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BEITRAG ZUR THEORIE DER ORTHOTROPEN
PLATTEN*

Prof, Dr. ING, WITOLD NOWACKI, WARSZAWA

[Eingegangen am 22. Juli 1953.]

Zum Beginn dieses Jahrhunderts nahm die Theorie der isotropen Platten
nach einer fast hundertjahrigen Unterbrechung (die Arbeiten von Germain,
Lagrange, Navier, Kirchoff, Clebsch) einen neuen Aufschwung. Sie erweckte
das rege Interesse sowohl der Mathematiker (Lauricelle, Ritz, Hapfel u. a.)
als auch der theoretisch vorgebildeten Ingenieure (Levy, Hager, Henky,
Timoschenko, Nddai, Galerkin).

Dieses lebhafte Interesse war ein Ergebnis der praktischen Bediirfnisse
auf dem Gebiete der Theorie von Tragkonstruktionen.

Die in dieser Zeit gebildete Theorie der Platten beriicksichtigte leider
nicht den anisotropen Charakter vieler plattenartiger Konstruktionselemente.
Dieser Zustand veranlasste den fithrenden polnischen Gelehrten auf dem
Gebiete der technischen Mechanik, Prof. M. T. Huber, sich der Ausarbeitung
der Theorie von Platten zuzuwenden, die durch eine orthogonal-anisotrope
Struktur (Orthotropie) gekennzeichnet sind. Er hatte den Gedanken, den
tatséichlichen Spannungszustand in den kreuzweise bewehrten Eisenbetonplat-
ten, in den Sperrholzplatten und in den Wellblechplatten sowie in den eng-
maschigen Triigerrosten genauer zu erfassen, als es auf Grund der Theorie der
isotropen Platten moglich war.

Huber behandelte die Theorie der orthotropen Platten in einer Reihe von
Arbeiten, die sowohl in polnischer als auch in fremden Sprachen versffentlicht
wurden. Die grundlegende Arbeit bleibt hierbei seine ausfithrliche Monographie
»Theorie der orthogonal-anisotropen Platten«, die im Jahre 1921 in polnischer
Sprache erschien.

Die Differentialgleichung der Biegelinie einer orthotropen Platte in
rechteckigen Koordinaten lautet nach Huber

4 tw
B, 2™ 4 om
At 8:\;28_)'2_

84w
+ By 5yt + p(%y) (1)

* Vorgetragen an dem zwischen 16. und 18. Oktober 1952 in Budapest unter Fiihrung
der Klasse fiir Technische Wissenschaften der Ungarischen Akademie der Wissenschaften
veranstalteten Bautechnischen Kongress.
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darin bedeutet w(x, y) die Biegefliche,
p(x, y) die Belastung,
B,, B, die Biegesteifheit der Platte in der Richtung x, y. Weiters ist 2 H =
Bymy Bym, -} 4C, wobei m, und my die Materialkonstanten sind (ent-
sprechend der Poissonschen Zahl fiir das isotrope Material).
Prof. Huber wies in seiner Arbeit auf die entscheidende Bedeutung der

sogenannten Biegecharakteristik der orthotropen Platte ¢ = ——=—— fiir die

IB.- B,

Lésung der Differentialgleichung hin. Er zeigte ferner die Verwandschaft
zwischen den Biegeflichen einer orthotropen und einer isotropen Platte bei
gewissen Werten von ¢. Bemerkenswert ist die Ermittlung des Unterschiedes
im Verhalten einer rechteckigen Platte bei ¢~>1 und ¢<C1 unter der Einzellast.
Es wurde festgestellt, dass das Theorem Mesnagers iiber die gleichartig gezeich-
nete Durchbiegung aller Punkte einer frei aufliegenden rechteckigen Platte fiir
orthotropen Platten der Charakteristik ¢ <C1 nicht zutrifft. In diesem Fall
erhiilt man nimlich einen wellenartigen Charakter der Durchbiegung mit
Vorzeichenwechsel.

In seiner Arbeit gab Huber ebenfalls eine Reihe von Losungen der tech-
nisch wichtigen Belastungsfille des frei aufliegenden Plattenstreifens, die da-
mals fiir isotrope Platten nicht bekannt waren.

Eine Reihe von Belastungsfillen der frei aufliegenden oder fest einge-
spannten Platten loste Huber mit Hilfe einer geistreichen, eigenartigen Methode.
Das Wesen dieser Methode besteht aus einer Superposition dusserst einfacher
Losungen des Problems eines unendlich langen Plattenstreifens.

Fiir andere Fillle fand Huber Néiherungslésungen, wie z. B. fiir die iiber
die Stiitzlinie iiberhingende Platte, fiir die am Umfang fest eingespannte
Platte usw.

Schliesslich befasste sich Huber in seiner Arbeit erstmalig mit der theo-
retischen Behandlung des Problems des Mitwirkens der Eisenbetonplatte mit
der Rippe. Dieses technisch #usserst wichtige Problem stiess bekanntlich auf
grosse Schwierigkeiten, als man versuchte, eine strenge Lésung zu finden. Bei
der Biegung der Rippe und Platte ist der ebene Spannungszustand in der Platte
zu beriicksichtigen, der durch die bekannte Airysche Funktion gekennzeichnet
ist. Huber gab eine Verallgemeinerung der Spannungsfunktion fiir orthotrope
Scheiben sowie eine angenihrte, jedoch sehr allgemein gehaltene Liosung des
Mitwirkens des Systems Platte-Rippe.

In den folgenden Verdffentlichungen, wie »Biegungsprobleme eines durch
Querrippen versteiften orthotropen Plattenstreifens«, Ziirich 1927 und »Pro-
bleme der Statik technisch wichtiger orthotroper Platten«, Warszawa 1929,
entwickelte und ergéinzte Huber seine Ergebnisse aus dem Jahre 1921.

Die Arbeit von Huber iiber die T-Triger (Warszawa 1923), welche die
Stabilitit des Steges eines T-Balkens behandelt, schliesst sich an die Theorie
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der orthotropen Platten an. Hier wird auch eine Reihe von Losungen des
Beulens von rechteckigen orthotropen Platten angefiihrt.

Hubers bahnbrechende Arbeiten auf dem Gebiete der Plattentheorie
brachten ihm volle Anerkennung in der ganzen Welt. Das Wesen seiner Theorie
der orthotropen Platten wurde in die bekannten Monographien der Platten-
theorie eingefiihrt (Nddai — Elastische Platten 1925 ; Timoschenko — Theory
of plates and shells — 1940 ; Lechnitzki — Anisotropnyje plastinki 1947 ;
Girkman — Flichentragwerke 1948). Sie bildeten ausserdem den Ausgangs-
punkt fiir viele in- und auslindische Forschungsarbeiten (Lechnitzki, Lurje,
Begman, Iguchi, Massonet, Cornelius, Seydel, Sokolnikoff usw. ).

Die Theorie der orthotropen Platten bildet heute die Basis der Losung
von Problemen enggerippter Briickenfahrbahnen, Tridgerroste der Schiffs-
konstruktionen, Elemente des Flugzeugbaues usw.

Auch in Polen, insbesondere nach dem letzten Weltkriege, wurden die
Probleme der Theorie der orthotropen Platten in zahlreichen Arbeiten pol-
nischer Forscher aufgenommen (Nowacki, Olszak, Nowinski, Turski, Rydlewskt,
Kazimierczak ).

Diese Arbeiten beziehen sich sowohl auf die Statik wie auch auf die Dyna-
mik und Stabilitdt dieser Platten. Hubers Arbeiten regten auch den Verfasser
der vorliegenden Arbeit an, sich mit den orthotroper Platten zu befassen, wobei
eine Reihe von neuen Losungen gefunden wurde, die von praktischer Bedeu-
tung sind. Es werden hier in kurzer Zusammenfassung die Ergebnisse zweier
Untersuchungen mitgeteilt.

A

Die erste von ihnen betrifft einen orthotropen Streifen, welcher der Wir-
kung einer Einzellast ausgesetzt ist. Die Losung dieses Problems spielt in der
Theorie der Einflussflichen eine grosse Rolle und gestattet die Konstruktion
von Einflussflichen fiir Rechteckplatten, deren zwei Rinder frei aufliegen,
withrend die iibrigen beliebig unterstiitzt sind.

Wir wollen einen unendlich langen orthotropen Plattenstreifen betrachten,
der lings seiner Rinder x =0 und x —a frei aufliegt. Auf diesen Streifen
wirkt lings der Achse x die Einzellast P in einer Entfernung £ von der Achse y.

Die Losung dieses grundlegenden Falles wurde von Huber gegeben, und
zwar mit Hilfe einfacher trigonometrischer Reihen. Diese Reihen konver-
gieren jedoch in der Umgebung des Angriffspunktes der Kraft P sehr langsam,
insbesondere im Falle von statischen Grossen. Es wird gezeigt, dass diese
Grossen in geschlossener Form dargestellt werden kénnen. Diese Form findet
man durch Losung eines aus zwei partiellen Differentialgleichungen bestehenden
Systems, was eine Analogie zur zweischrittigen Losungsart fiir isotrope Platten
nach Marcus darstellt.
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Mit den Bezeichnungen &' = L und ¢ = - nimmt die Gleichung
D, VD; Dy
(1) folgende Form an :

8% 84w d4w
ef=10 ¢0>0. (2)
By‘ e 3x28y2 t o GE

Der Wert ¢ spielt bei der Lésung der Gleichung (2) eine grosse Rolle; wir
erhalten drei Losungen, je nachdem ob 0 >1, o =1, ¢ <1 ist.

Abb. 1
Wir fithren die Funktion ¢ (x,y) ein, welche die Differentialgleichung

0% S%p _

é.y—‘z + ﬁ 8—5 = 0 ﬁ const. (33)

erfiillt. :
Diese Funktion sei mit der Biegefunktion w(x,y) durch die Differen-

tialgleichung

o

8%w 92w

ey 2 —
= 8y? + A G = const. (3b)
verbunden.
Setzt man @ in die Gleichung (3a), so erhilt man :
a2 92
3 A2 w=0. 4
(a it f ax2)(ay2+ axﬂ) )

Diese Gleichung ist identisch mit der Differentialgleichung (2), wenn :

224 B2 =206, &b =262, (5)
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Also

==r—— R e
ﬁl,zZ:ESl“Q-I-VE*—l Mhog=d=+¢e |I9—|/92~—1 fiir o> 1

a5+ 1558 hame o] E

fir p <1
ﬁl?ﬂ = :E: £, -;l]_,g'-: :t: £, f'i.iI' g= 1.

Wir wollen den Fallg > 1erwigen und die Funktion ¢ aus der Gleichung
(3a) bestimmen. Die Randbedingungen fiir die Funktion ¢ sind folgende :
auf den frei aufliegenden Rindern sind x = 0 und x = a; die Durchbiegungen
*w
0y?
Durchbiegung, und somit ist auch ¢ = 0.

Die Losung der Gleichung (3a), welche die angegebenen Randbedingun-
gen erfiillt, lautet :

w und sind gleich Null, also ¢ =0. Fiir y — oo verschwindet die

P (x,5) = S' Ay e %P gin AnX, Qp= ne (6)

1,9, .. a

Die Konstante A, finden wir aus der Gleichgewichtsbedingung der Schubkriifte
und, der Einzellast P im Querschnitt ¥y =0.
Wir erhalten endlich :

n=1,2,.

%P

@ (x,y) = sin o, sin anx. (7)

Dy ap
Aus der Gleichung (3b) bestimmen wir die Funktion

— _ﬁ_ < 1 —Aay q. —Pa y, _. .
(50 = 3 pap— ) IZ;‘ o U R A D e Sk e )

Wir fithren eine zweite Hilfsfunktion o (x, y) ein.
Diese ist durch folgende Differentialgleichungen bestimmt :

oy Sy _
— 4 A2 =0, py=— 3 EC0 9
By"’+ 9 x? L4 Byg +ﬁ 8x2 ®)
Die Funktion v ermitteln wir auf dhnlichem Wege wie bei der Funktion
—a. ly

‘P(x,}‘ = _m 2 ————sin an& . sin anx. (9{:)
r=1,2..

8 Acta Techmica VIIT/1—2
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Aus der Bestimmung der Funktionen ¢ und y erhilt man :

Bhe v—9 Ow pfe—ly (10)
92 ﬁs__;(z’ 8y g2 — A2 &

Die Funktionen ¢ und y konnen in geschlossener Form ausgedriickt wer-
den. Diese Form wird zur Ermittlung der Biegemomente und der Schubkriifte
im Plattenstreifen benutzt.

Durch Ersetzen der trigonometrischen Funktionen in den Formeln (7)
und (9a) mit Exponentialfunktionen und mit Hilfe der bekannten Beziehung

In (1—z)=— > — |z <1
n

n=12,..

erhilt man
cosh = By — ;:os & (x—¥&)
P a a
e 4x Dy p ]n 7 k4 ’
i cosh— By — cos — (x + &)
a : a
cosh = Zy——-tzusE (x— &)
P a a
— D 1]1 .
4nDyp cosh— Zy——cos-i(x—]—é‘)
a a
(11)
fiir ;0, o> 1.
<

Es ist leicht zu beweisen, dass die Funktionen ¢ und p alle Randbedin-
gungen erfiillen. Fiiry =0 und x =¢ werden die Funktionen ¢ und y un-
stetig, &hnlich dem Logarithmus.

Fiir ¢ =1 erhalten wir bei dem Ubergang zu den Grenzwerten

cosh =Y — cos =~ (x—¥%)
a

P a

= - In T (12)
fadsp cosh =Y — cos = (x+ &)
a a
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Wier erhalten hier

2w 1 oD

e {b__y__._ ]

dy® 2( ay} (13)
2w 1 o

i S 2208

el

das bekannte Ergebnis von Nddai* fiir isotrope Plattenstreifen. Schliesslich
werden fiir den Fall o <Z 1 die Funktionen @ und 4 zueinander konjugiert

p=D |1y 1p:¢-—-i?=$.

N . . 8%w 82w
Die Differentialquotienten — und — nehmen folgende Form an
8 x? 9 y?
L (ﬁ iz)
09 x? 2Dyme2\v, vl
Vlie
1,2 2
e _P_(L L)
dy! 2Dyme \vy vy ’
worin
L L
T ; : ;
I, = 2 —— sin anv,y sin apé sin apx,
n=1,2..
(15)
i e—rmv,y
Ia— 2 cos Uyvyy sin ¢pé sin dpx.
n=l1,2,.. 7
I, und I, lassen sich ebenfalls in geschlossener Form ausdriicken
i=4 —av,y s
1 e 7 sin an;

I =— asct 16

LA 2 & ) gy an; (16)
wo: My=—vy+E&—2x Mm=v,y—E—nx,
It
M=—vey—E+2x Mm=nvy+itx, a=—
a
(17)
I 1 1 (cosh av,y — cos an,) (cosh av,y — cos an,)
= —— In .
- 8 (cosh av,y — cos an,) (cosh av,y — cos an,)

* A, Nadai: Elastische Platten. 1925.

8'
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Diese FErgebnisse erméglichen, die Biegemomente sowie die Schubkrifte
aus folgenden Formeln zu bestimmen

2 8210
Mx=-—_Dx[?._.w+i _uf]’
8a®  my 0y*

92 8%
V=D (_ﬁ' 4 _) ,
8yr  my 9 a2
(18)
3 D, ©*
T, 8 w—{ZC+ _x] ow 1
8«8 my) 9y*Bx
2 83w
8y3 my) 8x2 8y

Es kann auch leicht bewiesen werden, dass der im Drillungsmomentensatz

2
Mx = —2c B% (19)
oxay
82w
enthaltene Ausdruck
dxdy
sich ebenfalls in geschlossener Form darstellen lisst.
Fiir p > 1 ist:
2 —aM e
0% _ s e sin a(&—x) n
9x0y  2mD,(B>—A%) 1—e*» sin o (& + x)
—QAy . e —afy .
 arctg e sin o (§ — x) e e sin a (¢ + x)
1—e %W gin a(é—y) 1—e % sin a (& 4 x)
—afy o =
—aretg £ Bm-aff %) 3 a=2Z, (20a)
1—e= 2Py sin o (£ —x) a
Fir o =1 ist:
2
s SR (20b)
8x8y 2 ° Bx
Endlich ist fiir p < 1:
82w P

BxBy B 167w, v, D,y '
A [eosh av,y —cos a(vyy —&— x)] [cosh ar,y —cos a(v,y —& + x)]
[cosh av,y —cosa (v,y + & + x)] [cosh av;y —cos a(vyy + & —x)] '
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Fiir die Belastung P =1 im Punkte (£, #) kénnen nach dem Maxwell-
Bettischen Satz iiber die Gegenseitigkeit der Verschiebungen die Momenten-
fliche Mx, My, Mxy sowie die Schubkrifteflichen T.., Ty. als Einflussflichen
fiir die sich in dem Raume der Platte bewegenden Kraft P = 1 betrachtet wer-
den. Wir bezeichnen mit K(x, y ; &, 7) die Einflussfliche der beliebigen statischen
Grosse K.

Bei der gegebenen Belastung p(§, 7)), die stetig auf der Fliche D der
Platte verteilt ist, erhalten wir den Wert dieser statischen Grosse aus der For-
mel

K (xsy) = B[‘ K (%Jﬂ ‘55??) P (Ea??) dfdﬂ- (21)

Die Ermittlung der Einflussflichen fiir einen unendlich langen Streifen
gestattet das Auffinden von Einflussflichen fiir rechteckige Platten, die auf
den Riéndern x = o0 und x = a frei aufliegen , sonst aber beliebig unterstiitzt
sind.

In diesen Fiillen setzt man die Einflussfliche aus zwei Teilen zusammen :
aus einem ersten Teil, der dem unendlich langen Streifen entspricht, und aus
dem zweiten, der die zusitzlichen Randbedingungen der rechteckigen Platte
erfiillt. ’

Fiir die Biege-und Drillungsmomente sowie fiir die Querkrifte enthilt
der erste Teil eine Singularitit, wogegen der zweite Teil eine regulire Funktion
15t.

B

Das zweite Problem bezieht sich auf die rechteckigen Platten mit
gemischten Randbedingungen.

Wir wollen einen besonders einfachen Fall der an den drei Réndern frei
aufliegenden Platte x =0, x =a und y =5 betrachten. Diese Platte ist
lings der Geraden y =0 im Abschnitt ¢, fest eingespannt und im Abschnitt
¢y frei aufliegend.

Im Abschnitt ¢; haben wir:

sy 22l
Sy
und im Abschnitt ¢, :
2,0(.0
w(x,0) =0, B%w(x0) _

By?
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. 8%w(x,0)
Liings des Abschnittes ¢, werden die Biegemomente My = — Dy ——5?2—

als die unbekannte Funktion der Veridnderlichen x hervorgerufen.
Auf Grund des Superpositionsprinzips kénnen wir die Durchbiegung der
Platte in folgender Integralgleichungsform darstellen
G
w (x,y) = W, (x,y) + ‘ My (&) G (x,y; &,0)déE. (22)
0
Dabei bedeutet w, (x, y) die durch die Belastung p(x, y) hervorgerufene Durch-
biegung der ringsherum frei aufliegenden Platte. Die Bestimmung dieser Funk-

e L 47
1
g |
= I
i |
|
Pyl 1@
|
(43 { }
|
| |
L i |
e e |
b
X5
- Abb. 2

tion stellt im allgemeinen keine griosseren Schwierigkeiten dar, Sie wird durch
bekannte Methoden mit Hilfe einfacher oder doppelter trigonometrischer
Reihen erhalten.

G(x, y; £, o) ist die Greensche Funktion fiir den Zustand M =1; das
heisst G(x, v ; £, o) ist die Biegefliche der ringsherum frei aufliegenden Platte
mit dem im Punkte (£, o) angreifenden Einzelmoment My = 1.

Die unbekannte Funktion My(§) werden wir aus der Bedingung des
Nullwertes der Neigung der die Biegefliche berithrenden Tangente erhalten.

Bw (x,0) 8w, (x,0
8y Ay

(x,0; £,0)

G
) oG =
S f My () =L dE = . (23)

0<é6<

Nach der Bestimmung von M(§) aus dieser Fredholmschen Integral-
gleichung (I. Art) kénnen wir w(x, y) ohne Schwierigkeiten aus der Gleichung
(22) finden. '
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Damit ist das Problem nunmehr gelést.

Man kann die Losung auch auf einem anderen Wege erhalten. Es sei als

Bw(x,0
die unbekannte Funktion die Funktion w(x,0)

@ (%) der Neigung der

Tangenten im Abschnitte ¢, angenommen.

Als Grundsystem nehmen wir eine lings der Geraden y=o fest einge-
spannte, an anderen Rindern frei aufliegende Platte an.

Es sei die mit der Belastung p(x, y) hervorgerufene Durchbiegung der
Platte mit wy (v,¥) und die Greensche Funktion fiir den Zustand @p=1im
angenommenen Grundsystem mit L(¥, y ; £, 0) bezeichnet. Wir erhalten dann :

w(x%,5) = 1w (%,3) + | ¢(§) - L(x, 535 £0)d&. (24)
Die unbekannte Funktion ¢ (§) wird aus der im Abschnitt ¢, giiltigen Bedin-
8%w (x,0) ;
gung ————— = 0 ermittelt.
Oy

8%, 92L (x,0;£0)
— 4. 2 I gE=0 25
S | el (25)

Man, kann die erste bzw. die zweite Methode benutzen. Giinstiger ist diejenige
Methode, die eine einfachere Form des Integralgleichungskernes gibt.

Diese Uberlegungen lassen sich auch auf gemischte Randbedingungen,
die an zwei, drei bzw. vier Plattenrindern auftreten,anwenden. In diesem Fall
erhalten wir ein Integralgleichungssystem.

Nehmen wir an, dass am Rande y =0 eciner rechteckigen Platte in den
Abschnitten ¢;, und ¢, zwei Paare verschiedener Randbedingungen eintreten.

Es sei im Abschnitt ¢, gegeben :

Lw(x,0)=0, Iyw(x0)=0. (a)
und im Abschnitt ¢, :
81w (x,ﬂ) =0, 82 W (I,O) = 0. (b)

Dabei bezeichnen I, l,, g, g, beliebige lineare Differentialoperatoren.

Die Operatoren g; w (%, 0) und g, w (x, 0) sind natiirlich lings des Ab-
schnittes ¢, ungleich Null und stellen die Funktionen der Veriinderlichen x
dar. Dies ist der Fall mit den Operatoren l; w (x,0) und [, w (x, 0) im Abschnitte ¢,.

Wollen wir zuniichst das Grundsystem nehmen. Dieses bestehe aus einer
Platte, fiir die lings der Geraden y=0 (im Abschnitt ¢; und ¢,) die Rand-
bedingungen g; w(x, 0) =0 und g, w(x, 0) =0  gelten.
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Mit w,(x, y) bezeichnen wir die durch die Belastung p(x, y) hervorgerufene
Biegefliche ; mit Gy(x,y; & 0), und G, (x,y: &, 0) die Greenschen Funk-
tionen fiir die im oben angegebenen Grundsystem bezeichneten Zustiinde
gw =1, g, w=1.

Dann ist :

w0 (33) = 10y (5:3)+ [0 (€) - G (xnys £0)E -+ (a0 (8) - Gy(rys £0) dE
Cy G

(26)
Die unbekannte Funktionen g w(£) und g, w(§) kénnen aus den Randbedin-
gungen (a) ermittelt werden

Lw (x,0) = Ly, (x,0}+ [ g0 (8) - L6, (.03 £,0)dé +
—}-J'gzw (&) - 1,Gy(x,0; &,0) d&
Law (x;0) = Lyw, (x,0) + { 2w )E) - 1,61 (x0,5 £,0)dE + (27)
a4 [ 10 (£) + 1,64 (1,05 £,0)dE =0,
s=E=c
In diesen Gleichungen gilt nach dem Bettischen Satz :
1,6y (%,0; £,0)= 1,6, (x,0; £,0) (28)

Aus dem Integralgleichungssystem (27) berechnen wir die unbekannten Funk-
tionen gyw (§) und gyw (§), und aus der Gleichung (26) die Biegefliche der
Platte. Nimmt man als Grundsystem ein System an, in dem lings des Randes
die Randbedingungen (a) erfiillt sind, so erhalten wir dhnlich der Gleichung
(26) eine Integralgleichung mit den unbekannten Funktionen Lw(£) und lyw(§).

w () = wo(,y) + [ Iw(8) - Ly (rys £0)dé + [ Lao(€) - Ly(x,ys £0)dE,
Ca (e
| (29)

g=f=a.

Diese Funktionen werden aus dem System von zwei Integralgleichungen ermit-
telt, welche durch die Anwendung der Operatoren g,w(x, 0) und g,(x,0; £,0) aus
der Gleichung (29) erhalten werden,

Die oben angefiihrten Gleichungen wollen wir auf die rechteckige Platte
mit gemischten Randbedingungen gemiiss Abb. 3. iibertragen.

Der Rand der Platte y =0 ist im Abschnitt ¢, fest eingespannt, im
Abschnitt ¢, frei aufliegend. Im Abschnitt ¢, gilt daher

Lw(x,0) = w (x,0) = 0

Bw(x.,0)
a

lyw (x,0) = =0 (e)
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Als Unbekannte nehmen wir in diesem Abschnitt das Einspannungs-
moment My(x) = gw(x) und den Stiitzendruck 7T',(x)=gyuo(x).

Bezeichnen wir mit Gy(x,y; £, 0) und Gy(x,y; €, 0) die Biegefliche fiir
den Zustand My, =1 und Ty,= 1, so nimmt die Gleichung (27) folgende

Form an :

w0 (3y) = wa(5y) [ My (6)- Gy (x.ys £0)a8 T [ Tyld) - Galmrys E0)dE. (29a)

€

7R 1 L
' |
&'xr’.f)c/ & ¢ |
f, '
|
,% |
plxyl a
P15) # w0
wil), |*~
|
|
b
i
Abb. 3

Aus den Randbedingungen (c) erhalten wir :

sy (D) < [ My (F) CylanDs S0ME k- [ T (E) + 6y (00 S0 =D
Cl 1

i 8Gl(x,0; E,D) an(x'}O; an) d& =0

8wy (x,0) M d ﬁT
- +CJ S (8) £+J G

By oy
C,
) s &,
Hier ist —M‘éﬂ’—g—o-) = G,y(x,0; §,0)
' y

Die Ermittlung der Funktionen M,(£) und Ty,(§) aus diesen Gleichungen
erméglicht die Bestimmung der Biegefliche aus der Gleichung (29a).

Im Sonderfalle des auf dem Abschnitt ¢; frei aufliegenden Randes gilt
also M, =0 und fiir die Bestimmung der Reaktion T).({) geniigt die
Gleichung :

w, (w,0) +Cf Ty, - Gy(x,0;£,0)dé =0 (31)
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Die obigen Erwigungen kinnen auf Fille erweitert werden, wo die gemischten
Randbedingungen nicht nur in zwei, sondern auch in mehreren Abschnitten des
Plattenumrisses vorkommen.

Die dargestellte Methode wollen wir nun mit einigen moglichst einfachen
Beispielen fiir den Sonderfall der isotropen Platte (¢ = & = 1) erldutern.

1) Der gegebene Plattenhalbstreifen von einer Breite a ist gleichmissig
belastet. Plattenrand y — 0 ist im Abschnitt ¢ fest eingespannt und auf dem
iibrigen Teil frei aufliegend. Das unbekannte Einspannungsmoment M(§)
bestimmen wir aus der Integralgleichung (23)

[ 6]
Bw, (x’o) f IPI(‘E) a——G (x,0; &, 0) dE=0
oy ’ gy ;
0=£=C. (32)

AN

'\\‘77 N
A ]
]

O
WY Ly
NN

Abb, 4

Fiir das Grundsystem der auf dem ganzen Umriss frei aufliegenden
Platte gilt :

wy (%, ) = % - [1—(1 + ﬂ—zz]e a"yl sin dpx.
3 nl}

r=1,3...

Die Funktion G(x,y; £,0) soll die Differentialgleichung der Durchbiegung der
Platte erfiillen :

i =0
und ebenfalls die Randbedingungen

C=0, ?°G=0
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auf den Rindern

x=0,x=a, y=0o0

Fiir y =0 soll G = 0 sein und

926 (x,0; £,0) 2
—N ——(—é—;—-’—)z— sin a,& sin o,x.
y ah‘=],2..
Somit erhalten wir
- My
‘pa?
o ]
-q? e =t Al e -
L || -0425
- 04 A ARANS _--_“‘-.
§pZiiil
0. bl — -
. a a
2 2
Abb, 5

4

, =
€y 0)=—— > "u sin ané - sin anx,

bzw.

4 cosh 2 —cos = (x—&)
G(%y;60) =— —In £ 2
4Nz sosh 22— s . (x4 &)
a a

Die Gleichung (32) nimmt jetzt folgende Form an :

4
c sin 2——(3:—-‘5) 8pad oa 1
JM(E)-]JJ - = L= > — sin ans.
% sin -2—(5\:—5) * “‘=1|31"n

a

123

(33)

(34)

(35)
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In Abb. 5 ist das Diagramm der Funktion M(§) auf Grund der angendherten
Lésung der Gleichung (35) dargestellt. Zum Vergleich wurden die Einspannungs-
momente der Platte lings des ganzen Randes y =0 eingezeichnet. Bemerkens-
wert ist das starke Anwachsen des Einspannungsmomentes in der Nihe des

Punktes ‘g, 0]. Das ergibt sich aus der Unstetigkeit des Differentialquotienten
a_"i \
oy
diesem Punkte der unendlich grosse Wert des Einspannungsmomentes erreicht
wird.

Im Sonderfall ¢ = a kann man mit Hilfe der Formel (33) die Gleichung
(32) in folgender Gestalt schreiben :

(y = 0) Es ist zu erwarten, dass bei strenger Losung der Integralgleichung in

oo

g . max . mat 2pa® < 1 . nma
i = ]
J, M (&) 122' sin —- sin — & :'14" 123 = sin =
0 Re=1,2.. =Lty e

. Aus dem Vergleich der beiden Reihen geht hervor, dass fiir die ungeraden
Zahlen

a

? , 3 2pad
M (§) sin "= df = — P2 36
[ECE = (36)
0
gilt und dass fiir die geraden Zahlen dieser Ausdruck verschwindet.
Die Gleichung (36) kann als Koeffizient der Fourierschen Reihe der Funk-
tion M (&) behandelt werden, so dass:

M= -2 5 Lo p g 1)

n3 a

2) Der Plattenhalbstreifen ist mit der Einzellast P im Abstand y = a/2
von der Achse x belastet (4bb.6). Der Plattenrand ist von der Achse y sym-
metrisch im Abschnitt ¢ fest eingespannt.

Die Einspannungsmomente wurden aus der Integralgleichung fiir die
Verhiltnisse

_(':_ — _1_ ST 1
a 4 8 2
ermittelt.

Aus den Diagrammen der Einspannungsmomente geht hervor, dass bei
Verkiirzung des Abschnittes ¢ die Momente zunehmen ; beim Anwachsen des
Abschnittes ¢ hingegen niithert sich das Momentendiagramm dem Diagramm,

das entsteht, wenn der Rand a in seiner ganzen Linge befestigt ist.



125

BEITRAG ZUR THEORIE DER ORTHOTROPEN PLATTEN

3) Rechteckige Platte nach Abb. 7. Wir erhalten hier die Integralgleichung:
al2

. . 1 , -
J M, (1:) { 2 ';;(“Sh @n— s'—mghggn) sin anT -

0 n=1,2,..

Sin aAmT

(ﬁ 5 _1]3 sin anx} dr =

n=1,2 n m
2pad =1l on _Onfy
= —— —_— tﬂh e — 1
e 2 nd ( ©" 9 cosh? €n | ‘W0 Gn¥,
n=1,3 2
-
-

| !
I
i |
! {
2 : b
gt f |
| 1.{/ |
a | |
of el
1 a
el x -2
4Zfe]
R
"\.~--
\.\f\.‘,a
\\
17 |72 T4 NI <
b A0
2
a
fn = NI, p=—, Om=—.
a a

4) Plattenhalbstreifen nach Abb. 8. Dieser Fall kann als Belastung des
unendlich langen Plattenstreifens mit dem Ausschnitt lings der Achse x be-
trachtet werden. Die Belastung fiir x > 0 ist + p und fiir x <0 gleich — p. Die
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unbekannte Funktion des Auflagerdruckes R(§)finden wir aus folgender Inte-
gralgleichung :

f R (§) [ 13 sin a,x sin U.n-f) dE:___pa?(El ) E' _1? 8in tnx,
n
= 12

2 n
ne=1,3
0=¢=0C
e 0’
L /'////,_/,_////'/' s 1 ——————— g
A !
| 7 |
Ly I
2 1//’ I
7
| A
: 7 g %
! ]
|
7
I
X
Abb, 7

\///ﬁ}

5) Der unendlich lange Plattenstreifen mit dem Ausschnitt lings der
Achse x ist auf der ganzen Fliche gleichmissig belastet. Da die Schubkriifte

lings der x-Achse gleich Null sind, bleibt uns aus dem System der Gleichungen
(30) die zweite Gleichung,
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Wir erhalten hier die Integralgleichung

smi(x——ﬁ - =g
fM(-E)In 20 =T N sin o,
sm—(x-]—E) LT B

L~

———— e LS

Abb. 10

6) Gleichmiissig belasteter Plattenstreifen, auf den Riéndern x =0 und
x =a und lings der Linie der Auflage AB frei aufliegend. Aus der Nullwert-
bedingung der Durchbiegung auf dem Abschnitt AB erhalten wir eine In-

tegralgleichung, welche die unbekannte Funktion der Auflagerkraft R/§) lings
des Abschnittes 4B enthilt.

J‘ R(E sin omé sin amx] T 8pa2 iy sin dnx

m® Nn2 nbd

ﬂul A n=1,3,..

Derartige Beispiele konnen in grosser Zahl vorgefiihrt werden. Die grosste
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Schwierigkeit in der gezeigten Methoden bildet nicht die Formulierung der
Integralgleichung oder ihres Systems, sondern ihre strenge Losung. Diese Losung
ist fiir bestimmte Formen des Kernes G(x,£), L(x,£) méglich. Stosst die strenge
Losung auf Schwierigkeiten, so lassen sich zahlreiche bekannte Methoden zur
angendherten Losung der Integralgleichungen dieser Art anwenden.

Die hier besprochene Methode kann ausserdem fiir weitere komplizierte Plat-
tenformen entwickelt werden. Sie kann fiir Probleme sowohl der Platten, die aus
Rechtecken hestehen, als auch fiir Probleme der kontinuierlichen Platten Ver-
wendung finden. Sie kann aber auch auf die Probleme des ebenen Spannungs-
zustandes iibertragen werden, wo bekanntlich die Airysche Spannungsfunktion
die biharmonische Gleichung erfiillt, sowie auch auf die Probleme der Stab-
torsion und der Membranbiegung, wo die Poisson- und Laplace-Differential-
gleichungen gelten.

ZUSAMMENFASSUNG

In dieser Arbeit wird zuerst ein Uberblick iiber die Entwicklung der Theorie der ortho-
tropen Platten gegeben. Es wird dann die Greensche Funktion (d, h. der Einflusswert fiir die
Durchbiegung) im Falle eines unendlich langen orthotropen Plattenstreifens abgeleitet, wo
anstatt einer unendlichen Reihe die geschlossene Form verwendet wird. Zum Schluss werden
mehrere Randwertanfgaben der rechteckigen Platte gelost.

K TEOPHUHU OPTOTPOITHBIX IIJIUT
A-p Texu. Hayx, npod. B. Hopaukuit (Bapana)
Pesome

B naHHOii cTaThe B MepBylo Ovepe/b JaeTcsl 0030p Pas3BHTHSI TEOPHH OPTOTPOMHBIX
MY, 3atem faercs puiBoj (yHxuuu IpuHa anst cnyvyas OECKOHEYHOM TMOJIOCKL DPTOTPOMHOM
rauThl. S5l 9TOr0 BMECT0 DECKOHEYHOr0 psAjfa Mcroab3yercss 3amiHyTas dopma. Harxowen,
MPHBOJMTCS PEIIEHHE HECKOJIbKHX 3a/1a4 KPaeBblX BEMHYMH MPSIMOYIOMBHON [UIUTEL.

A CONTRIBUTION TO THE THEORY OF ORTHOTROPIC PLATES
By
PROF, W, NOWACKI, D, OF ENG, 5C, WARSHAW
SUMMARY

A survey of the development of the theory of orthotropic plates is given first. Thereupon
the Greenian Function (i. e. the influence value for the bending through) is derived for the case
of an orthotropic strip of plate of infinite length, where the close form is used instead of an
infinite series. Finally, several limit value problems of the orthotropic plate are solved.

CONTRIBUTION A LA THEORIE DES PLAQUES ORTHOTROPES
PROF. W, NOWACKI, Dear DES SCIENC. TECHN,, VARSOVIE
RESUME

L’auteur donne tout d'abord un apergu de I’évolution de la théorie des plaques ortho-
tropes. Ensuite, il déduit la fonction de Green (c.-i.=d. la valeur d’influence pour le fléche pour
une bande infinie d'une plaque orthotrope, A cette fin on emploie I'expression fermée au lien

d’une série infinie. Enfin, plusieurs problémes de valeurs aux limites de la plaqus rectangu-
laire sont résolus.



