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WITOLD NOWACKI

Warszawa

STAN NAPREZEN WYWOLANY W PRZESTRZENI SPREZYSTE]
DZIALANIEM CHWILOWEGO ZRODLA CIEPLA

Zagadnienie' jest traktowane w sposéb quasi-stalyczny, tzn. z po-
minigciem efektéw dynamicznych wywolanych zmianami temperatury
ciata, W pierwszej czesci pracy rozpatrzono wplyw chwilowego punk-
towego Zrodia ciepla w przestrzeni sprezystej nieograniczonej, uzys-
kujac przy tym wyrazenie okreflajace funkcje Greena dla rozpatry-
wanego zagadnienia. Na podstawie uzyskanych w ten sposéb wynikéw
rozwigqzano nastepnie zagadnienia szczegdlne dotyczace chwilowego
punktowego Zrédia ciepla w polprzestrzeni sprezystej oraz chwilowych
zrédel linjowych i plaskich w przestrzeni i poélprzestrzeni sprezystej.

1. Chwilowe Zrédlo ciepla w nieograniczonej przestrzeni sprezystej

Niech w punkcie A (& %,{) sprezystej przestrzeni izotropwej wy-
tworzona zostanie w chwili t = 0 ilo§¢ ciepla @ = W.ce, gdzie W jest
wydajnoscig Zrodla ciepla, a ¢ i ¢ oznaczaja, odpowiednio, gestosé i cieplo
wlasciwe osrodka sprezystego. Pole temperatury opisane jest réwna-
niem roézniczkowym -

w1 0T
(1) V==,

gdzie: T(z,y,2,t) — temperatura w punkcie B(z,y,2) w chwili t, » = /cc,
A — wspdlezynnik przewodnictwa wlasciwego.

Pole temperatur wywolane dziataniem skupionego, chwilowego zro6-
dla ciepta w punkcie 4 (&, 7, {) okre§la wzor?')

2
: Wexp( — ~—R-—)
4%t |,
(2) T i
8 (?E?ft) fs

gdzie R* = (x — &) + (y —)* + (2 — £)*,
albo wyrazenie catkowe

|285]
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oo oo oo

(3) T=%fffe_"”“'”'*?')cosa(:c 3

p 0 0

—&)cosB(y —m)cosy (2 —C)dadBdy.

W celu oznaczenia stanu naprezen wygodnie bedzie sie postuzyé tak
zwanym potencjatem termosprezystego odksztalcenia @. Zwigzany jest
on ze stanem przemieszczen o skladowych u, v i w zaleznoSciami'

oD 0D . 0P
(4) U = aw s VU= -Ey— 1 W = -—a-z— .

Wprowadzajgc zwigzki (4) do trzech réwnan przemieszezeniowych
teorii sprezystosci sprowadzi¢ je mozemy do jednego réwnania?)

1+v

(5) VD = atT 3
gdzie: » — liczba Poissona,
ay — wspOlczynnik rozszerzalnoscl liniowej.

Roéwnanie (5) jest stuszne przy pominieciu efektéw dynamicznych;
'w rownaniach przemieszezeniowych teorii sprezysto$ci pomijamy przy-
spieszenia przemieszeczen, Zagadnienie traktujemy wiec jako quasi-sta-
tyczne.

Rozniczkujac zwiagzek (5) wzgledem czasu i korzystajac z réwna-
nia (1) otrzymamy

(6) v*(‘;‘f) 1+”-a¢ N'T ,
skad

7 S ol apx [ Tdt .
( 1—»

Ze zwigzkow (1) 1 (7) uzyskamy zalezno$c

1 0@
2 il
(8) Vi — i
Skiadowe stanu naprezen zwiazane sg z potencjalem termosprezy-

stego odprezenia zaleznoéciami?)

2 2
EM--—-~2G(v=qs-_"‘D) 2 (M 1 59’)

dx? | = oxr x ot]’
@ 0*D 0% 1 09
O'uy—— —-2G(vn@————)-—-2G(ay *;?t—)s
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G -zG(v”as_E)_zG(‘m e fﬁ) :

022 oz2 % Ot

(9)
g 02D 0%P 5

Gy =2G——, 2Gd:€dz Oy = 2G

D
oy o0z’
gdzie G oznacza modut odksztalcenia postaciowego.

W celu wyznaczenia skladowych stanu naprezen wyznaczamy calke
szczegblng réwnania (5) i wstawiamy ja do zwigzkéow (9). Na ogét catka
ta nie spelnia wszelkich warunkéw brzegowych. W takim przypadku
dodamy do stanu naprezen ¢ tak dobrany stan naprezen o, aby wszelkie
warunki brzegowe byly spelnione. Naprezenie ostateczne uzyskamy two-
rzac sumy odpowiednich skladowych stanéw o oraz .

Widoczne jest, ze zgodnie z wzorami (2) i (7) catka szczegdlna réwna-
nia (5) przyjmie postaé

1 + Yo
(10) ¢ =712 f(xt) exp( ‘m)d
albo
1 + » x!(a + 8+
11 =
e M fff CEN T
X cosa(x—§&)cosf(y —n)cosy (z—¢)dadfdy.
2
Catke (10) przy podstawieniu u = ZR;I:_ doprowadzimy do postaci
149 w - e
(12) W= 4n'f-R ,/u
Poniewaz

f u"ll'g exp (— u) du — ]/?(1 — erf ]/-‘!T) = Vﬂ? erfc Vl_"'_"
zatem |

I—E—v

(13) o=7" W Rerfe

R
-0 .
‘4n 2y xut
Wstawiajge catke szczegdlng @ do zwigzkéw (9) oraz wprowadzajac
oznaczenie

14+ GW
W= l—va‘ 2m
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olrzymamy

a

-

N R R?
~ | [y e ()

(14a) el HE
_ 3 (:rR: &P ) . i ZVPL (x;.:‘t)

i dwa analogicznie zbudowane wzory dla o, i a,,
oraz

[R*—(x— &)1

= 3N R
Cfn' ="Rs (x—&)(y—n) [erfc 2/ e

R R? ‘1 R®
R ]

i dwa analogiczne wyrazenia dla 0,, i g,,,

(14b)

Widoczne jest, Zze naprezenia normalne i styczne znikajg w nieskon-
czonosci dla dowolnej chwili t. Nie znikaja one jednak dla t = co przy
skonczonych wartosciach x, y i z i w tych warunkach mamy

= * N x — &)
(15a) Grura= — 5 (1 - “(_Er)_)
i dwa analogicznie zbudowane wzory dla ¢y, 1 0..c0
oraz '
= 3N
(15b) G = - (@ — ) (Y — 1)

i dwa analogiczne réwnania dla .. 1 Gy .c-.

Jezeli ostatnie naprezenia odejmiemy od naprezen przedstawionych
wzorami (14a) i (14b), to uzyskamy skladowe naprezen spehiajgce wszel-
kie warunki brzegowe, a mianowicie

N 3(x— &P R R?
= [ ()

(185) Re:cp( - -4R—2)

— R TR __ B\
erfz,/;t‘ i 2y 7w (t)™ [R* — (= — &Y

O = =

i dwa analogicznie zbudowane wzory dla o, i o, .
oraz
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(16b) aﬂ=ile—(x~sJ<y—a)[V%exp(-—%)(w

R? R
.
i dwa analogiczne réwnania dla o,, i g,..

Szczegdlnie prosto przedstawiajg sie wzory na skladowe stanu napre-
zen we wspolrzednych biegunowych przy kulistej symetrii odksztalce-
nia. Umieszezajac zrodlo ciepla w poczatku ukitadu wspélrzednych mamy
WOwCzas

2N " R
17 d—=-——Rlerfc———,
( ) G 2)/;{1:
gdzie R:]/x2+y2-|-zﬁ'

Skitadowe stanu naprezen wyrazaja sie wzorami

Gan=2G (ERR -+ —r _e— '—l—i'v_" "HT) )

1—2» 1—2» )
— = (] 1+
(18) G,P,;}:O}}&:zG(B?? -i- 7——2v6 — -I—Z—ZTC!:T),
&R‘?=0, 5503:0, ang=0.

We wzorach tych

du, Uy 0P
=TGR * T =R TR

(19)
du U
O =enntepp+es0=gp +2 5
gdzie ug jest przemieszczeniem w kierunku promienia R.

Zwazywszy ponadto, ze dla t = o0 naprezenia powinny by¢ réwne
zeru, otrzymamy réwnania (18) w postaci

R2
__8N| . R Rexp(_' Z;Tt)
re = TR 2 Y/t Y mnt :
(20) 23
Rexp(—-r)
Cpp =0, —4N erf & - # 1 i
pg =i =" 2 )/nt V axt 2xt) |’

0'}3@:0'33:“8@_‘:0-
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Na rysunku la, b i ¢ przedstawione sg wykresy funkeji T, opg i ¢
w zaleznosci od promienia R dla kilku parametrow & = 4u«t.

Jezeli we wzorach (16a) i (16b) zatozyé W = 1, to beda one przedsta-
wialy funkcje Greena naszego zagadnienia. Znajomosé tych funkcji
umozliwia rozwigzanie zagadnienia ogélniejszego, mianowicie wyznacze-
nie skladowych o¢f; stanu naprezeh wywolanych w dowolnym punkcie
B(x,y,z) dzialaniem chwilowych zrédel ciepla w (&,9,0) rozlozonych
w obszarze skonczonym I' przestrzeni sprezystej.

Stosujgc zasade superpozycji otrzymamy skladowe ofj ze zwiazkéw

(21) of (zyat) = [ [ [w(Emnt) oy (2 Emi; 1) dE dyde .
- (I

Py

2. Chwilowe zrédio ciepla w pélprzestrzeni sprezystej

Niech w punkcie A (0, 0,{) pélprzestrzeni sprezystej dziata chwilowe
Zrédlo ciepta o wydajnosci W. Wyznaczy¢ nalezy skladowe stanu napre-
zZen przy zalozeniu wolnego od naprezen brzegu z = 0, ktoéry stanowi
plaszczyzne ograniczajgcg poélprzestrzen. Ponadto zadamy, aby dla z = 0
bylo T = 0. Warunki brzegowe:naszego zagadnienia maja zatem postaé

(22) 0.,=0, 0,=0, 9g,=0 i T=0 daz=0,

Pierwszy i ostatni warunek bedzie spelniony, jeSli w nieograniczonej
przestrzeni sprezystej umiescimy w punkcie A (0, 0, {) dodatnie, a w punk-
cie A’(0,0, — {) ujemne zrédio ciepla.

Dla takiego ukladu zrédel, antysymetrycznie umieszczonych wzgle-
dem plaszezyzny z = 0, korzystajac z wzoru (13) otrzymamy

1 w
(23) G =2 T W ( 1 erfe ]/x — Rj'erfc ]/xt )
gdzie Ri,=a*+ y* 4 (24 0)*.

Dla dalszych rozwazan dogodnie bedzie przedstawi¢ funkcje (23)
przy pomocy calki Fouriera

1+'jl -—z!(a‘+ﬂ'+y)
e fff TS

24
oAl X €os ax cos fy [cos;a(z— {) —cosy(z4 £)]dadf dy.

Skladowe stanu naprezenn wywolane dzialaniem dwéch zZrédel anty-
symetrycznie umieszczonych wzgledem plaszezyzny z = 0 latwo wyzna-
czymy przy pomocy wzoréw (16a) i (16b). I tak, przykladowo,
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=11

N 3t R%) R,
_ _ N L .
e | = e S |

2
+ R, exp ( fl ) .
xt T _L__N_ . 3x ¢
—————— (R -2 | + 57 ||~ =
(25a) 2/ (at) " K i

R3

R
— e —— = =
[1/? | e e e
1T R Rt\(,, 1 Ri R,

1 R, R 1 R} R,
SRS —erf —=— ;
Rg[ "r;vte p( 4z )( T 6 ) & 2]/xﬁ:|}

Funkcja @ nie spelnia tu wszystkich warunkéw brzegowych. W plasz-
czyznie z = 0 nie znikaja naprezenia ¢,, i 0,.. W celu zniesienia tych
naprezen nalezy rozwigza¢ dodatkowe zadanie. Nalezy w polprzestrzeni
sprezystej (przy T = 0) wyznaczyt stan naprezen oy wywolany dziata-
niem naprezen tngcych —d,, i —d,, przylozonych w plaszezyznie z = 0.
W zadaniu tym majg byt spelnione warunki

(25b)

(26) G, +o0., =0, Gy +0pe=0 i 4,,=0 dlaz=0.

Naprezenia o;; wywolane dzialaniem Zrédla ciepla w punkcie A(0, 0, {)
po]przestrzenl sprezystej uzyskamy przez superpozycje naprezen
Gy 1 ay- '

W celu wyznaczenia skladowych stanu naprezen oy W poiprzestrzeni
sprezystej postuzymy sie funkcja przemieszczeniowa B. G. Galerkina®).
Sprowadza ona uklad frzech réwnan rézniczkowych przemieszezenio-
wych do jednego réwnania biharmonicznego

(27) VEW@ =0,

przy czym sktadowe stanu naprezen oy wyrazone sa zaleznosciami
= 0 3 d*p = 0 5 g
R Y]

= 2
Ty = [(l—v}V(p+ 3z° + ayg]

(28)
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oL
= aslp A a P aztp -
i X 0y 02 Oz = a:r (aa:- 0y? (P) 2
= 5 62(p 62(;)
% Eﬁ(axz oy T ”ng’) '

Funkcje przemieszczeniowa przyjmiemy w postaci catki Fouriera

oo oo

(29) o= | [ Z(a,p,2)cos ax cos By dudp,
0o
gdzie Z — (A + Béz) ez, S ]/m)

a A i B sa funkcjami parametréow a i f.
Trzeci warunek brzegowy (26) prowadzi [co latwo sprawdzi¢ wstawia-

jac (29) do ¢.. z wzoru (28)] do zwiazku
(2 —9)Z'(0)6* — (1 — ) 2"""(0) = 0.

(30)
Poniewaz Z'(0) = (B — A)d i Z2”(0) = (3B — A)¢*, zatem
A
(31) B= - 1—2»°
Dwa pierwsze warunki brzegowe (26) przedstawi¢ mozna w postaci
0 0 a(b g . o
(32) "5&‘,55[ a— am_ 1-*"r (P]aﬂa——{] .
Widoczne jest, Ze sprowadzaja sie one do jednego warunku
o *p - .
(33) J?.G = —5-52---{- -aF—vvlpzdo_O.
Wyrazajgc. funkcm & wzorem (24) i fukcje ¢ wzorem (29) uzyskamy
AW e [ e
5"53(1‘—?) I‘. f '3+62 Slnycdy“l"
(34) 0
— (1 —»)Z(0)8* —»Z"(0)=0.
Poniewaz Z(0) = A i Z”(0) = — (2B — A)d?, zatem z réwnan (34) i (31)
otrzymamy
CAW (L 4 9) (1 —29) r yexp( — xty?)
A = — —xtd?
7 (1 —9) 6 o f Y+ 0* 7
0

(35) X siny{ dy,
B = —A(l —21’).
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Poniewaz
[y exp(—uty?) _
(36) = 32— exp (»td*) [exp (— ob) erfe (6 Vut — 5 ]ﬁ:?f) 4
— exp (88) erfe (6 Yt + - ]i‘_r)] >
zatem
A +»na—20aW
p= 2 (1 —») j:[aﬁp )X
(37) x{exp[-a<z+c>]erfc(au/ﬁr3'§;_;)+

-—exp[—ﬁ(z—i)]erfc(é]/_—i— ]/__)}cosaxcosﬁydadﬁ.

Znajomogé funkcji ¢ daje juz moznos¢ wyznaczenia skiadowych
stanu naprezenia Gy z wzorbw (28). Poniewaz ani funkcja ¢, ani jej
trzecie pochodne nie dajg sie wyrazi¢ w postaci zamknigtej, wyznaczenia
skladowych stanu naprezen 5"1, mozna dokonaé¢ tylko Zmudnym sposo-
bem numerycznym.

Rozwazmy przypadek dzialania chwilowego Zrédla ciepta w punk-
cie A(0,0,¢{) w przypadku, gdy w plaszczyznie z = 0 skladowe prze-
mieszczen u =0, v =0 i w=0.

Postepujgc podobnie jak w przypadku poprzednim i przyjmujac
funkcje @ wedlug wzoru (23) latwo sprawdzimy, ze w plaszczyznie z = 0

— D N A .
(38) u:a—m' —0 ! v=a—y'z=‘n—0

|2=0
Réznymi od zera sa przemieszczenia w. Do stanu naprezen oy [skla-
dowe tego stanu wyrazone sa wzorami (25a) i (25b)] nalezy dodaé stan
o4 Stan ten wyznaczamy w polprzestrzeni sprezystej (przy T = 0), kfé-
ra poddana jest .w plaszczyZnie z = 0 dzialaniu przemieszezenia —w.
Dla tego dodatkowego zadania warunki brzegowe ksztaltuja si¢ naste-
pujaco:

(39) u| =0, v

"y @+$[
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Poniewaz skladowe stanu przemieszczen zwigzane sg z funkcja ¢
zaleznosciami

= _1—|—v *p 5= 14-v 0%
- E. oxoz’ ~ 7 E oyoz’
(40)
w =_1--'-§—"- [ £ + +(1—2%) Vz@] ;

gdzie E oznacza modul sprezysfosci, zatem zadanie nasze sprowadza sie
do rozwigzania rézniczkowego (27) z warunkami brzegowymi

dp _ 14+v[0% O
& =0, { n [a:::ﬁ | ay2+(1ﬁzv)vq;]+
(41) |
?3} —0.
02 |._,

Funkcje ¢ przyjmiemy w postaci (29). Z warunkéw brzegowych (41)
wyznaczamy wielkosci A i B, a z wzordéw (25a) i (25b) otrzymujemy skla-
dowe stanu naprezenia ay.

Ostateczne funkcje naprezen okresla zwiazek oy = oy + 0y

Zadnych trudnos$ci nie nastrgcza réwniez przypadek, w ktérym plasz-
czyzna z = 0 jest wolna od naprezen tngcych, a przemieszczenia w sg
dla z = 0 réwne zeru. Przy wyznaczeniu stanu naprezen ¢y nalezy dla
funkeji ¢ przyja¢ w tym przypadku warunki brzegowe

Fp | % oD
(4235 wesic 2] 0.
(42)
O \ i
[axa == ayﬁ*(l Zv)Vq{L“O— .

Funkcje @ 1 ¢ wyrazone sa tutaj, odpowiednio, wzorami (23) i (29).

Jesli we wszystkich tych rozpatrywanych przypadkach przeniesé
zrédlo ciepta z punktu A(0,0,¢) do punktu A(&, 9, ), to we wszystkich
wzorach tego rozdzialu nalezy w miejsce x i y wstawi¢ x — &1y —».
Jesli ponadto przyja¢é W = 1, to skladowe stanu naprezenia o;; beda
funkcjami Greena naszego zagadnienia. Droga catkowania, zgodnie z wzo-
rem (15), otrzyma¢ mozna przy ich pomocy skladowe stanu naprezen o;;
wywolane dzialaniem 2Zrédet ciepla rozmieszczonych w obszarze skon-
czonym I' pélprzestrzeni sprezystej.
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3. Chwilowe liniowe zrédla ciepla w nieograniczonej przestrzeni
sprezystej

Niech chwilowe Zrédlo ciepla bedzie w sposéb réwnomierny rozlo-
zone wzdluz prostej réownoleglej do osi z i przechodzacej przez punkt
C(&, u, 0). W tym przypadku tak pole temperatury, jak i skladowe stanu
naprezen, bedg niezalezne od zmiennej z. Mamy tu do czynienia z zagad-
nieniem plaskiego stanu odksztalcenia. .

Pole temperatury oraz potencjal termosprqiysteéo odksztalcenia

otrzymamy ze wzordw (2) i (10) wykonujgc calkowanie wzdluz osi z od
—oo do +o0, a mianowicie

r” + o an n
w e e o W S TaaE
43 T—_ 4zt dut 3o 4 xt
(43a) (mt),!‘e f e b=
oraz
T [ A s
_ (l—f-v)wxf:g fe : f e M aul i
1—»)8n" (at)"
0 - oa
(44a) Lot
(149 aw s
T (1—»4n ut ?
. .
gdzie: ==+ @uy-n

a w oznacza wydajnos¢ zrédla na ]edno§tkq diugosci.

Zauwazymy, ze funkcje @ i T dadza sie przedstawié¢ catkami Fouriera
w postaci

(43b) T:%ff e "M@+ M cosa(x — &) cos f(y — ) dadp,
00

' — ut (e + §%)
(44b) @ — — (at?)i;‘:’ff F g cosa(@ —)cosply —n)dudp.

Wprowadzajac oznaczenia & = dxt i u = 'r"fﬂ doprowadzimy wzor
(44a) do postaci
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A4y aqw
(45) b = ‘“(']"_“:_—?j‘g—;:— f(w)
gdzie fu) = f £ .

u

Korzystajac z wzorow (9) i zwazywszy, ze wszystkie pochodne wzgle-
dem z sg rowne zeru, otrzymamy

o 0*d - o*D - 0*D oD
U::_rz —-ZGa—yzg O'yy‘: '—'2G§m—z: Opy = __2G('a_xz-'i'"éy_g)!
(46)
2
aﬂ_zGa‘ﬁy, Foui=0y: Te=D

Wstawiajac do tych wzoréw funkcje @ z wzoru (45) znajdziemy

4A -2 £ . 3
samtie T[1-2w-n (5]

s F o nrg—an (b 4]

T

BT
(47) Gu= — 2t = —26:Fq7,

11—

_ 84 -1 1
= @=O@=ne (g )

Eﬂz=0! a:z=os
; 149 aquwG
gdze Aul—v 4z °

Wymienione skladowe naprezen znikaja przy xz—o00 i y—oco. Nie
znikajg jednak dla t — oo. W tym ostatnim przypadku otrzymamy

_ 4A(1_2(y-;v:)2), 5 4‘4(1——2&—?—"91).

Oy, 00 = P> P Oyy, 00 = P T
(48)

8A o
U:H-”=?(x__§)(y#??)’ Gaa.m=0'

Dodajac do siebie skladowe wedlug wzoréw (47) oraz skladowe wy-
razone wzorami (48), ale wziete z przeciwnymi znakami, otrzymamy
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ostateczne wyrazenia dla skladowych stanu naprezen spelniajace wszel-
kie warunki brzegowe. Zatem

LY

” re
44 -5 1 9 o
"":_Tﬂ“l(l‘e &)[1—%(?:'—??)1%;;(9—77)26 “’],
4A ( —--:;—) 2 § 2 § ——:,%
an=— 2T 12 @—np]+ S—ere 7,
(49)
O = ___.g?,;ie_T’ 0'33:0 U;,E:—-"O,
. H{;— e
8A e 1 s g

PrzejdZzmy teraz z punktem C do poczatku ukladu wspoélrzednych.
Wtedy, w przypadku Zrodla chwilowego rownomiernie rozlozonego
wzdluz osi z, mamy do czynienia w ukladzie wspdlrzednych walcowych
(r, @, 2) z zadaniem osiowo symetrycznym.

Przeprowadzajac transformacje naprezen i ukiadu wspotrzednych
mamy

rh e
4A ol |1 ; 4 A i
O = — 03 (1——e ‘9) GW_—._?--[(I—&-?'T)(Z ﬂ—ljl,

(50)

Oz = “Te 5 0'qu=0: 0. =0, quzzo')

gdzie oczywiscie
" = 22 + y2

Analogiczne wzory (réznigce sie jedynie znaczeniem stalej A i przy
0,; = 0) otrzymat E. Melan*) dla naprezen wystepujacych w nieograni-
czonej tarczy, w ktorej dziala chwilowe Zrédlo ciepla umieszezone w po-
czgtku ukladu wspoélrzednych.

4. Chwilowe, liniowe zrédlo ciepla w poélprzestrzeni sprezystej

Niech wzdluz prostej réwnoleglej do osi z a przechodzacej przez
punkt C(¢, 0, 0) rozmieszczone bedzie Zrodio ciepla w sposéb réwnomier-
ny. W rozpatrywanym przypadku zaréwno temperatura, jak i potencjatl
termosprezystego odksztalcenia, beda jedynie funkcjami zmiennych x
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i y. Zalézmy, ze w plaszczyznie & = 0 ograniczajgcej péiprzestrzen spreg-
zysta ma byé T = 0. Poniewaz plaszczyzna ta powinna byé ponadto
wolna od-naprezen, zatem warunki brzegowe przyjma postac

(51) o0,=0, O =0, 0p =0 i T=0 dlaxz=0.

Przedostatni warunek jest spelniony, gdyz funkeje T' i @ sq niezalez-
ne od zmiennej z, a przeciez o,, = 2 Go*®[0x 0z. Pierwszy i ostatni wa-
runek spelnimy, jesli w nieogranicznej przestrzeni sprezystej umiescimy
dwa zrodla liniowe — jedno dodatnie, przechodzace przez punkt C(§, 0, 0),
i drugie ujemne, przebiegajace przez punkt C'(—¢, 0, 0).

Wtedy, korzystajac z wzorow (43a) i (43b), mamy

W =1 oL
(52) Tz;-"ﬂ;?‘(e B _a s), ‘
gdzie 18a= (2 —&)° 4+ o2,
albo
2

(53) T =

T

w — wt (“! + ﬂ!) . .
- ff e sin ax sin «f cos fy dadf .
0o

Korzystajac z wzoréw (45) i (44) znajdziemy

14y aquwx o\ T4
o o= % ) )
albo
(55) &= — 2((11+")) A fm f e;;“r;:') sin a& sinax x cosfy da df .
— Y} T
[ '

Skladowe stanu naprezen wywolane dzialaniem pary Zrodel wyzna-
czymy korzystajgc z wzorow (49)

2 Archiwum Budowy Maszyn



300 W. NOWACKI 116]

1 2 x? —-} 2k ——ij—
-3l ez,
(56) ]
1 1( )
5= 84y ( s)l,.z ——arii—e °J|+
1| e ® 1( “.r)
——2——~——-~§-1——e "
TS & T3
6::=‘”%(2_T_e—_&_): E:‘z=03 693:0'

Latwo sprawdzi¢, ze dla x = 0 skladowe naprezen 7,,=0, &, =0,
,,=0 i @,5%0.

Dla dalszych rozwazan bedzie wygodnie przedstawi¢ naprezenia przy
pomocy calki Fouriera
4 wGa, (1 4 -v)

a2 (1 —»)

—xl(u‘—}-ﬂ'
ff eI sinaésin fy dadp .

W celu zniesienia naprezen o,, 'w plaszczyznie = 0 nalezy do stanu
6y dodaé naprezenia oy, kiore powstang w polprzestrzeni sprezystej pod
dzialaniem naprezen stycznych — Uﬂ’; o Dbrzylozonych w plaszezyz-
nie x = 0 ograniczajacej polprzestrzen.

0*P
U=F1==D = 2G_a—xay 8

(57)

Skladowe stanu naprezen o, wyznaczymy w sposob najprostszy ko-
rzystajac z funkcji Airy’ego. Rozwigzaé zatem nalezy réwnanie réznicz-
kowe

(58) V2VeF =0,
z warunkami brzegowymi
- 0*F 0*F ‘
59 —— e =
(5% TN LT W e

Funkcje F przyjmiemy w postaci catki Fouriera

(60) F= f?l_ (A + Bpx) e~ cos gy g .
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Z drugiego warunku (59) wynika, ze A = 0. Z pierwszego warunku
brzegowego (59) otrzymamy

s . o=t (@ )
(61) B(f) = — 4w;$8t:))'a‘ﬁ - @+

sinaéda .

0

Poniewaz calke niewlasciwa (61) mozna wyrazié w postaci zamknie-
tej, zatem

e =8 erfc(% -}-7'%-)] cosfly df .

Znajomo$¢ funkeji F daje juz moznos¢ wyznaczenia dodatkowych
naprezen

A

*F = 0*F - : O*F =

i Ty = Jz2 > % = — 3zay’ 0y =0,
(63)
_ = o2F o*F
a.; =0, O = “v(—aF+F5'!’,_z)'

Sumy naprezen ojj =gy 40y spelniaja juz wszelkie warunki brze-
gowe naszego zagadnienia i sg jego rozwigzaniem.

5. Chwilowe plaskie zrédlo ciepla w nieograniczonej przestrzeni
' sprezystej

Niech w plaszezyznie x = ¢ dzialajg rozlozone w sposéb jednostajny
zrédia ciepta. W tym przypadku tak temperatura, jak i sktadowe stanu
naprezen bedg funkcjami jedynie zmiennej x. .

Pole temperatury przy wykorzystaniu wzoru (43a) wyrazi sie row-
naniem

Qugiy hEet e _ =gy

_ W T T B 9
64 T(@H)=qore fe y= e :

—oa

Potencjal termosprezystego odksztalcenia otrzymamy w spos6b ana-
logiczny korzystajac z wzoru (44a), a mianowicie

o
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_ (=—81

t & + e Yy
. (1 + ?J) L Wx e =g d dt =
=g e .
(65) ’ o
’ 1
. ((1 j:);;;; (x — &) f ds; s

-z 2

gdZie N == —(Px 9 E) -

Skiadowe stanu naprezen o;; wyznaczymy z wzordw (9) pamietajac,
ze funkcja @ oraz naprezenia zaleza jedynie od zmiennej x. Roznymi
od zera beda jedynie naprezenia oy i 9,,. Mamy wiec

BRI a1
Cyy = 0z = '—2G—dz—d,?—= -—-M(F—E-e 2
' ox? (1 — )y ad
albo
(66) gy e S RO By

l1—»

Naprezenia te znikaja dla x — o0 oraz dla t— 09,
6. Chwilowe plaskie zrédlo ciepla w polprzestrzeni sprezystej

Niech w poélprzestrzeni sprezystej (ograniczonej plaszczyzng x = 0)
dziatajg w plaszezyiznie x = & Jjednostajnie rozlozone Zrdédia ciepla.
W plaszezyznie & = 0 powinny byé¢ spelnione warunki brzegowe
(67) T=0, Uz::()! ozif:{] ia:azo‘

Te warunki brzegowe beda: spelnione, jesli w mnieograniczonej prze-
strzeni sprezystej dziala¢ beda jednostajnie rozlozone dodatnie Zrédia
ciepla w plaszczyinie x = +§& oraz ujemne w plaszczyznie x = —§& Wte-
dy pole temperatury opisane jest zwigzkiem

w I
(68) T (x,t) = g 2 —g “ I

Vad

a naprezenia wzorami

21— (e~
o _ 204w ( 238 R )

ZB_O'II'F__ - — € _e 3
(69) / 1 -2y ad

g,=0, pi="0,, g,. =0 i o= 00
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oA .
% Mo \\ %32?:%-___*

26 37 36
Na rysunku 2 przedstawiono wykres naprezen o,, dla & =1 i dla
kilku warto$ci parametru 9.

/
AN
— N

08 ] 16 20 24

X ———

Rys. 2

Praca wplynela do redakeji w listopadzie 1956 r.
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CocrosHUE HAUPSDKEHUI B YIPYrOM IPOCTPAHCTRE
¥ IOJYIPOCTPAHCTEE, BEISBAHHOE JICHCTBIEM MTHOBEHHOTO
HCTOUHMKA TEIa

Kparkoe cozepaHHe

B meproit wacTu TPYAAa PACCMOTPEHO COCTOAHME HANpPANKEeHW, BbI-
3BaHHOe JEMCTBMEM TOYEYHOTO MTHOBEHHOTO MCTOUHMEKA Terya. Mexops
u2 ypaBueHua (5) BBIPAIKAIOUIETO CBA3L MEXKY IIOJIEM IIOTeHIMaja Tep-
Moynpyroit gecdopmaipmt @ u moseMm TemrepaTypsl T, HOTyweHo yHK-
‘umio @ B 3amxHyroM Bume (13). 3Haa dyHRumio P MOXKHO ONpPEeINUTh
COCTABJIAIONIME COCTOAHMA HANPANKEHMA 0;; IONL3yACh opmymavm (9).

Bo BTOpOi wacTM TPyZAa PacCMOTPEHO COCTOAHME HATIPAMKEHWII B yii-
PYTOM WOJYNPOCTPAHCTBE, BBI3BAHHOE AEHCTBMEM TOYEHHOT0 MIHOBEH-
HOTO MCTOYHMKA Terwia, pacroyoxkernnoro B Touke A (0,0, £). Ora zamada
PelIeHa, TPUMEHAA METOJ| OTPasKeHMi.

Pasmelas B HEOTPAHNMIEHHOM INPOCTPAHCTBE MBa MCTOYHNMKA TETLIA
AHTHCHUMMETPUUECKY 110 OTHOINEHMIO K IIOCKOCTM 2 = (0 BEIIOIHEHO
B 3TOH IIOCKOCTM TpanuyHble yesoeusa T = 0, a maxxke o,, = 0. K coeros-
HUIO HaOpAXKEHW g; NpubaBIIeHO cocmm—me-aampmma Oy TAK TOJO0-
6panHoe, 4TobbI B 1wockoceTu z = (0 6pwm cobmopens! ycinosua (26).

Cocroaamne HaTIpAKEHMNA 3”, OTIpEMIeJICHO, MCTIONBL3YA (PYHKIMIO IIe-
pememienna B. I'. IamepxmHa.

Cynepnosuuusa COCTOSHMI 0y, & TKA¥KEe 0y JAET DE3yJIbTHPYIOLee CO-
CTOAHME HaNpAXKEHW 0}, BBI3BAHHOE AEMCTBMEM WCTOYHMKA TemJa, pac-
nosozxkenHoro B Touke A (0,0 §) ynpyroro mosynpocTpaHcTBa.

B 3aRJIOYUTENIBHOM YacTM TPyLa PacCMOTPeHBI TPaHMYHBIE CIIy4au,
a MMEeHHO OIIPe/IeJIeHO COCTOAHME HalPAMXKEHW), BBI3BAHHOE el ICTEMEM
MIHOBEHHOIO JIMHEMHOTO M MrHOBEHHOTO IIJIOCKOrO MCTOYHMKA TErJIa,
PacCHOJIOIKEHHOTO B HEOTPAHMYEHHOM MIPOCTPAHCTBE M B YHIPYrOM IOJIY-
IIPOCTPAHCTBE.

State of Stress in an Elastic Space and Half-space
due to the Action of an Instantaneous Source of Heat

Summary

The first part of the paper deals with state of the stress due to the

action of a concentrated instantaneous source of heat. Starting from
equation (5) binding the field of thermoelastic potential of the de-

formation @ and the temperature field 7T, the author obtains the
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function @ in a closed form (13). The knowledge of the function @
makes it possible to determine the components of the stress distribu-
tion o;; from formulae (9).

The second part deals with the state of stress caused in an ela-
stic half-space by the action of a concentrated instantaneous source of
heat placed at a point A(0,0,5). The problem is showed by the method
of reflections. Two sources of heat are placed in an unbounded space
asymmetrically with respect to a plane z = 0 and the boundary condi-
tions T = 0 and o0,. = 0 are satisfied in this plane. A stress distribu-
tion Gy, chosen so that conditions (26) are satisfied in the plane z = 0,
is added to the stress distribution @iz The stress distribution 3,, is de-
termined by means of the displacement function of B. G. Galerkin. A su-
perposition of the distributions o,; and @, gives the final stress distri-
bution o¢;; due to the action of a source of heat placed at the point
A(0,0,8) of the elastic half-space.

Finally the boundary cases are considered, namely the state of stress
due to the action of an instantaneous linear and an instantaneous plane
source of heat placed in an unbounded space and in an elastic half-space
are determined,



