są przemieszczenia w: Do stanu naprężeń af! [skła-
dowe tego stanu wyrażone są wzorami (25a) i (25b)] należy dodać stan
Oj). Stan ten wyznaczamy w półprzestrzeni sprężystej (przy T = 0), któ-
ra poddana jest .w płaszczyźnie z = Q działaniu przemieszczenia —w.
Dla tego dodatkowego zadania warunki brzegowe kształtują się nastę-
pująco:

(39) u = 0 , v = 0 w -\- w __ Q
2 = 0
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Ponieważ składowe stanu przemieszczeń związane są z funkcją cp
zależnościami

= 1 4-» d2cp 1 -I- v d2w
u = — • v

E. dxdz ' E dydz'
(40)

gdzie E oznacza moduł sprężystości, zatem zadanie nasze sprowadza się
do rozwiązania różniczkowego (27) z warunkami brzegowymi

i d(p

dz
(41)

= 0

Funkcję <p przyjmiemy w postaci (29). Z warunków brzegowych (41)
wyznaczamy wielkości A i B, a z wzorów (25a) i (25b) otrzymujemy skła-
dowe stanu naprężenia atj.

Ostateczne funkcje naprężeń określa związek a^ = ff« + ff«-
Żadnych trudności nie nastręcza również przypadek, w którym płasz-

czyzna z = 0 jest wolna od naprężeń tnących, a przemieszczenia tu są
dla z = 0 równe zeru. Przy wyznaczeniu stanu naprężeń e?y należy dla
funkcji qo przyjąć w tym przypadku warunki brzegowe

(42)

Funkcje $ i y wyrażone są tutaj, odpowiednio, wzorami (23) i (29).
Jeśli we wszystkich tych rozpatrywanych przypadkach przenieść

źródło ciepła z punktu A(0, 0, £) do punktu A(f, i], C), to we wszystkich
wzorach tego rozdziału należy w miejsce x i y wstawić X — $ i y — łj.
Jeśli ponadto przyjąć W = 1, to składowe stanu naprężenia o,-;- będą
funkcjami Greena naszego zagadnienia. Drogą całkowania, zgodnie z wzo-
rem (15), otrzymać można przy ich pomocy składowe stanu naprężeń o-,j
wywołane działaniem źródeł ciepła rozmieszczonych w obszarze skoń-
czonym F półprzestrzeni sprężystej.
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3. Chwilowe liniowe źródła ciepła w nieograniczonej przestrzeni
sprężystej

Niech chwilowe źródło ciepła będzie w sposób równomierny rozło-
żone wzdłuż prostej równoległej do osi z i przechodzącej przez punkt
C(f, łj, 0). W tym przypadku tak pole temperatury, jak i składowe stanu
naprężeń, będą niezależne od zmiennej z. Mamy tu do czynienia z zagad-
nieniem płaskiego stanu odkształcenia.

Pole temperatury oraz potencjał termosprężystego odkształcenia
otrzymamy ze wzorów (2) i (10) wykonując całkowanie wzdłuż osi z od
— oo do +oo, a mianowicie

(43a) T = ^—ire *"' fe ixtdz = -^—e "**r

8(nxt)u J ^Twt
— oo ,

oraz
r'

•e

V)W,a re c f - ^
(l-»)8«'' J (at)"'" J

0 \ /

(44a) rł

ixt

gdzie: r2 = ( o ; - | ) s + ( y - ^ ,

a w oznacza wydajność źródła na jednostkę długości.
Zauważymy, że funkcje 0 i T dadzą się przedstawić całkami Fouriera

w postaci

(43b) T = - T / / e~ "H"'+ ^ cos a(x -$) cos 0 (y — rj) da d/S,
o o

(44b) ^ = -

o o

Wprowadzając oznaczenia ft = 4xt i u = r W doprowadzimy wzór
(44a) do postaci
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w
du.

u
u

Korzystając z wzorów (9) i zważywszy, że wszystkie pochodne wzglę-
dem z są równe zeru, otrzymamy

(46)

Wstawiając do tych wzorów funkcję 0 z wzoru (45) znajdziemy

4 A - £ -

(47)

gdzie A = *"_"•• C~r— •

Wymienione składowe naprężeń znikają przy x -> oo i y -> oo. Nie
znikają jednak dla t -> oo. W tym ostatnim przypadku otrzymamy

4 A L 2(v- v)2\ - 4 A .

(48)
= 0 .

Dodając do siebie składowe według wzorów (47) oraz składowe wy-
rażone wzorami (48), ale wzięte z przeciwnymi znakami, otrzymamy
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ostateczne wyrażenia dla składowych stanu naprężeń spełniające wszel-
kie warunki brzegowe. Zatem

o1,, — —

1 - e

(49)

• § • ( ! / -

\A -•

e
i

r*
IT

\
1
r2

/

V
g

r>

Przejdźmy teraz z punktem C do początku układu współrzędnych.
Wtedy, w przypadku źródła chwilowego równomiernie rozłożonego
wzdłuż osi z, mamy do czynienia w układzie współrzędnych walcowych
(r, cp, z) z zadaniem osiowo symetrycznym.

Przeprowadzając transformację naprężeń i układu współrzędnych
mamy

arr = —
e

(50)

1 p

Crg, = 0 j <v = o -,
gdzie oczywiście

r12 = x2 + y 2 .

Analogiczne wzory (różniące się jedynie znaczeniem stałej A i przy
azz ~ 0) otrzymał E. Melan4) dla naprężeń występujących w nieograni-
czonej tarczy, w której działa chwilowe źródło ciepła umieszczone w po-
czątku układu współrzędnych.

4. Chwilowe, liniowe źródło ciepła w półprzestrzeni sprężystej

Niech wzdłuż prostej równoległej do osi z a przechodzącej przez
punkt C(£, 0, 0) rozmieszczone będzie źródło ciepła w sposób równomier-
ny. W rozpatrywanym przypadku zarówno temperatura, jak i potencjał
termosprężystego odkształcenia, będą jedynie funkcjami zmiennych x
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i y. Załóżmy, że w płaszczyźnie x = 0 ograniczającej półprzestrzeń sprę-
żystą ma być T = 0. Ponieważ płaszczyzna ta powinna być ponadto
wolna od naprężeń, zatem warunki brzegowe przyjmą postać

(51) axx = 0, axU = 0, a„ = 0 i T = 0 dla X = 0 .

Przedostatni warunek jest spełniony, gdyż funkcje T i <P są niezależ-
ne od zmiennej z, a przecież aXi = 2 Gdi0jdx dz. Pierwszy i ostatni wa-
runek spełnimy, jeśli w nieogranicznej przestrzeni sprężystej umieścimy
dwa źródła liniowe — jedno dodatnie, przechodzące przez punkt C(£, 0, 0),
i drugie ujemne, przebiegające przez punkt C'( — f, 0, 0).

Wtedy, korzystając z wzorów (43a) i (43b), mamy

le —
gdzie rf,a = ( x - | ) 2 + ^ j

albo

(53) T = ~- f f e~xi(o> + ?1) sin ax sin ctf cos By da d(3
o o

Korzystając z wzorów (45) i (44) znajdziemy

albo

2 Cl 4-via to s? 7 e—*
(55) $ = ; . v , / / sinafsinaa;x cos/3ydad/3.

0 0

Składowe stanu naprężeń wywołane działaniem pary źródeł wyzna-
czymy korzystając z wzorów (49)

d„ = - 4 A

2 Archiwum Budowy Maszyn
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(56)

ax]l = 8 Ay (x — f)

1
r 2

~2

e "*"

-j

1

II o

— \1 o
1 "' —•—- I J_ — C

*2 = 0 , - 0 .

Łatwo sprawdzić, że dla x = 0 składowe naprężeń o-„ == 0 , cr^ = 0 ,
gM = 0 i axy^0.

Dla dalszych rozważań będzie wygodnie przedstawić naprężenia przy
pomocy całki Fouriera

4 wGat (1 + v)

(57)
•zszs £ \jr —

1=0 oxoy

•ff^' sin af sin /?y da d/? .

o o

W celu zniesienia naprężeń axy w płaszczyźnie x = 0 należy do stanu
(ty dodać naprężenia <T«, które powstaną w półprzestrzeni sprężystej pod
działaniem naprężeń stycznych — cr̂ l 0 przyłożonych w płaszczyź-
nie x = 0 ograniczającej połprzestrzeń.

Składowe stanu naprężeń ~au wyznaczymy w sposób najprostszy ko-
rzystając z funkcji Airy'ego. Eozwiązać zatem należy równanie różnicz-
kowe

(58) V2V2F = 0,

z warunkami brzegowymi
d*F

(59)
dxdy

= 0 = 0 .
1 = 0

Funkcję F przyjmiemy w postaci całki Fouriera

(60)
co

= f ^



• [17] STAN NAPRĘŻEŃ WYWOŁANY ŹRÓDŁEM CIEPŁA 301

Z drugiego warunku (59) wynika, że A = 0. Z pierwszego warunku
brzegowego (59) otrzymamy

(61) B(fl = - . 1 7 - ° , „ sin aS da .

Ponieważ całkę niewłaściwą (61) można wyrazić w postaci zamknię-
tej, zatem

(62)

Znajomość funkcji F daje już możność wyznaczenia dodatkowych
naprężeń

Sumy naprężeń o-,]— ÓUĄ-GU spełniają już wszelkie warunki brze-
gowe naszego zagadnienia i są jego rozwiązaniem.

5. Chwilowe płaskie źródło ciepła w nieograniczonej przestrzeni
sprężystej

Niech w płaszczyźnie x = | działają rozłożone w sposób jednostajny
źródła ciepła. W tym przypadku tak temperatura, jak i składowe stanu
naprężeń będą funkcjami jedynie zmiennej x.

Pole temperatury przy wykorzystaniu wzoru (43a) wyrazi się rów-
naniem

Potencjał termosprężystego odkształcenia otrzymamy w sposób ana-
logiczny korzystając z wzoru (44a), a mianowicie
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(65)
oo

(1 _j_ v) atw r e ~ n

(1 — v) 4 /n J rj%

gdzie , t] -• —-r: •

Składowe stanu naprężeń ai} wyznaczymy z wzorów (9) pamiętając,
że funkcja $ oraz naprężenia zależą jedynie od zmiennej x. Różnymi
od zera będą jedynie naprężenia ayy i o7z. Mamy więc

albo

(66)

Naprężenia te znikają dla a?-^oo oraz dla t-^oo.

6. Chwilowe płaskie źródło ciepła w półprzestrzeni sprężystej

Niech w półprzestrzeni sprężystej (ograniczonej płaszczyzną x = 0)
działają w płaszczyźnie K = f jednostajnie rozłożone źródła ciepła.
W płaszczyźnie a: = 0 powinny być spełnione warunki brzegowe

(67) T = 0, axx = 0, a„ = 0 i <T« = 0.

Te warunki brzegowe będą • spełnione, jeśli w nieograniczonej prze-
strzeni sprężystej działać będą jednostajnie rozłożone dodatnie źródła
ciepła w płaszczyźnie x = +£ oraz ujemne w płaszczyźnie x = — £. Wte-
dy pole temperatury opisane jest związkiem

(*-!>' U + S)'\

r ~ )

a naprężenia wzorami

» « = ° > ffw = 0 , cr„s = 0 i axs = 0
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0,4 0,8 1.2 1,1 2,0 2,4 2,3 3,2 3,6

Rys. 2

Na rysunku 2 przedstawiono wykres naprężeń azz dla £ = 1 i dla
kilku wartości parametru •&.

Praca wpłynęła do redakcji w listopadzie 1956 r.
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Hanpn>KeHHH B ynpyroM npocTpaHCTBe
H nonynpocTpaHCTBe, Bti3BaHHoe ^eńcTBHeM MrHOBeHHoro

K p a T K o e

B nepiBOH ^acTH Tpy^a paccMOTpeiio cocroHHKe raampHJKeiHiHM, BBI-
3BaHHoe .newcTBJieM Tone^moro MraoBeuHoro ncwiHMiKa Tenjia. Mcxoina
M3 ypaBMeHMH (5) BBipascaiomeTO 'OBH3fi MejK^y nojieM noTeHurajia Tep-
Moynpyroii i#edpopManjiiM: <P H nojieM TeMnepaTypbi T,

• i(iiK) <i> B 3aMKHyroM Biifle (13). 3H&H cpyHKUHio <£> MOJKHO
cocTaBJiHiotu;iie COCTOHHMH HanpasoeHMH ajj noji&3yflCŁ 4 3 OP ;My j i a : M M (9)-

Bo BTopow; nacTM Tpy^a paocMOTpeHO cocTOHHMe HanipHxceHiiM B yn-
pyroM nojrynpocTpaHCTBe, Bbi3BaHHoe &
Horo MCTOHHMKR Tenjia, pacnojioaceiHHoro B TOHKe A (0,0, | ) . 3Ta
pemeHa, npHMenan Merofl OTpaaceHidi.

B !HeorpaiHiiH;e!HHO'M npocTpaHCTBe .zp̂ a MCTOHHMKa Teauia
no OTHOUieiHlIfiO K nJIOOKOCTM 2 = 0 BBinOflHeHO

B 3T0M nnocKOcnM ipaHMHHŁie ycjioKMa T = 0, a TaKace asz = 0. K COCTOH-
HJCO HainpHaceHMił on npii6a!BjieHo cocTOHHMe HanpajKeiBUH oyi TOK noflo-

, HTC^BI B njiocKOCTM z = 0 6BIJIM coSjnofleHBi ycjioBKH (26).
CocTOHHiwe HaiipH2caHMM d,j, oope^ejieBco, monojiB3yH dpyołKujao ne-

B. F. F
Cynepno3MD(M:H COCTOHHMM <Ttf, a TKaiKe CTM flaeT pe3yjiBTMpyiom;ee co-

HMJi ff/y, BBi3BaiHHoe fleiłcnBiieM wcTO'iiHMKa Tenna, pac-
nojioatemraoro B TOHKe A (0,0 f) ynpyroro nojiynpocipaHcnBa.

B aaKJnoHHTejiBHOH •gaciM i p y ^ a paccMOTipeHBi rparaHHHBie
a MMeaDHO- onpesejieHo cocToaHMe HarnpaaceHHM, BBi3BaHHoe

jiMHeiłHOTO u MraoBeumioa-o njiocKoro MCTOHHM ,
B HeorpaHMHeHHOiM: npocTp<aiHiCTBe M B ynpyroM nojiy-

State of Stress in an Elastic Space and Half-space
due to the Action of an Instantaneous Source of Heat

S u m m a r y

The first part of the paper deals with state of the stress due to the
action of a concentrated instantaneous source of heat. Starting from
equation (5) binding the field of thermoelastic potential of the de-
formation 0 and the temperature field T, the author obtains the
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function 0 in a closed form (13). The knowledge of the function 0
makes it possible to determine the components of the stress distribu-
tion ajj from formulae (9).

The second part deals with the state of stress caused in an ela-
stic half-space by the action of a concentrated instantaneous source of
heat placed at a point A(0,Q,$). The problem is showed by the method
of reflections. Two sources of heat are placed in an unbounded space
asymmetrically with respect to a plane z = 0 and the boundary condi-
tions T = 0 and CS3 = 0 are satisfied in this plane. A stress distribu-
tion ćty, chosen so that conditions (26) are satisfied in the plane z = 0,
is added to the stress distribution an- The stress distribution o^ is de-
termined by means of the displacement function of B. G. Galerkin. A su-
perposition of the distributions ~a{i and cfy gives the final stress distri-
bution 0/y due to the action of a source of heat placed at the point
A(Q,0,$) of the elastic half-space.

Finally the boundary cases are considered, namely the state of stress
due to the .action of an instantaneous linear and an instantaneous plane
source of heat placed in an unbounded space and in an elastic half-space
are determined.


