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Rownania przemieszczeniowe teorii spreiystosci dla plaskiego stanu
naprezenia i ustalonego pola temperatur, przedstawione jednym rowna-
niem rézniczkowym (1), i réwnanie réiniczkowe opisujgce pole tempe-
ratur (2) zastgpiono jednym rownaniem (3). Funkeji @ w tym réwnanin
narzucono warunki brzegowe @ =0 i V2¢d =10, ktére prowadzg do
stwierdzenia, Ze na brzegu tarczy temperatura T = (0 oraz naprezenia
normalne ¢ = 0. W celu zniesienia rowniez naprezen stycznych na brze-
gu tarczy dodano odpowiedni dodatkowy stan naprezen (:_:, ?}.

Poniewaz rownanie rézniczkowe (3) przy warunkach brzegowych
P =01 P*P =0 wykazuje pelna analogie z réwnaniem réZniczicowym
ugiecia plyty (8) na brzegu swobodnie podpartej (w =10, V*w = 0),
w ktérym zZrédiom ciepla odpowiadajg sity skupione, wykorzystano
wiee w rozpatrywanym zagadnieniu do wyznaczania funkeji @ i na-
prezefn ¢ i T znane rozwigzanie torii plyt. Dodatkowy stan napreze-
nia (5, ¥) wyznaczono przy pomocy funkeji Airy’ego.

W sposob szeczegélowy, doprowadzony do wyznaczenia skladowych
stanu naprezenia (g, 1), opracowano przypadki: pasma tarczowego nie-
skonczenie dlugiego z jednym zrdédlem ciepla oraz z rozmieszezonymi
w rownych odstepach wieloma jednakowymi Zrodlami ciepia, pdipasma
tanczowego z jednym Zrédlem ciepla i tarczy prostokatnej z jednym
Zzrodlem ciepla.

1. Ogédlne ujecie zagadnienia

Roéwnania przemieszczeniowe teorii sprezystosci dla plaskiego stanu
naprezenia i ustalonego pola temperatury mozna, jak wiadomo, przed-
stawié rownaniem rézniczkowym?

PV d= (1 + ) al’T,

— tak zwany cieplny potencjal przemieszczeniowy,

T(x, y) — temperatura,

(1)
gdzie:
b
P
a

— liczba Poissona,
— wspolezynnik rozszerzalnosci liniowej.
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Rozklad temperatury w tarczy opisany jest réwnaniem rézniczko-
wym

W
2
) VT4 =0

gdzie:
W — intensywno$é zroédla cieplnego,
k — wspélezynnik przewodnictwa cieplnego,
h — grubosé’ tarczy.
Zaleznosci (1) i (2) zastgpi¢ mozemy jednym réwnaniem
2 (1+v)aW

Warunki brzegowe zagadnienia ksztaltujg sie na brzegu prostolinio-
wym w sposob nastepujgcy:

Na bhrzegu tarczy temperatura ma wartoéé stalg; nie umniejszajgc
ogdlnosci rozwigzania przyjmiemy przy tym, ze wartos¢ ta jest réwna
zeru (T = 0). Warunek ten pocigga za sobg zalezno§é p?@® = 0 wzdluz
brzegu tarczy. Naprezenia wywolane polem temperatury zwigzane sa
z funkcjg @ zaleznoiciami®

2 2 2
4 &= -2050, G,=—25; 1 =205

Drugi warunek brzegowy powinien okreflié znikanie naprezen nor-
malnych lub stycznych na brzegach tarczy. Przyjmujac, ze ® =0 na
brzegu tarczy, doprowadzimy do znikniecia naprezen normalnych wzdiuz
linii brzegowej. W celu zniesienia naprezen tngcych na brzegu tarczy
nalezy do naprezen (4) dodaé, odpowiednio, naprezenia

(5) = _ ¢ & OF =
T T = T dzoy

Funkcja F powinna przy tym spelni¢ réwnanie rézniczkowe
(6) F'rF = 0.

Przy rozwigzywaniu réwnania (5) zakladamy, ze na brzegu tarczy
znikaja naprezenia normalne, zas naprezenia tngce spelniajg warunek
brzegowy Te = — Ty -

Naprezenia wywolane dzialaniém temperatury okreslaja wzory

(7) szaz"{_&;: dy=&g+&y i T:y=%zy+%ry'

Zauwazmy, ze rOwnanie rézniczkowe (3) z warunkami brzegowymi
@ =0 1i V20 =0 wykazuje pelng analogie z réwnaniem rézniczkowym
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powierzchni ugiecia plyty na brzegach swobodnie podpartej. Mamy

tu réwnanie C

(8) P = 2
N

przy warunkach brzegowych w =0 i p2w = 0.

W réwnaniu (3) W oznacza intensywnoéé zrédla ciepla; nalezy za-
tem wielko§é te traktowaé jako taka funkcje, ktéra poza otoczeniem
punktu przylozenia Zrédia ciepla ma warto$¢ réwng zeru. W réwna-
niu (8) funkcja @ powinna mieé analogiczny charakter jak W. Nalezy
zatem uwazaé, ze funkcja @ wyraza intensywno$¢ obcigzenia zewnetrz-
nego plyty, ktére poza otoczeniem punktu przyloienia ma wartos¢ row-
ng zeru, Mozemy wiec @ uwazaé za sile skupiong.

W przedstawionej pracy wykorzystamy analogi€ miedzy réwnania-
mi (3) i (8). Wyznaczanie funkcji @ oprzemy na znanych wynikach
teorii zginania plyt; punkt ciezkosci spoczywaé bedzie na wyznaczeniu
funkecji naprezen F.

Ograniczymy sie do rozpatrzenia stanu naprezenia wywolanego ird-
diami ciepta w pasmie i w pélpasmie tarczowym oraz w tarczy pro-
stokatnej.

2. Pasmo tarczowe

Niech dane bedzie pasmo tarczowe o szerokoSci a ze zrédlem ciepia
umieszczonym w punkcie (£, 0). Pasmo to zastgpimy pasmem plyty o sze-
rokoéci a na brzegach swobodnie podpartej i obcigzonej silg skupiong Q
w punkcie (£ 0). Ugiecie plyty wyraza wzoér®

2Q & ) . ~ cos fyd
9) ke sin a,¢ sin a,x -@—3% s
0

=y
gdzie a, = na/a, a N jest sztywmoscig plyty na zginanie.

=12+

Y
)
oy S J y‘
Sley —aW l
x, x'
Rys. 1.

7 analogii rownan rézniczkowych (3) i (8) oraz z analogicznych wa-
runkéw brzegowych wynika, ze
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- ) 2K & . ; ~ cos Bydp
(10) e mé{: sin a,& sin a, @
0
gdzie
_ (1+v)aW
Be—0p ¢

Korzystajac z wzorow (4) i biorge pod uwage, ze wyrazenie (10)
mozna przedstawi¢ szeregiem
9 oa —aﬂﬂ
(11) &= — St NiE (1 + a,y)sin a,ésin a,x dla y>0,

27°h nd
n=)

obliczymy kolejno

_ 2*D KG & e ™ 1 .
O = —~2G-a—yg-: gt , (1 —a,y)sina,ésina,x,
1||'
(12) oy = — 2G e @ I;.f (14 a,y) sin a,¢ sin a,x,
n=1
_ %P KGy —ay
Ty = 2G5~ T 2 e “sin a,& cos a,x

=1
Wzory (12) sg siuszne dla y—=0. Poniewaz sumy wystepujace we
wzorach (12) sg wolnozbiezne, a dla y = 0 i * = & — rozbiezne, wygod-
nie bedzie przedstawit¢ je w postaci zamkniete]j

- KG op\ - KG op ___KG  o¢p
(13) 0:=T(9’+y-5§)sﬁy—*g—(‘? yay) Ty = _Tya—a:’
gdzie
coshﬂ—cosf—(xh-&) =
a a 1 e : ;
(132) g =—In . — -;Z = smaﬂssmauw
' cosh%—co&%(m + &) n=1

Widoczne jest, ze na brzegach tarczy znikaja naprezenia o, i oy,
a dla y— o0 znikajg wszystkie naprezenia. W otoczeniu Zrédia ciepla
naprezenia rosng nieograniczenie w sposéb logarytmiczny,

Dla dalszych rozwazan najwygodniej bedzie przedstawi¢ napreze-
nia 7,, W postaci wyplywajacej bezposrednio z wzoru (10)

(14) fum f puingy Y] Lot gy,

n=1
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Zwazywszy, ze
— O, Sin a,& a®
Zaa_i_ﬁz 4 9?1(55):
(15) -
O % (—1)"sing,f @
g T @rpE T4 N2 (&:8)
gdzie '
_ Pé&sinh A cosh g (a — &) — Asinh g&
M (6:6) = 22sinh®] ’
& sinh 4 cosh & — A cosh 1sinh &
{153) ’?2 (E}ﬁ) et ﬁ j.fsillhz 2 ﬁ ]
A=fa,

otrzymamy a) y

_ KGa® [ . Sley “2-( = -

o= - [ B (&) sin pyap, T K g

=0 0 ey % - ‘
(16a)

. KGa LGl :

By f fns (&p)sinpyag. D) ]

— y

Dziatanie zrédla ciepta znajdujgcego
sie w punkcie (&, 0) zastgpié mozemy Sley

w
eS|y ‘2‘ = [ i
7
dzialaniem zrodel ciepta umieszezonych

symetrycznie wazglednie antysymetrycz-
nie wzgledem osi y’ (rys. 2).
Dla symetrycznie ulozonych wzgle-

Vx,x'
Rys, 2.

dem osi y* zrédet ciepla o intensywno$ci W/2 (rys. 2a) otrzymamy

w ukladzie wspdirzednych ', v wzér

KGa? A '
- o)l s
z’'=af2
albo
2
(18b) =g — fﬁe” (u,¢") sin py'dp,

¥ =af2
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gdzie:
o usinh y cosh f&" — B&' cosh psinh ,35
(&) = u* cosh®
a
-

Dla antysymetrycznie wzgledem osi ¢ umieszczonych zrddel ciepla
0 intensywnoséci W/2 (rys. 2b) otrzymamy

—w _ KGa& [ , U
(f)y —‘gﬁ—fﬁ[ﬂz(ﬁsg‘ -+ E)— n,;(ﬁ,;—-— E )] sin py'dp

' =af2 N
albo
(160) ; 1:(:1) — K—G_?_fﬁgml s E )Sln ﬁy;dﬁ :

:’:lafs
gdzie
0D (i8) = pé’ sinh y cosh A&’ — p cosh pusinh &

w*sinh?® g

Rozpatrzmy najpierw przypadek symetrycznego ukladu Zrodel cie-
pita. W celu zniesienia naprezen tnacych 7{), na prostych 2" = =+ a/2
nalezy dobraé¢ taki stan naprezen Ef:) ) ﬁff} i -rf)y« ktory by spelnial row-
nanie rézniczkowe

(17) PEFARS =
z warunkami brzegowymi

sy _ OFC =6 e el )

x:—m—-z 3 '[xy!.: W:: _‘t:']f'
(18)

dla :c’:zg:—g;.

Ze wzgledu na symetrig Zrodet ciepla w stosunku do osi Yy wystarczy
ograniczyé sie do warunkéw brzegowych na brzegu a2’ = a/2.
Funkcje F) przyjmujemy w postaci

(19) FO — -}-i- f ?1‘*_ (A cosh gz’ - B px’ sinh fa') cos fy'dp .
o
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Z warunkéw brzegowych (18) otrzymamy
A™ cosh i~ B® g sinh pn= 0

8 8 3 a KG A I
(A® + B®)sinhy + B® ycoshp = — 8; Bo® (,€),

skad

AW KGa 40" (u,&') sinh u
47 coshusinhuy+ u °

cosh u

() — A .
B A lI:,;,Si.l‘ll‘llu

Wyznaczamy naprezenia z wzoréw (5)

= KG
07 = *“’”Tafe“(lurf) X

o
wsinh p cosh g a’ — Bx’sinh fa’ cosh u o
KH cosh ysinh y + u cos py'ag,

= KG \
% = 4,ff“wsJ><

0

(usinh g — 2 cosh y) cosh px’ — fx’ sinh g’ cosh Ko ;
(30) xp cosh usinhpy+u 7 cos 3y 0,

o, “KS;_[M( &) X

]

(@ sinh g — cosh y) sinh gz’ — px’ cosh fx’ cosh p .

g cosh psinh p + p bngu'ag:

Rozpatrzmy przypadek zrédel ciepta o intensywnosci W/2 umiesz-
czonych w sposéb antysymetryczny w stosunku do osi 3. W celu znie-
sienia napreier’x tngcych na prostych «” = a/2 dobieramy naprezenia

a® a9 1 7%, w ten sposéb, aby spelily réwnanie rézniczkowe

(21) PEPRF® = 0
wraz z warunkami brzegowymi:
= 02 el il _
(ﬂ] _ Z(a) - ,
(22) Oz = 0y12 ._ 0 ’ Tz'y = ax!ay! Try

dla x =+ a.
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Funkcje F@ przyjmujemy w postaci

oa

(23) %= i ; (A®@ sinh px’ + B Bx’ cosh fx’) cos Ay’ df .

Z warunkow (22) otrzymamy uklad dwéch réwnan
A® sinh p 4 B pcosh p= 0,

KGa® Bo®
(A® 4 B@®)cosh y -+ B uysinh y = — Ga %9“ (d’ }

skad

A KGa 0® (u,£") p® cosh p
" “4m  coshpusinhu —pu

3

sinh g

@ — _ Al .
- & pcosh

Z wzoréw (5) wyznaczymy naprezenia

= KGa
Z(a) (a)
ga; 47h f (i) X

0
w cosh psin fx’ — pa’ cosh fz’ sinh u cos By’ dg »
cosh u sinh n—

KGa [ o, .
# = — %h“f“(,s)

0

(24)
(y cosh y — 2 sinh y) sinh fx’ — fa’ cosh fx’ sinh p ‘d
cosh gsinh g — u Ll
= KGa
o 0@
Ty = dnh ( :‘5) X

0

(‘u, cosh p — sinh u) cosh fa’ — pa’ sinh fx’ sinh u sin fy'dg.
cosh M Slnh‘u, M

Zauwazmy, ze dla symetrycznie umieszczonych zrédel ciepta o in-
tensywnosci W/2 znikaja naprezenia 7oy , na prostych 3" = 0 oraz
x’ = 0; otrzymamy symetryczny wzgledem osi ' i ¥’ rozklad naprezeh
normalnych, a antysymetryczny wzgledem tych osi rozklad naprezen
tngcych. Przeciwnie, dla antysymetrycznie umieszczonych zrédel ciepla
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o intensywnosci W/2 otrzymamy antysymetryczny rozklad naprezen
normalnych wzgledem osi y’, a symetryczny rozklad naprezen tnacych
wzgledem tejze osi.

Dla zrédia ciepta W umieszczonego w poczatku ukladu wspéirzed-
nych 2’ i ¥y znikaja naprezenia o, a1 T .
Dla zrodla ciepta W umieszczonego w sposob mesymetryczny na-

prezenia cieplne wyrazimy wzorami

0 =G + 08+ 02, o0,=0,+ 03 + oy (G’
(25)
oy =Tey + Ty + T3 -

Podane rozwigzanie dla przypadku Zrédia ciepla znajdujgcego sie
w punkcie (£ 0) posluzyé moze do wyznaczenia naprezen wywolanych
zrédlem ciepla rozlozonym w sposéb dowolny na odeinku £2—%&; osi .
Jesli przez w(f) oznaczyt intensywno$é tego zrodia ciepla na jednostke
dlugosci, to funkcja cieplnego potencjatu prmnﬂeszczeﬁ przyjmie postac

[ cos pydp
(26) | Z‘a sin o, CEY ik

gdzie:

13
C=(174;c”)‘i, an:fﬁ(f}sinanfdf.

W przypadku zrodla ciepta o intensywnosci w(§, %), odniesionej do
jednostki powierzchni tarczy, rozmieszczonego na obszarze {2 tarczy,
przedstawimy funkcje @ w postaci

2C 9. 1
@:—?ﬂ-ﬁ— Slnaﬂmfwx
(27)
% [ [w (&) sin a,& cos B (y — ) dedydp.
Q
Analogicznie, je$li przez o(x,y; & 9) =o(x, y; &, m) + o(x, v; & 1) ozna-
czyé naprezenie wywolane w punkcie (x,y) dzialaniem zrodila ciepla
skupionego W = 1 umieszczonego w punkcie (£,7), to naprezenie o*(x, 1Y)

wywolane dzialaniem #rédla ciepla o intensywnosci w(§, ) roziozonym:
na obszarze 2 wyrazimy caika

(28) o* (@) = [ [ w () o (@961 dédn.
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Rozpatrzmy jeszeze tarcze nieograniczong, w ktérej rozmieszczone
sg zrédla ciepla o jednakowej intensywnosci W (rys. 3) w sposéb okre-
sowy (w jednakowych odstepach 2b).

¥

wen P

fw Wang w

2b 2b

CY

l&x,x'
Rys. 3.
Rozwigzanie réwnania (3) najwygodniej bedzie podaé w postaci po-

dwoéjnego szeregu trygonometrycznego. Wyrazimy prawsg strone tego
réwnania w postaci

% et +3’£~waw = ——jéi Y'sina,¢ sin a,z -+
n=1
(29)
4K & . :
+ I g sin a,& sin a,x cos g, ,
. e L
gdz‘le‘ ay = a 3 ﬁm_ b 2
a funkcje @ szeregiem
(30) b — Z‘ A, sing,r + Z B,, sin a,x cos 8,y .
=1 mm

Szeregi te spelniajg wszelkie warunki brzegowe wzdluz prostych
=0, *x=a oraz y= £ b. Wstawiajgc (29) i (30) do réwnania (3)
otrzymamy

2K &G sina,Esina,x 4K 3 sing,ésinq,x cos B,y
(31) D= — B = ) =2CEE n n' m
abh NZEI al abh %‘: (a2 4 p2)?
Funkcje te przedstawi¢ mozna réwniez w postaci pojedynczego sze-
regu trygonometrycznego
Ka* sina,ésina,x

(32) Dy ¥ — [e " (1 + a¥) + R, (¥)],

n=1
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gdzie:
Rﬂ ('y) = m [(COSh any =7 aﬂy Slnh a“y) '-1- s]_nh a C(]Sh aﬂy]
dy=a,b.
Naprezenia 0;, 0, 1 7., _Wwyznaczamy z wzoréw (4)
= 0P KG 0@ - 06,
oym = A0 =ips ( yay + 8= yay gf" aa,,)’
_ 0 _KG g =
= — X +y
_ PR KG{ o9 26
Tay =2G()Tr“3—y_— “T(QFE—F y“é;"i-
(33)

b & sing,fcosa,x
ta Z: sinktg,  Sob “’*y)'

Tutaj funkcja ¢ jest identyczna z funkcja wyrazong wzorem (13a),
a funkcja @ dana jest szybkobieznym szeregiem

1 & sing,ésina,xcoshay -«
34 G =i gt Y ="Ye,.
{34) T 2 ne’nsinh §, - Z

fa=]l
Widoczne jest, ze nieciggloéé typu logarytmicznego miesci sie w funk-
cji @, funkcja © zag§ nie ma zadnych osobliwosci. Dla b—o0 i ® —0
wzory (33) réwniez przechodza do postaci (13),

Do dalszych rozwazan bedzie dogodnie wyznaczyé Ta bezposrednio
z wzoru (31). Otrzymamy stad

8KG B, cos a,x sin a, £ sing, .y
126) Fay = UG a:c ay abh Z 2T By :

Korzystajge ze zwigzkéw (15) znajdziemy

= 2KGa
Ty = Z ﬁmﬂl ﬁm!E ) sin .Bm Y,

it me=1

2KGa? &
:er = m:é sin ﬁrmy
:—1 bh Z ﬁmn'a! (ﬁ ) !

me=1
gdzie funkcje 71 i u2 bierzemy z wzordéw (15a) wstawiajgc do nich za-
miast f i 2 = fa odpowiednio B, i 1n = fna.
Postepujac analogicznie jak w przypadku pasma tarczowego z jed-
nym z#rédlem ciepla, rozwazaé bedziemy przypadek dziatania dwéch
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zréodet ciepta o intensywnosci W/2, dzialajacych raz w sposéb syme-
tryczny, za§ raz w sposéb antysymetryczny w stosunku do osi y’. Stad
otrzymamy dla zrodel ciepla o intensywnoéci W/2 ulozonych wzgledem
osi Y

symetrycznie
KGa* :
=& __ _ =l (5) LA ’
(36) T:-' ymrz 4bh Z ﬁm@ (f“‘mi‘f ) sin ﬁmy 2
Lk m=1
antysymetrycznie
. KGa?
(a)
(37) :’t—ij;_ 4bh ‘21 ﬁm@ (.lu'mif )Sln ﬁmy 1

gdzie o® i o™ bierzemy z wzoréw (16b) i (16c), za$

Dla symetrycznego ukladu zrodel ciepta wzgledem osi ¢y przyjmiemy

38 FO) == A® cosh g, x’ + B¥ g, x'sinh g,x') cos B,y ,
52 B B B B

m=1
gdzie.
a0 _ _ KGa  pno® (p,,¢) sinh g, BY « ctghu,
& 2b  cosh Hn sinh P+t ’ i = Ko .

Naprezenia dodatkowe wyliczymy z wzordéw

=( _ KGa ,
0':'] == 9bh 2 .uui’f ).IMHI X

m=1

(39) _."f:ys_inlf‘f{n cosh ﬁn.:‘cf _ ﬁm‘r' cosh ﬂm x' sinh Hm

cosh u,, sinh u,, + u,,

cos .y »

= KGa
(s
el 2 309 (aol’) th X

( #, Sinh g, — 2 cosh y, ) feosh f, 2" — f,2" sinh g, 2’ cosh y, 5
cosh y,, sinh p,, + u, e

v KGa
(s
‘5;‘;;' Zi)h Z L4 (F‘m!‘s ).um

m=]1

SBuY's

(,u,,, sinh y, — cosh y,,) sinh g, x" — ﬁ,,,a: cosh f,x’ cosh p,,
cosh g, sinh u, + p,

sinf,y’ .



[13] NAPREZENIA W TARCZACH WYWOLANE ZRODEAMI CIEPEA 133

W przypadku dzialania Zzrédel ciepla o intensywnosci W/2 umiesz-
czonych w sposdb antysymetryczny w stosunku do osi y przyjmiemy

dla wyznaczenia naprezen A nastepujgca funkcje Airy’ego

1 =3
@ __
(40) FO == ¥

m=1

5 (A% sinh g, &’ + BY) B,x’ cosh B,x’) cos B,y

m

przy czym:
a0 KG e (uE)
" 2b COSh #!R Slnh P‘rll_“m ’
BO — _ A© BN
IL;-'H

Naprezenia wyznaczymy z wzorow (5), a mianowicie

= KGa
(a) a '
Ozt = Pﬁ_ﬁﬁ-' 2:1 Q{ J (#:H?E ) M X
fu COSh Jurfl Slnh ﬁm ﬁmm’ CDSh ﬁm:c' Slnh lu'ﬂ'l i
(41) COSh PJII Slrlh #J"I M}}I €08 ﬁmy ;
- KGa
=(a) — . (@)
Oy 2bh 2 o {aum"s )nuru
(., cosh p,, — 2 sinh ) sinh g,x’ — B,x’ coshp,x’ sinh u,,
(#1). X cosh g, sinh p,, — u, €08 ful/’s
= KGa
@ (a)
Tyt = 2bh 2 e (,.u'm;‘f au'm
( o cosh Wn— sinh p,,) cosh g, 2" — B,2'sinh g, x’ Smhﬂms
cosh oy sinh P — Hom 5 ﬁmy

Dla #rédet ciepta W rozlozonych w sposéb okresowy na pasmie tar-
czowym (rys, 3) naprezenie cieplne oirzymamy na podstawie super-
pozycii '

=) 4 2@ 4449
0:=0;+ 0y + o; itd

Zauwazmy, ze dla b — 0o wzory (39) i (41) przechodzg we wzory (20)
i (24). Podane tu rozwigzania dla przypadku zrodel ciepla W rozmiesz-
czonych w jednakowych odstepach 2b traktowaé¢ mozna jako funkcje
Greena. Moze ona postuzyé do wyznaczenia naprezen wywolanych Zré-
dlami ciepla liniowymi lub powierzchniowymi rozmieszczonymi w obre-
bie tarczy w sposéb periodyczny. '
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3. Pélpasmo tarczowe

Przypadek poOlpasma tarczowego traktowa¢ mozna jako przypadek
pasma nieograniczonego, w ktérym dziata zrédlo ciepta w punkcie (¢, %)
i odptyw ciepta w punkcie (¢,—7). W tym bowiem przypadku otrzy-
mamy na brzegu (y=0) T = 0.

Y
ey 7' _=0=f?’ ; ;
Y
ey ‘:me &
x,x'
Rys, 4.

Korzystajac z wzoru (10) wyrazimy funkcje @ zwigzkiem

an cos (Y — n) — cos (Y + )
‘(42) D = ——'——gsln an.f sin a If {aa + ﬁg)g dﬂ
0
albo
- K . ) ~ sin fn sin By
#) 0= — o Jene teinaz [ ol op.

ne=1 9

Funkcje @ wyrazi¢ mozna réwniez pojedynczym szeregiem trygonome-
trycznym?®
(44)

o— K

’-h 1 — @,n cosh a,n] sin a,& sin a,2
n=1
Wzér ten jest stuszny dla » <<y <<oo, Dla przedzialu 0 <<y <7 nalezy
we wzorze (42) zastgpi¢ y przez % i na odwrot.
Na podstawie wzoréw (4) obliczymy naprezenia o o, i 7,, otrzy-
mujac

__KG opy d
Or = —f— [qox o+ (Y—n St ay — Y+ %],

(45) &y=§h£ P1— P2 — (y-—n) g T W+ ]

Tay = —E—G-[(y ) a% — W+ )5%]
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gdzie:
- 1 1 cosh —E (y —m) — cos %(x — &)
@ =z ]
4
T cosh T (y —n) —cos T (x4 §)
1 1 cosh -Z—:-(y + ) — cos%(:r — &)
pa=4—In
4z

cosh %(y + n) — cos % (x — &)

Latwo sprawdzi¢, ze na brzegach x =01 * = a mamy &, =0, a na
brzegu y = 0 jest 0, = 0. Na wymienionych brzegach réinymi od zera
beda jedynie naprezenia tngce T .

Do dalszych rozwazan dogodnie bedzie przedstawi¢ naprezenia tna-
ce 7:, Wzorem

= 2?0 BKG & . ﬁsm pn cos By
47) 7T,y = ZGM = = ) Ga8in a,& cos a, X @Y

n=]1

dg .
0
ZWazywszy, ze

oo

E o smaﬂf _ %37?1(5:19): 2 a,(— 1)"sina, & aa 1}2(5’&

(a + ) < ()
oraz
~ Bsinpy L e
@ ey P
1]
mozemy wyrazié naprezenia 7., na brzegach pélpasma tarczowego wzo-
rami
= 2KGa
Ty= — f (Bsin fn) 7 (£,6) cos fydp,
=0
! 2KGa
(48) f (Bsin fn) na (&:6) cos pyds,
5 2KG‘-
Ty = 1) sin g, cosa,x
=0 n=1

2 Archiwum Budowy Maszyn
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gdzie

9 () = 57"

W celu wyznaczenia naprezen dodatkowych wygodnie bedzie i w tym
przypadku zastapi¢ dzialanie zrédla ciepla o intensywnosci W w punk-
cie (&, 7n) dzialaniem dwoch zrédel o intensywnosei W/2 umieszczonych
raz symetrycznie, a raz antysymetrycznie w stosunku do osi v/

a) y
W \
o oy —— % —
N AL 2 y
1 San W
ooy ’?.I_.? I?
}x,x'
b) :
W
o Tt | .
A -
| A D N 914
tlioq‘ r).‘_‘I 2 q
Txx!
Rys. 5.

Rozpatrzmy najpierw dzialanie zrédel ciepta W/2 symetrycznie ulo-
zonych wzgledem osi y'. W ukladzie wspéirzednych z’, y" (rys. 5a) otrzy-
mamy ,

o KG@ [ . . ,
Wy = [[(Bsin ') 6 (&) cospy'dg,

'=al2

(49)

- {8 ZKG - [ ! g ¢ '
8 = ~—y 2 D (@,n') cos a,& sina,x’ .

¥'=0 o= 1
Przynalezne temu stanowi naprezenia o, o i Ei’fi,r , otrzymamy z roz-
wigzania réwnania rézniczkowego Airy'ego
(50) PrFY =0

z warunkami brzegowymi
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S 2p(s)
) Q*F® ¢
(51) E{y ax’?. :0 d]a y ZO,
2R(5)
o, %f;_y,: i, dax'—a2iy=0.

Tym warunkom zado§¢ uczynimy przyjmujac funkcje F® w postaci

o 1 _ -
FO—— 3 (A9 4 BYuy) e cosaa +
n
Me=1,3,s0

(52)

f = (A cosh ' -+ B ' sinh ) sin py/df.

Warunki brzegowe (51) prow.adza do zwigzkow

(53a) AV =0,

(53b) A® cosh y + BY usinh g =0, gdzie p— ﬁ'zi .

oo

3 BYsinga’— f [(A® - B®)sinh gz’ +

n=1,3,..-
(93c)
-+ B® gz’ cosh fx'] df = 2KG Zﬂ (e,,m") cos a, &' sin a,x’,
ZI B(s} e’ (1 a,y )sm— - f[(A(s} +
n=1
(53d) + B)) sinh pu 4 B® pcosh y] cos fy'dp =

- [(sin ') o (k') cos pu'dp.

0

Jesli wykorzystaé zwigzki (53a,b) oraz wstawi¢ do réwnan (53c,d)
zaleznosci

sinh fx’ = Z Egsinax’, px'coshpa’ = Z‘ E,gsina,x’,

ne==l nml

o
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(1 = any') e_aﬂy’ = fcnﬁ cos ﬁy'dﬁ ;
0

to otrzymamy uklad dwiéch réwnan

. 2KG . '
(54) BY = [AO[r() By — g () Fal 48 = — =0 (au’) cosad’ »
0
B .k (R
3 BY Cipsin " 4 AWt () = — == (Bsin ) o (),
Fe==1
gdzie:
_ wsinh g — cosh u
(W) = psinh p ’
__ coshp - sinh g cosh p
9(p) = psinh g’ t(w) = psinh p '
ZwWazywszy, Ze
- cosh u sin 2%
R i
T TR
. Nx
48 sin —— P
Fu="0 g |neimh i “‘”‘h*“) ’

C — 4 ﬂﬂz
: MR
mozemy doprowadzi¢ rownania (54) do postaci

oo

B + @- sin 1% A® cosh? i dﬂ_-
2 smhy(n” -+ .0 )

2KG . —— nwt’
= — — ne cos 5
a a
(55)
16#2‘1 - ( kSin—Ifiﬂ_
BY . — 4+ A®t(
at < (k2 41{;2) ) =
=t
KGa
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o

Wyeliminujemy z tego ukiadu funkcje A(n). Otrzymamy woéwezas nie-
skonczony uklad réwnan

B9 5—91?-712 sin%ﬁlZ’Bﬁf’ksin k; X

f w cosh2 #d‘u
——ta— — —e=
(n2 (k” + - ) (sinh g cosh u ‘u)

(56) - 2
16n2 n iﬁcmm?#(ﬂn~J%L)ﬂm(#5)d#
5 - GKsin —— FRREE s -
('n2 A1 ni) (@ + sinh p cosh u)
u
B (ﬂ}e_ “ cosﬁs, s 1358, con
7 a a

Po wyznaczeniu calek niewlasciwych w sposéb numeryczny otrzy-
mamy ukilad réwnan zawierajgey nieznane wspolezynniki B,. Z dru-
giego rownania uktadu (55) wyznaczymy parametr A(u). W ten sposob
wszelkie wartosci wystepujace w funkeji F'*’ sg okreslone. Naprezenie
wyznaczymy z WZOIr'Ow:

- a‘ZF(s’] o aQF(Sj - asF[sl
)L U S s 0207 W o BT
(57) Ur) = ay:g H Oy c):r:'2 s Ty amray:
Rozpatrzmy teraz dziatanie dwoéch zrodel ciepta o intensywnosci W/2
umieszczonych antysymetrycznie w stosunku do osi ¢ (rys. 5b). W ukla-
dzie wspblrzednych x’,y" otrzymamy

e TRGIEY ofY i i s o0 ,
)= — g [ (B5in B 0 (") cos py'ap,
58 2’ =uf2 7
(58) 0
Ty == — 2KhG ! ﬂ(a,,,f') sin «, &' cos a,x’ .
¥'=0 L

n=2.4.

(
Przynalezne do tego stanu naprezenia o, o T Ty

wigzujge réwnanie rézniczkowe

wyznaczymy roz-

(59) ‘ V7 F® =0

z warunkami brzegowymi:
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<@  OUF®

or ='§F=0 dla 2’ = a/2,
= 27(a)
(60) o = adf:,z —0 dlay =0,
_-(a] ' z)“F{“’ _(a)

TI'U":_W:—TI’”' dJ.aﬂ’.':ﬂ}?sly:O.

Funkecje Airy’ego przyjmujemy w postaci

a 1 © 1 ¢ (e N, % ' )
F{lzﬁh_g:‘l Zni-(A:’—FBn’any)e sin a,2" -+
(61) 1 p

T f Flz' (A" sinh gz’ 4 B' pa’ cosh px’) sin fy'dg .
o

Warunki brzegowe (51) prowadzg do ukladu réwnan

(61a) AP=0,
(61b) A® sinh g + B® gcosh =0,

Z BY cosa,x’ +
n=2,4.,.:-

(61c) + [[(A® 4 B@)cosh fz’ 4 B gz’ sinh fa’] 4 —
03

RG
- _a?G_ ¥ (a,) sina,é’ cos a,x’,
n=2,4,...

Z B@We (1 —a,y") cos %’5 -+

ne=2.,4..0.

(61d) + JI(A® + B®) cosh u + B®™ ysinh x] cos fy'df =
o

KGa® [ . N ) '
- 45“[(#331111317)9‘ ) (1,E') cos py'dp .
0
Wykorzystujac zwigzek (61b) oraz wyrazajac szeregami funkeje

cosh g’ = Z‘ G,p cosa,x’, px’sinhpr’ = Z‘ H,gcos a,x’

fn=1 fie=]
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[21]

gdzie:

a, sin 2%
G 4 h n 2
ng — F cos ‘u T—i_ﬁ_z_ L]
. nm
2Ba, sin ——
! 2 48  cosh )
2 O OSSN -y oy O - .. o IO I
AR ( “T T @ P
otrzymamy uklad dwoch réwnan
a, @ 2KG " ool '
Bg,} - fA( : [C (H) Gnﬁ = (Ju‘) Hnﬁ] dﬁ = = ) (“m"? ) sin G.-,E ]
]
= . . KGa* ., .
62) 3 Blcos—LCypt+ ADf(n) =~ (fsin ) ¢ (€,
KB, 8s:vs
gdzie:
el pucosh u — sinh d(u) sinh
#)= wcosh g ’ ~ pcoshp
sinhy cosh g — p
Fp) = /i cosh g .

Poniewaz dla n = 2, 4,... wielkoéci G,; i H,; sg réwne zeru, za-
tem w pierwszym réwnaniu grupy (62) znika calka. W drugim z tych
réwnan dla parzystych wartoécli k znika surha. Uklad réwnan (62) moz-
na wiec doprowadzi¢ do postaci

B = 28 o ysina g, m=2,4, .-,

k? cos L. .
(63) 16;&2 oo BS?) 2 L A@ sinh Iz cosh B=pg _
e 4,7\ pcosh p
k=24, .- (k’z-[— o )

T T 2=n
Widoczne jest, ze wspo6tczynniki B i 4® otl:zymamy tu w sposéb

bezposredni.
Naprezenia dodatkowe ofrzymamy z wzoréw

K . 2un /
Ga (,u. sin ——%ﬁ—) o' (&) +

=@ O0F@ @ OF@ @ J2F(@
(64) 0‘3' L "a_yﬁ" » Uy" e _L}TET s T:':.r‘ p— axray:
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Naprezenia wywolane dzialaniem Zrédla ciepta W umieszczonego w punk-
cie (& n) otrzymamy przez dodanie naprezen uzyskanych z wzoréw (45),
(67 i (64).

4, Tarcza prostokatna

Niech zrédlo ciepta o intensywnosci W (rys. 6) znajduje si¢ w punk-
cie (&, 7). Korzystajac ze znanego rozwigzania dla ugiecia plyty prosto-
katnej poddanej dziataniu sily skupionej w punkcie (¢, 7)? mozemy przed-
stawi¢ funkcje @ w postaci

4K Ssinayésinf,y . ¢
(85) =~ D @+ R e sn Ay,
gdzie:
N ma
a, = T ’ ﬁm '_b-‘
— g
o
lev n ¥
1| = y
W
Sfey W
B
b b
7 z |
Ix Jx’
Rys. 6.

Funkcje te przedstawi¢ mozna réwniez pojedynczym szeregiem trygo-
nometrycznym?®

Ka* & S sinh a, (b — 7)
1) b= —?i—;: —gsina,¢sinax Smb——{[l +

+ a,b ctgh a,b — a, (b — ) ctgh a, (b — 7)] sinh ¢,y +-
— o,y cosha,y } dla 0 <y <.
Korzystajgc z wzorow (4) wyznaczymy ze zwiazku (66) naprezenia

05 0y 1 7,,. Do dalszych rozwazan wygodnie bedzie przedstawié napre-
Zenie 7., w postaci wynikajacej bezposrednio z wzoru (65)
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= 2P 8KG  af,sina,Esinp, 7
(67) 'Gy—~2(;dwdy =~ 2 FE e

cos a,x cos B,y .

Latwo stwierdzié, ze na brzegu tarczy nie znikaja naprezenia tngce.

W celu wyznaczenia naprezen dodatkowych 0., 0, 1 7, zastapimy dzia-
lanie jednego 7rodla ciepla o intensywnosci W dzialaniem czterech zré-
det o intensywnosci W/4, umieszczonych raz symetrycznie, a raz anty;
symetrycznie wzgledem osi 2’ i y' (rys. 7a-d).

a) b)
ity -F—te-Y
~ y' - y'
wl ™ w w1 lw
gRARAS A
! x!
¢) d)
%r—_ 7 ﬁ*ﬂfﬂ%
“n g wn g,
! %v,l_r_t.lrf _;.fl M lw
Lo o]’ RAA)
x' V!
Rys. T.

Rozpatrzmy najpierw przypadek Zrodel ciepla umieszczonych sy-
metrycznie wzgledem osi 2’ i ¥,

W przypadku zrédia ciepla o intensywnoéci W w punkcie (£, 7) otrzy-
mamy z wzoru (67)

. 8KG : o %(—1)sina,é
:73 = =T 2 B, cos B,y sin !3.“'?';1 W e —
2KGa &

(68) = _bh 2 (ﬁnl COS-ﬂmy sin ﬁm??) N2 (ﬁm’g) ?
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. K t i)
= — 2 Gb Z (@, sin @, & cos a,x) 9y (@,m)
y=b fi=1

gdzie 52 bierzemy z wzoru (15a).
Dla czterech zrodel ciepta W/4, umieszczonych tak, jak o przedsta-
wiono na rysunku 6a, otrzymamy w ukladzie wspéirzednych 2,y

oo

- KGa* i .
Ty =— — _'2_65_' Eﬁm [7?2(%‘ =+ & 1517:) 3

2’ =al2 m=1
. b . ¢ b /
+ Ma (_g— g’ﬁm)] [S“n ﬁnl ('5' _‘i' "?’) + sin ﬁlll (_g_' —) )]COSﬁm (‘_2_ ‘E' Y )’
_ KGb® & b,
(69) Br= g o[+ o)+
v’ =bf2 n=1

-t ?]g( z — 7, aﬂ)] [sin a, (—(21- + E') -+ sina, (_;' - & )]cos a, (%'— + ;r:') i

Po prostych przeksztalceniach otrzymamy

o KGa?

Tx'; = 4‘bh Zﬁmg (F’mi‘f ) cos ﬁm’? Sln ﬁ.-ny ]
‘=al% m=1
(70)
- KGb* &
Taty =g 2‘ ,0% (8,,1") cos a,&’ sin a,x’
¥'=bl2 n=1
n; mi=1,3,8; s = ,
gdzie:
- N Hn sinh u, cosh ,& — B,.& cosh y, sinh g, &
9 (#m"f ) Pm COShz .“m
8, sinh §, cosh ¢,n” — «,%’ cosh §, sinh a
(5) 1 n')?
0 (0n') = 5% cosh® 9,

_Bwa b
o= g5 On=—g

W celu wyznaczenia naprezen 6, , o, 17, nalezy rozwigzaé réwnanie
Airy’ego

(71) 7

z warunkami brzegowymi
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0°F = 0*F - ;
0'1"'_ ay 1 D Ti"y’ = — W —— T.r;ur d}.a :C —— 1 a/2 2
(72)
- 0*F = o*F . ,
Oyt = ax_,n = 0 Toy! = — W = — Tz'y dla y - b/?.

Funkcje F obieramy w postaci szeregu

F— 2 S'-2 (4, coshf,a’ + B,B, sinh f,2') cos f,y +

me=1 i

(73)

]

y - (C, cosh ¢,y + D,a,y’ sinh a,y") cos ¢, .

Warunki brzegowe (72) prowadzg do ukladu réwnan

Aﬂ: cosh PH’I + BFF-‘”J'I'I Sinh pﬂ'l = 0 1
C,cosh§, + D,8,sinh §, =0,

ST L(A, + By)sinh , + B, cosh u Isin ' +

m=1
+ Z [C" + D") sinh any' =} Dnany, cosh any,] sin .n_;- =
n=1

74 KG
( ) i i < Zﬁmef"} (F‘m!g cosﬁm"‘? Slnﬁmy 1

me=1

2 [(A, + B,)sinh g,x' + B,B,x' cosh g,x'] sin f’%— +
m=1

— Z‘ [(C, + D,)sinh 6, + D,d, cosh d,] sin a,x’ =
n=1

KG

) (8,,n") cos a,&" sin a, X'

n=1
Wyrazajac szeregami trygonometrycznymi funkcje

sinh aﬂy == Z Emn sin ﬁmy ] a,;y' cosh an'y' = Z‘ an sin ﬁmy‘r ?

me=1 m=1

sin g,x' = 2 G,,sina,x’, B,x'coshp ' = Z I, sinax’,

n=1 ==l °
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gdzie:
sin I cosh §,
B _ 4a, 2 ,
L
. nm
4 Sin 9 ﬁ
o
O . (W8, T B '"—coshé)
Li 2 Gﬁ —-{-‘ ﬁ;zn ( Uy "'i"' ﬁm

doprowadzimy uklad (74) do ukladu dwoch réwnan

. M@
t, Sin -5 cosh® 4,

(@2 + p2)?6,sinh §,

8 , . mm
A..—- t(.u.m) + fb'_ ﬁ;“ s T 24 CFI
n=1,3..,

KGa*
= —4bu ﬁﬂlg (Pm’é } cos an !

(75)
e B sin ™% cosh U
3 nn _,1 m 2 m
o G 4 —aisin — A, — :
@)+ geasin g0, | Ae @) g
- E‘Q:CE.'_E-:'_ a"g (6m'-“}' ) cos an’:vt :
n, m= 1: 31 51 ]
gdzie;

.« —+ sinh g, cosh u,,
t(aum) = & = : H b s t(an)'

dn - ¢ sinh §, cosh S
#, sinh gz, '

T, smh&,,

OtrzymaliSmy tu nieskonczony uklad réwnan. Ograniczajac sie do czlo-
now szeregdw (70) ustawimy 2r rownan (75). Rozwigzanie ich daje
wspolezynnik A, i C,, ktore wstawione do funkecji (73) pozwolg na

przyblizone wyznaczenie .wyrazen dodatkowych 0w, 6y i -?,f,e
W przypadku szczegélnym tarczy kwadratowej oraz zrédia ciepta W

umieszczonego na poczatku ukladu wspoélrzednych otrzymamy przy
A, = C,, uklad réwnan

A . nm hz Mot
sinh mas + ma 16 ma » S0 —5— cosh® —5 =
Am—'_,n;l—-i-——m!sm =5 Z =
‘i’l’!;:."!Sil’l]‘l——2E m=1.8,..: (n2+m2)zsinh2__2ix_
(76)
ma
tgh ——
:ng 2 m=1, 3, 5,
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Dla czterech 7rédel ciepla o intensywnosci W/4, umieszczonych tak,
jak to pokazano na rysunku 6b, nalezy rozwigzaé réwnanie (71) wraz
z warunkami brzegowymi (72), przy czym mamy

KGa*

?-r'n;’ ="h D, B (m.E)cospysingy
¥ =al2 e
(1)
_ KGb® <& :
Ty = ‘_'1?" a"gl"‘l (5m7?’) Sin arlg' COos CE"II" )
e 4ah
=02 R=2,4,.0
gdzie

@ (4E’) = B¢ sinh y, cosh §,& — p, cosh p, sinh §, &
e oy = #?n sinh? i, .

Funkcje Airy’ego przyjmujemy w postaci -

F= % Z —13; (A, sinh g2’ + B, 8, cosh §,x") cos B,y +
m=1,3.:--
(78)
15 1 ' - ’” o .
g Z‘ — (C,cosha,y’ + D,a,y’ sinh ¢,y") sin ¢, x" .
fn=2,4,...
Z warunkéw brzegowych (72) otrzymamy uklad réwnan:

16 T C, cosh?§, cos —nzi
A,8(p) + s Bisin T -
i (Jum) s b? ﬁ 2 nznz.g---- (aﬁ - ﬁi)z sinh d,

. KGa® 5 ; i
(?9) = 4b ﬁaert ’(p,,,,E)COSﬁm?? '

KGb?
4a

C,t(8,) = — a,0'" (6",73') sina, &' ,
n=246 ..., m=135,...
gdzie
sinh M cosh Mo = Mo
jum COSh F‘Jn

S(pn) =

Z tego ukladu wyznaczymy wartoéei A, i C, a pozostale wspoiczyn-
niki, B, i D,, ze zwigzkoéw:

sinh tem o __‘EJ_S_}_]'.E“_
By~ eaiy, 't M T "3RS,
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Dla czterech zrédet ciepla o intensywnosei W/4, umieszczonych tak,
jak to przedstawiono na rysunku 6¢, przyjmiemy funkcje Airy’ego
w postaci

v TL_ Z 'll_ (An. cosh ﬁm‘rf S Bu-ﬁu.xr sinh ﬁmx;) sin ﬁmy! +
(80)

=Y % Z % (C,sinh &y’ 4 D,a,y’ cosh a,y") cos a,x’ .

f=1,3.-.-

Warunki brzegowe (72) prowadza w tym przypadku do ukladu réwnan

KGad®

Alpr) = — g5 Pue® (€0 Bt
e A, cosh® u,, cos?
(81) n n) a' sin —— 2 mZ o _h_(—cgﬁ - ﬁ,i,:)'ﬂ_sinh Ko
KGb® , ,
= T 4,0 (8,m") cos a,&",
n=1,825,..., m=2,4,86, ...
Stale B,, i D, wyznaczymy ze zwiazkow
cosh py,, sinh §
82 B =T — —— o s e — e n
G = = A Simha, . D " §,cosh s,

Wreszcie w przypadku czterech Zrédel ciepta o intensywnosci W/4 umie-
szczonych antysymetrycznie wzgledem osi @’ i 3" (rys. 6d) nalezy przy-
ja¢ funkcje Airy'ego w postaci

> =
L
-

G (A sinh f,3 - B, cosh ) sin fy' +
(83) .

- Z P} (C,sinh a,y’+ D,a,y’ cosh a,y’) sina,x" .

n=2,4.s...

S

W tym przypadku warunki brzegowe opiewajg:

T a2F

1,':; P 'F;E’-a?: —_ 'Eg';," dla .'I."=a[2 i y' = b/z,

(84)

o =10 dla =’ = a2, ar=0 dlay =b/2
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gdzie:
. KGa* + 4 " , ,
TI’H' = W ﬁmgt ! (l’sm!£ ) sin ﬁm’? cos ﬁnly 1
m=2,4, ...
(85)
a9 oo
Tty = — % b % a0 (8,,7") sin a,&’ cos a,x’ .
i

x'=a/2 n==2,4....

Z warunkéw (84) mozna wyznaczy¢é bezposrednio wszelkie wspélczyn-

niki A4,, ..., D, Otrzymamy mianowicie
KGa* ; ;
A,,,-‘!‘(,u,,,) s ___b__' ﬁﬂlgm) (.um’ErJ sin ﬁm?} ! m = 2 ] 4  JERCA
2
(86)  Cus(d) = o g () SN,  m=2,4,...,
Bm = Am tgh'um £l Dn == e Cﬂ E_g__l_l_dﬁ
|Ls<'il 6?'.

Dodajgc do siebie naprezenia wywolane stanami przedstawionymi
na rysunkach 6a-d otrzymamy naprezenia dodatkowe o, ..., ktére wraz

z naprezeniami oy, ... okreslajg stan naprezenia tarczy wywolany dzia-
taniem Zrédia ciepla o intensywnosci W umieszczonego w punkcie (&, 7).

*

Podane w przedstawionej pracy rozwigzania mozna przenies¢ od razu
do zagadnienia plaskiego stanu odksztalcenia. Zamiast Zrodel ciepla na
grubosci h tarczy, bedziemy mieli do czynienia z linijowymi Zrédiami
ciepla rozposdcierajgcymi sie nieskonczenie daleko w kierunku osi z.
I tak dla przykiadu, uklad przedstawiony na rysunku 3 mozna sobie
w plaskim stanie odksztalcenia wyobrazi¢ jako nieograniczong plyte
stropowag o grubosci a, w ktére] w jednakowych odstepach 2b umiesz-
czone sg liniowe zrodla ciepla (np. rury grzewcze centralnego ogrze-
wania).

W przypadku plaskiego stanu odksztalcenia réwnanie rézniczkowe
potencjalu przemieszczeniowego termicznego przyjmie postac®

1+4+9» aW
(87) Vo= =g

Naprezenia ¢ it wyrazone sg zwigzkami
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= o] — 0*P - 0*d
0p = —2G_d?’ oy = —2G“&g—a T‘”—zGaxdy’
(88)
g,=—2GV®,  7,=0, 7,=0.

Dodatkowy stan naprezenia ciz otrzymamy po rozwigzaniu réwnania
rozniczkowego Airy'ego z zaleznosci

N o - O z O°F
01=-§Fs (Ip:a-z—. Try = —-—W;
(89)
g, = wW°F, Toy =0, Tea=0.

Tak wiec mnozgc wyniki uzyskane dla plaskiego stanu naprezenia przez
h/(1—») i dodatkowo wyznaczajgc wielkosci &, i 0. z wzorbw (88) i (89)
otrzymamy pelne rozwigzanie dla zagadnien plaskiego stanu odksztal-
cenia.

Praca wplynela do redakeji 10.08.1956 r.
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Pacupefienienue HalpsyKEHUH B JIUCKaX, BHI3BaHHBIX BO3JEHCTBHEM
HCTOYHHKOB TeIja

Kparxoe cogepxanue

YpaBHEeHNMA IIEPeMEIIeHUA TeOpPMY YIPYTOCTH IS ILIOCKOIO DPexRMMa
PacIpenesesHns HaNpAXeHUA M yCTAHOBMBLIETOCA IIOJA TEMIEPaTyp
MOXXHO HaImucars B BUJe OmHOTO guddepeHimanbHoro ypapHenms (1)
B xoTopom <P o6o3HAYaeT T. H. TEIJIOBOM IOTeHIMaj nepemernerusd, T —
TioJie TeMIeparyp, ¥ — uumeso Ilyaccona a — K09 MULUMEHT TEeIJIonpo-
BogHOocTH. Ilose TeMIepaTyp COOTBETCTBYEeT ypaBHEHMO (2), B KOTOPOM
W — obBozHauaeT MHTEHCHMBHOCTHL MCTOUHMKA TEIIA (ma emuHMIy TOJI-
IUMHBI AMCKa), X — KO3(POULIMEHT TEIIONpoBOmHOCTM h — TOJIIMHY



[31] NAPREZENIA W TARCZACH WYWOLANE ZRODEAMI CIEPEA 151

mwirky. Cucremy ypasHeHMiZ MOKHO (1) m (2) MOKHO 3aMeHMTL OXHMM
ypaBHenueM (3).

dyurumio D MBI CBA3BIBAGM TI'PAHMYHBIMM yelaoBuamu @ = 0
u V2P = 0. ObozmayaeT 270, YTO Ha KOHIE ZMUcKa TeMmieparypa T =
= ( m 4TO MUCUE3aI0T HOpMAJIbHbIE HanpAXKeHMA g, Tax Kak Ha Kpamo
OMCKa He JOJDKHEI BRICTYHATE TAKIKE M KacaTeJbHEIe HalIpAXKEeHMT, HalLo
K HanpaxeHuaMm (¢, T) Ao0aBuTh Hampsxenus (o, 7) YAOBIETBOPAIOIIME
ypaeHeHuio (6), mpu KOTOPOM Ha KOHIle XMCKa KacaTeJbHble HANPAXKEHWU
paBHAIMCEL OBI HY IO,

IIndcepenumanbHoe ypaBHeHne (3) Ipyu IpaHNYHBIX ycnouax @ = 0
u V2P = 0 ABiAeDCA AHAJOMMYHBIM K JucbepennalsHoMy yPaBHEHNIO
uzmba mractTuHer (8) co csoboxmo oneprhMu Kpasmu (W = 0 u V2 W =
= (). B 970i1 aHasOrMM POJIL MCTOYHMKA TENJIA UIrPaeT COCPemoTOYeHHasd
cuna. ITosTomy mpu onpeneseHyy (PyHKIy > ¥ HANPAXKEHWIA ¢ H T MOXK-
HO MCIIOJB30BATH M3BECTHOE PElIeHMe TeopuM IUIaCTHMHOK, a mobaBouHble
HanpsaxeHns (o, 7) ompememrrb mpyu oMoy pymkipm Opu. Obpairaem
BHUMAHME HA TO, YTO peinenye OyNer COCTOATb M3 YaCTH PEeryJIapHOM
M HaCTH 0COBEHHOI IIpM HeM 0COBEHHOCTb BBICTYIAT TOJNBKO B (pymkipm P
M HATIDAXKEHUAX (0, 7).

IToppoGHoe penieHye CHeAYOLMX 3anad JOBENIEHO X OIpPeyieJIeHIto
COCTABIISIONIMX TIONA HATIPAMKEHMIH!

a) 6e3KOHEYHO NIMHHBLA IIOSAC AMCKA C OHMM MCTOYHMKOM Tervia,

6) Ge3KOHEYHO [JMHHBLI IOAC JMCKA C ONMHAKOBBIMM MCTOTHMKAMMI
Tera, HaXOAAIMMMCA B OfMHAKOBBIX PAaCCTOAHMAX,

B) HOJIYIIOSC JMCKA C OFHMM MCTOYHMKOM TENa,

r) IPAMOYTOJBHBIA AMCK C OFHMM MCTOTHMKOM TErLia.

The State of Stress in a Thin Plate Due to the Action of Sources of Heat

Summary

Displacement equations of the theory of elasticity for a plane siress
condition and a fixed temperature field can e represented by one dif-
ferential equation (1) in which @ denotes the so called displacement
heat potential, T — the temperature field, » -— the Poisson number,
a — the coefficient of thermal expansion. The temperature field ds descri-
bed by the differential equation (2) in which W derotes the heat source
intensity (per unit of thickness of he plate), k — ti*e heat conductivity

3 Archivum Budowy Maszyn
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coefficient, h — the thickness of he plate. The system of equations (1)
and (2) can be replaced by one equation (3).

We impose upon the function the boundary conditions @ = 0 and
V2% = 0. They lead to the conclusion that in the edge of the plate the
temperature is T = 0 and the normal stresses ¢ vanish. Since the edge
of ‘che1 plate should be free from tangent stresses as well, we must
and to the stress condition (¢, %) such a stress condition (o, 7) satisfying
equation (6), as would make the ftangent stresses on the edge of the
plate equal to zero.

The differential condition (3) with the boundary conditions @ = 0
and V2@ = 0 is fully analogous fo the differential equation of deflec-
tion (8) of a plate freely supported at the edge (w =0 and VZw = 0).
In this analogy the part of heat source is played by the concentrated
force, That is why in determining the function @ and the stresses a,7
we can make use of the known solution from the theory of plates and
determine the additional stress condition @, 7 by means of the Airy
function. It should be mentioned that the solution will consist of a re-
gular and a singular part, the singularity appearing only in the function
and in the stress condition (v,7%),

The following problems have been worked out in a detailed man-
ner, the components of the stress condition (¢, ) being determined:

a) an infinitely long strip of plate with one heat source,

b) an infinitely long strip of plate with identical heat sources evenly
spaced,

c) a semi-infinite strip of plate with one heat source,

d) a rectangular plate with one heat source.



