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WITOLD NOWACKI

NOUVEAUX COURANTS DANS LES RECHERCHES PORTANT
SUR LA THERMOÉLASTICITÉ

Introduction

Depuis ces des dernières années nous assistons à un développement
imposant de la thermoélasticité. Ceci est dû, en premier lieu, aux demandes
pressantes présentées à la science par la technique aéronautique qui a pris
un essor remarquable. Le développement de la science de la thérmoélasti-
cité est aussi stimulé par le progrès réalisé dans le domaine de la cons-
truction de machines de tout genre, ainsi que dans le domaine de la techno-
logie chimique et surtout dans celui de la technologie nucléaire.

Pendant la première décade après la deuxième guerre mondiale c'est
surtout la théorie classique des contraintes thermiques qui a été dévelop-
pée par rapport aux parcours thermiques non stationnaires.

La théorie des contraintes thermiques se base sur les principes de la théorie
classique de l'élasticité, ainsi que sur la présomption que les constantes du
matériel ne varient pas et qu'elles sont indépendantes de la température.
Ces présomptions rétrécissent, bien entendu, l'applicabilité de solutions
à certains intervalles de températures déterminées.

Cependant, au cours des dernières années, le problème du couplage
du champ de température et de celui de déformation a pris de plus en plus
d'importance, ainsi que le problème des contraintes thermiques dans les
corpsanisotropes et hétérogènes.

Le premier problème mentionné présente un vif intérêt du point de
vue des connaissances scientifiques. Par contre, le problème des contraintes
thermiques dans les corps anisotropes prend actuellement un sens pratique
par suite de l'application, de plus en plus répandue, des matériaux à struc-
ture anisotrope macroscopique pour la construction des machines et des
appareils aéronautiques.

De même nous pouvons constater un développement remarquable
des recherches portant sur les contraintes thermiques stationnaires aux
températures élevées. C'est notamment la température élevée qui est res-
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ponsable de l'hétérogénéité du matériel. Les coefficients du matériel de-
viennent des fonctions de température et, par cela même, le flux étant
stationnai«, des fonctions d'emplacement.

Dans le rapport que voici, nous laissons de côté les problèmes des
contraintes thermiques dans les corps géométriquement non linéaires.
Nous nous proposons de passer en revue les résultats obtenus dans quel-
ques domaines mentionnés et, si possible, de souligner les tendances des
recherches qui se frayent le chemin d'une manière digne d'intérêt.

Couplage du champ de température et du champ de déformation

Dans un solide, le champ de température est lié au champ de défor-
mation. Le changement de la quantité de chaleur dans un élément du
volume provoque un état de déformation et de contrainte. Inversement,
la charge d'un corps — c'est-à-dire le champ de déformation dû aux fac-
teurs mécaniques — provoque la formation d'un champ de température
dans le corps. Une partie de l'énergie mécanique, due à la déformation
du corps, se transforme en énergie thermique.

Le couplage du champ de température avec celui de déformation
nous permet de traiter les problèmes élastocinétiques d'une façon plus
précise, de déterminer le champ de température formé sous l'influence
des charges variant dans le temps, de prendre en considération l'influence
du champ de température, par exemple, sur la vitesse de propagation
des ondes élastiques. Enfin, le couplage des champs nous conduit au phé-
nomène connu de la dissipation thermoélastique dans un corps élastique.

Le couplage des champs de température et de déformation a été postulé
par J. Duhamel [1]: l'équation élaigie de la conductibilité thermique
a été introduite par W. Voigt [2] et H. Jeffreys [3]. On trouvera un exposé
général et détaillé concernant cette équation dans les travaux de M. A. Biot
[4], K. Zoller [5] et P. Chadwick [6] ; un exposé sur l'unicité des solutions
peut être trouvé dans le travail de J. H. Weiner [7].

L'équation linéarisée de la conductibilité thermique (en admettant
toutefois que l'accroissement de la température par rapport à l'état naturel
du corps soit petit) est la suivante

1 . Q
(1) V*TTè

L'expression T = T\ — To, Tx désigne ici la température absolue, l'état
T = 0 étant défini comme état initial où les contraintes, aussi bien que
les déformations dans le corps, n'existent pas. Ensuite x = I/QC, OÙ 1 désigne



COUPLAGE DU CHAMP DE TEMPÉRATURE ET DE DÉFORMATION 5

le coefficient de la conductibilité thermique, c — la chaleur spécifique
W

et g — la densité. Dans l'expression (1) nous avons: Q = — , où W dé-
QC

signe la quantité de chaleur, formée dans un élément-unité de volume,

pendant une unité de temps. Nous avons, en outre, rj = —s— où
A

y = (3Ä + 2/ï) at = Kat, K désigne ici le module de compressibilité, tandis
que at —le coefficient de dilatation thermique. Et, pour terminer, ej* désigne

/ d
la dilatation, T = dtT, sa = àt en dt étant égal au •

Nous allons maintenant associer aux équations (1) les équations de
déplacement de la théorie d'élasticité

(2) n ut,u + (2. + /î) uic,ki + Ft—yTj — Qüt.

Ainsi, le système d'équations de thermoélasticité se trouve au complet.
Dans les équations (2) u désigne le vecteur de déplacement, F—celui de for-
ces massiques, À, pt, — les constantes de Lamé, constantes isothermiques.

Les équations (1) et (2) ont été construites en se basant sur la thermo-
dynamique des processus irréversibles [4], [6]. On admet le processus
élastique comme étant réversible, tandis que le processus thermique ne
l'est pas.

Nous écrirons maintenant les équations (1) et (2) sous une forme vecto-
rielle, à savoir:

(3) V2T f— i ? d i v ü = — — .

(4) fxV2u + (À + fi) grad div u + F — y grad T = QÜ.

En décomposant les vecteurs de déplacement et de la force massique en
deux parties: potentielle et rotative

u = grod tp + rot 4",

F = Q (grad ê + rot x) •

et en introduisant (5) dans (3) et (4) nous obtenons — après avoir éliminé
la température — le système d'équations que voici :

(6)

1 " _L
c\ c\
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Dans les équations ci-dessus c\ = , ef = —, où c\ représente

la vitesse de propagation d'une onde élastique longitudinale et c2 — celle
d'une onde transversale.

La température est liée à la fonction y par la relation suivante:

(8)
m

On voit, d'après les équations (6) et (7) que pour x = 0 on n'obtient
dans l'espace thermoélastique illimité que des ondes longitudinales.

Par contre, si les sources de chaleur n'existent pas Q = 0 et si # = 0,
on aura dans l'espace thermoélastique illimité des ondes transversales
seulement, ce qui ne donne pas lieu au couplage du champ de température
avec celui de déformation.

Dans un corps élastique limité on aura des ondes longitudinales, ainsi
que des ondes transversales.

Dans le cas, où les changements de température et des forces massi-
ques procèdent, dans le temps, à une allure ralentie, nous pouvons négli-
ger les termes inertiaux dans les équations (4) et considérer le problème
comme quasi statique.

Pour le cas d'un corps illimité, posant que «« = </>,« les équations (3) et (4)
peuvent être réduites au système de deux équations:

(9) V2r-|f f

(10) V2 cp = mT.

Éliminant la fonction cp des équations ci-dessus, nous obtenons

(11) V2T f~— —, — = — + i , e = wn.

L'équation de conductibilité thermique revêt ici la même forme [8] que
pour le problème non couplé.

Remarquons que, pour un problème stationnaire, l'équation (1) de-
vient une équation de type Poisson; les champs de température et de dé-
formation ne sont pas couplés.

On n'a résolu jusqu'ici qu'un nombre tout à fait restreint de problèmes,
aussi bien plans que spatiaux. Ceci est dû aux grandes difficultés d'ordre
mathématique du problème.
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C'est ainsi que H. Deresiewicz [9] et ensuite P. Chadwick et I. N. Sned-
•don [10] ont considéré le problème de propagation des ondes harmoni-
ques dans l'espace thermoélastique illimité.

Le problème de propagation des contraintes thermiques dans les bar-
res métalliques dues, soit à l'excitation thermique, soit à l'excitation mécani-
que, a été considéré par I.N. Sneddon [11]. Il a donné aussi une solution
approximative basée sur la méthode des perturbations. J. Ignaczak [12]
a indiqué une autre méthode d'obtenir la solution pour une barre semi-
-infinie, méthode expédiente dans le cas de conditions homogènes aux
limites, les conditions initiales étant admises comme hétérogènes.

Le problème de la propagation des ondes de surface de Rayleigh dans
un milieu thermoélastique, le libre échange thermique étant admis dans
le plan limitant le demi-espace élastique, a été l'objet d' une étude de
E. J. Lockett [13]; le problème de la propagation des ondes thermoélasti-
ques harmoniques dans une couche élastique a été considéré par W. No-
wacki et M. Sokołowski [14].

Les ondes harmoniques longitudinales se propageant dans les cylindres
pleins et vides — en tenant compte des effets thermoélastiques — ont été
étudiées dans le travail de E. J. Lockett [15]. J. Ignaczak et W. Nowacki
[16], [17] ont étudié les oscillations forcées périodiques des cylindres aux
profils rectangulaires dues à leur échauffement, ainsi que le problème
des oscillations forcées de plaques d'épaisseur moyenne.

L'action des sources de chaleur dans l'espace thermoélastique illimité
fut l'objet de plusieurs ouvrages. C'est ainsi que Zorski [18] considérait
le problème de l'action d'une source momentanée et concentrée de chaleur,
appliquant à ce problème, caractérisé par la symétrie sphérique, la trans-
formation de Laplace.

G. Eason et I. N. Sneddon [19], ainsi que F. J. Lockett et I. N. Sned-
•don [20] ont donné une solution du problème de la propagation des con-
traintes, en admettant une distribution arbitraire des sources de chaleur,
aussi bien dans l'espace que dans le temps. Ils ont eu recours à la techni-
que Fourier, en appliquant la transformation quadruple exponentielle.

W. Nowacki [21] a proposé quelques solutions en forme fermée pour
les sources de chaleur variant dans le temps d'une façon harmonique.

Une ample littérature a été consacrée au problème de la propagation
•des contraintes dans le demi-espace thermoélastique, échauffé à la sur-
face ou bien excité aux oscillations par des forces mécaniques.

C'est ainsi que le problème de réchauffement inégal de la surface li-
mitant le demi-espace thermoélastique, en tenant compte de la technique
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de transformation exponentielle de Fourier, a été étudié dans le travail
mentionné de G. Eason et I. N. Sneddon [19] *.

Le problème de Lamb, élargi sur le demi-espace thermoélastique,,
caractérisé aussi bien par la symétrie axiale que plane, a été l'objet d'un
travail de W. Nowacki [21]. Ajoutons que les résultats d'ordre général
n'ont, dans une certaine mesure qu'un caractère formel. Il a été impos-
sible, même dans les cas les plus simples, d'obtenir des résultats sous forme
fermée à l'aide fonctions connues; les résultats ont été présentés, pour
la plupart, sous forme d'intégrales impropi-es.

Notons aussi quelques travaux concernant la solution approximative
du problème du demi-espace thermoélastique: M. Lessen [23] et R. Het-
narski [24], ainsi que R. Muki et S. Breuer [25], ont donné une solution
du problème de V. I. Danilovskaya [26] pour de petites valeurs du temps t,
élargi sur le milieu thermoélastique. Une solution intéressante a été don-
née par G. Paria [27]. Elle concerne les cas de réchauffement du plan
limitant le demi-espace élastique à la température 6(r,6) H{t) où H(f).
désigne la fonction de Heaviside. La solution de Paria est valable pour
le problème caractérisé par la symétrie axiale, pour de petites valeurs,
du temps t.

G. A. Nariboli [28] a présenté une solution analogue, valable pour les
valeurs petites du temps t et concernant le cas de l'espace tliermoélastique
avec un vide. Le bord du vide est échauffé à la température To H(t).

Le problème caractérisé par la symétrie axiale, en rapport à la con-
centration des contraintes, dues au flux plan de chaleur (le flux varie
dans le temps d'une façon harmonique) autour d'un vide cylindrique
ou sphérique, a été considéré dans le travail de J. Ignaczak et W. No-
wacki [29].

Comme on le voit — et notre revue de littérature le prouve — on n'a
résolu jusqu'ici que les problèmes le plus simples. Les solutions sous forme
fermée ont été obtenues seulement pour quelques cas particuliers, uni-
dimensionnels, en admettant que la température ou les forces, varient
dans le temps d'une façon harmonique.

Il nous semble que les recherches futures seront dirigées, avant tout,
vers les solutions de problèmes où les changements des charges et de tem-
pérature dans le temps seront traités comme arbitraires. Vu la complexité

* Cette solution comporte deux parties, à savoir : l'intégrale singulière et la solution
générale choisies de façon à satisfaire toutes les conditions aux limites sur le bord dm
demi-espace. L'intégrale singulière se rapporte au milieu thermoélastique (E # 0). Lit
solution complète peut être trouvée dans le travail de W. Nowacki [22J.
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mathématique du problème, on doit s'attendre plutôt à des solutions ap-
proximatives.

Étant donné que le couplage thennoélastique n'influence que faible-
ment le changement des contraintes, on peut appliquer, avec résultat,
la méthode des perturbations. Cette méthode s'avère particulièrement
efficace pour les problèmes quasi statiques.

Le groupe des problèmes qui s'imposent ensuite, c'est l'élaboration
des méthodes générales d'intégration du système d'équations différen-
tielles (3), (4), de transformation dudit système dans un système d'équa-
tions intégrales, de donner des solutions de ces équations sous forme
intégrale, similaire à la présentation intégrale de Kirchhoff et Poisson
pour le problème élastique [30]. Ajoutons que c'est M. Rosenblatt qui,
déjà en 1910 [31], a fait les premiers pas dans cette direction, bien que
les conditions aux limites admises aient borné la portée de ses recherches.

On peut présumer que les recherches futures porteront aussi sur les
problèmes concernant les corps thermoélastiques anisotropes et thermo-
-visco-élastiques.

Contraintes thermiques dans les corps anisotropes

Si la théorie des contraintes thermiques dans les corps homogènes-
possède une ample et riche littérature scientifique, le problème des con-
traintes thermiques dans les corps anisotropes n'inspire pas d'intérêt
semblable et les considérations qui le concernent sont plutôt rares. Ceci
est dû non seulement au fait qu'il comporte des problèmes d'ordre mathé-
matique beaucoup plus compliqués, mais aussi au fait que l'application
pratique du problème est jusqu'à nos jours beaucoup plus restreinte..
Cependant, on a affaire maintenant, de plus en plus fréquemment, aux
matériaux de structure macroscopique et anisotrope (p. ex., plaques,,
disques, coques, tubes aux parois fortes) accusant différentes propriétés
élastiques et thermiques selon les directions considérées.

Nous donnons ci-dessous un aperçu des problèmes déjà résolus, ainsi
que les relations générales, en indiquant les travaux où les problèmes
particuliers sont traités d'une façon plus détaillée. Dans un corps, ac-
cusant l'anisotropie générale rectiligne, l'équation de la conductibilité
thermique (en négligeant le couplage du champ de déformation et du
champ de température) peut être écrite comme suit [32]

(1) h)T,ij — Qct = — W, U =1,2,3,

où hj = kt désignent les coefficients de la conductibilité thermique.
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Les relations entre les composantes de l'état de déformation, de con-
trainte et de température, ainsi que la loi Hooke-Duhamel généralisée,
sont données par les formules

(2) ey = atjici a kl + ciy T, i,j, k, l = 1, 2, 3,

le nombre de 81 coefficients (elastic compliance constants) étant réduit — vu
les propriétés de symétrie

(3) ayici = aim = anki

au nombre de 36. Cependant, lesdits coefficients ne déterminent pas d'une
façon directe les constantes du matériel, leur valeurs variant avec les chan-
gements de direction de l'axe des coordonnées. C'est seulement après
avoir appliqué la théorie des invariants à la transformation des formes
linéaires sus-dites et en postulant l'existence d'une fonction homogène
quadruple de l'énergie élastique qu'on peut réduire le nombre de coef-
ficients aijki encore de 15, pour obtenir, pour un corps accusant l'aniso-
tropie la plus générale (structure triclinique), 21 coefficients indépendants.
Les grandeurs ay apparaissant dans (2)—appelées les coefficients de dila-
tation thermique linéaire — forment un tenseur symétrique ety = m [33].

Grâce à la symétrie, nous obtenons des structures de plus en plus
simples. C'est ainsi que, pour la structure monoclinique, nous avons 13 con-
stantes élastiques, mutuellement indépendantes, pour la structure ortho-
rombique — 9, hexagonale — 5, cubique —• 3 et, enfin, pour la structure
isotropique — 2 coefficients.

En résolvant (2) par rapport à cry, nous obtenons

(4) ffy = Aw EU + ßv T, i, j,k,l=\, 2, 3,

où

ßn — ßii-

On appelle les valeurs Atjti des constantes rigiditées.

En introduisant la formule (4) dans les équations du mouvement

(5) Oij,j = Qui,

et en exprimant les déformations par les déplacements en tenant compte
des relations

(6) ey = — («u + Wf.t)
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après avoir rangé les équations par rapport à ut, nous obtenons les équa-
tions de déplacement suivantes:

(7) -zAiya (iik,l + Ul,k),]+ ßljTj — qui

ou bien

(7') Lv(u}) + ßvTt} = 0

où Ltj désignet certains opérateurs linéaires différentiels de second genre
des variables du temps et de l'espace. La solution des équations (7) peut
être composée de deux solutions partielles, à savoir: la solution u% sa-
tisfaisant au système d'équations non homogènes (7') et la solution MJ
satisfaisant au système d'équations

(8) . LW(H,) = 0 ,

ûi étant exprimée à l'aide de trois fonctions %i (i = 1, 2, 3). Les fonctions %%
satisferont, bien entendu, aux équations homogènes

(9) \Ly\Xi = 0,

Il est permis de considérer les fonctions %i comme fonctions de Galer-
kin, pour un corps anisotrope, étendues sur les problèmes dynamiques [34].

Du point de vue formel, on peut obtenir une solution du système d'équa-
tions (1) et (7) en appliquant la transformation intégrale quadruple de
Fourier. Cependant, les tentatives en vue d'obtenir, par cette méthode, une
solution servant à calculer un problème tridimensionnel quelconque, aussi
bien pour un corps accusant l'anisotropie générale que l'anisotropie ortho-
gonale (orthotropie) ont échoué [35] jusqu'ici.

Le théorème de Betti peut être sans peine étendu au cas d'un corps
anisotrope.

(10) ( Ft oui dV+ J fi du'f dr+ J Tati ôa'tl dV =
v r v

= J OF; IH dV + f ôp't ut dF + J ÔT' atj cy dV.
v r v

On peut démontrer également que le changement de volume d'un
corps libre de charges sur la surface peut être présenté sous la forme sui-
vante [36]

AV=(Tak!cdV.
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Les équations de déplacement, pour un milieu d'une orthotropie cur-
viligne arbitraire, ont été établies et discutées dans le travail de J. No-
wiński, W. Olszak et W. Urbanowski, [37]. Trois exemples ont été résolus,
dont le premier concerne un cylindre à parois fortes, échauffées d'une
manière inégale, accusant une orthotropie cylindrique; le second — un
problème analogue pour un disque, le troisième enfin — concerne le cas
d'une coque sphérique d'orthotropie sphérique chauffée d'une manière
inégale.

W. Olszak [38] a formulé des remarques intéressantes concernant l'état
libre de contraintes dans les corps anisotropes soumis à un échauf-
fement. Il a démontré que pour les corps susceptibles d' une déformation,
libre et accusant l'anisotropie rectiligne, seule une répartition linéaire
de température ne provoque pas de contraintes. Cependant, pour les
corps à anisotropie curviligne, les équations de compatibilité des dé-
formations impliquent des restrictions beaucoup plus grandes que celles
pour les corps à anisotropie rectiligne. C'est ainsi, p. ex., que pour les
milieux à orthotropie cylindrique, seulement la répartition constante
de température ne provoque pas de contraintes; pour les corps à ortho-
tropie sphérique, tout champ de température différent de zéro provoque
un état de contrainte.

Parmi les problèmes tridimensionnaux, c'est le problème des con-
traintes thermiques stationnaires et quasi statiques dans un corps à aniso-
tropie transversale qui a été le mieux étudié, B. Sharma [39] p.ex., exa-
mine les contraintes thermiques dues à réchauffement d'un plan limitant
le demi-espace élastique; il est arrivé à la solution du problème en intro-
duisant deux fonctions de contraintes satisfaisant à l'équation différentielle
du second degré. Z. Mossakowska et W. Nowacki [40] ont élaboré une
méthode différente en introduisant trois fonctions de déplacement. Ces
fonctions étendent la fonction de Galerkin sur le problème thermoélasti-
que dans les corps anisotropes. Ont été résolus et présentés, sous forme
fermée, les problèmes de contraintes thermiques dues à l'action des sources-
de chaleur dans un espace illimité et dans un demi-espace élastique en
tenant compte de différentes conditions aux limites statiques, aussi bien
que thermiques. Une solution analogue a été donnée pour le cas de l'action
d'un noyau de la déformation thermoélastique. Le problème de réchauf-
fement stationnaire d'un demi-espace et d'une couche élastiques a été
considéré dans le même travail. Les auteurs ont démontré que les con-
traintes à vecteur normal, au plan limitant un demi-espace, ne disparais-
sent pas — comme cela a lieu dans le problème de E. Sternberg et E. L. Mac
Dowell [411 — mais tendent vers zéro à mesure que l'isotropie transver-
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sale passe à l'isotropie. Les auteurs ont encore donné la solution de quel-
ques problèmes quasi statiques concernant l'action d'une source instan-
tanée de chaleur dans un espace et un demi-espace élastique. A. Singh [42]
a réussi à obtenir les solutions de quelques problèmes de contraintes ther-
miques caractérisées par la symétrie axiale dans le demi-espace à isotropie
transversale en faisant usage de deux fonctions de déplacement. Les pro-
blèmes bidimensionnels ont reçu une considération assez ample. C'est
ainsi que W. W. Pell [43] a analysé le problème de fléchissement et de
pression simultanés d'une planche anisotrope, dus au champ stationnaire
de température, variant d'une façon linéaire le long de l'épaisseur de la
plaque ; l'auteur a consacré une analyse plus détaillée à la plaque circulaire.

J. Mossakowski [44], en faisant usage de la méthode de la fonction
variable complexe, a obtenu des solutions de problèmes concernant l'action
des sources de chaleur dans une plaque semi infinie à anisotropie isogone.
L'introduction de la fonction des contraintes, analogique à celle d'Airy
pour les plaques isotropes [45], est avérée une méthode expédiente pour
résoudre les problèmes traités. Les méthodes de solution du problème
des plaques orthotropes en appliquant les fonctions du type de celle d'Airy
et de Marguerre ont été élaborées par P. P. Teodorescu [46]. On peut,
d'ailleurs, tenir compte de l'analogie de la plaque élaborée par Dubas et
Tremmel [47], [48], pour les problèmes d'un disque orthotrope.

Deux problèmes dynamiques ont été résolus jusqu'ici, à savoir: le pro-
blème de déterminer les contraintes dans un demi-espace anisotrope pour
le cas où dans un plan parallèle au bord x3 = 0 une source plane non
stationnaire de chaleur [49], [50] est placée. Le champ de température,
les composantes de l'état de contrainte et de déplacement ne dépendent
que des variables x3 et t.

Contraintes thermiques dans les corps hétérogènes isotropes

La théorie d'élasticité des corps hétérogènes isotropes constitue un
domaine de la théorie générale de l'élasticité actuellement en plein essor. Le
terme «hétérogénéité du matériel» est employé ici au sens de hétérogénéité
macroscopique. Les grandeurs mécaniques, les modules d'élasticité E, G, le
coefficient /u do Poisson et la densité Q sont des fonctions de l'emplace-
ment. Elles varient d'une façon continue; dans le cas particulier d'une varia-
tion discontinue nous nous trouvons en présence d'un milieu stratifié.

Les premiers ouvrages concernant le milieu non homogène traitaient
de la propagation des ondes élastiques dans les problèmes de séismologie
[51]—[56] (La densité et les propriétés mécaniques de la croûte terrestre
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varient avec sa profondeur). Les problèmes statiques d'élasticité d'un
milieu non homogène ont attiré l'attention de nombreux auteurs [57], [58];
le Symposium d'IUTAM à Varsovie en 1958 a été destiné à l'étude de ces
problèmes [59].

Nous allons considérer un corps non homogène où les propriétés
mécaniques et thermiques sont, toutes les deux, fonctions de l'emplace-
ment, étant indépendantes du temps et de la température; la variation
de ces valeurs provient des procès technologiques au cours de la production
(béton, barres en acier, etc.). Les relations entre les contraintes et les dé-
formations peuvent être présentées sous la forme suivante:

(1) ffij = 2/nsij + (Àejcjc — yT) <5y,

où les symboles /j,,2.,y = (32+2,w) at désignent les fonctions de l'emplace-
ment, c'est à dire elles dépendent des coordonnées x. En introduisant (1)
dans les équations de mouvement

(2) 0ij,j + Fi = QUI,

et en exprimant les déformations par les déplacements, nous arrivons
aux équations de déplacement suivantes :

(3) /Mi, letc + P + 2/z) Uk, k], i— fiUh, kl — 2/1, i Uk, k +

H- (%,fc + Uk,i)H,k + Fi — (yT),i = Qui, i= 1, 2, 3.

Nous pouvons écrire ces équations dans la notation vectorielle à savoir:

(4) fxV2 u — n grad div u — 2 grad div u + 2 (grad fx • y) +

+ grad [{X + 2/i) div u] + Ft — grad (yT) = QÜ ,

où ę désigne le tenseur de déformation. L'équation de la conductibilité
thermique prendra la forme

(5) (Xr,k\*-cQt = -W

où I désigne le coefficient de la conductibilité thermique.
Les équations de déplacement (3), ainsi que l'équation de la conducti-

bilité thermique (5) sont des équations linéaires aux coefficients variables.
C'est l'équation (5) qui est responsable des difficultés mathématiques,
parce qu'il n'est possible d'obtenir des solutions en fonction connue que
dans des cas très peu nombreux. On doit donc attendre que les recherches
sur les corps non homogènes aboutiront à des solutions approximatives,
basées sur les méthodes variationnelles et orthogonales. Il va de soi, que
les principes généraux établis par d'Alembert, Hamilton et Castigliano
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resteront vrais pour les corps non homogènes, les valeurs n, X, at, X étant
considérées comme variables. Analogiquement, le théorème de réciprocité
de E. Betti pour les déplacements restera vrai dans ce cas, ainsi que toutes
les conséquences qui en découlent. P. ex.:

(6) / ey dV = ôi) f at TdV, f akk dV=0.
v v y

Au cours des dernières années, en raison de l'emploi de plus en plus
fréquent d'éléments de construction exposés à des températures hautes,,
nous assistons au développement d'un nouveau courant de recherches,
tenant compte de l'effet de la température sur les propriétés mécaniques et
thermiques du corps. Le corps devient non homogène sous l'influence
du champ de température; donc, ces propriétés dépendent de l'emplace-
ment du corps. Dans ce cas, au lieu des relations (5) nous écrirons

= 2,uey+ AeM— (3X + 2pt)j
L o

(7) o-y = 2,uey+ AeM— (3X + 2pt)j at (rj) drj\ ôtj, 1,7= 1,2,3.
L o J

Les valeurs X, [x, at dépendent de la température, c'est-à-dire

ß=fi[T(xi)]) X = X[T(xt)].

En introduisant les déformations dans les équations d'équilibre, pour
le cas du problème stationnaire, nous arrivons au système d'équations (3}
où les termes d'inertion sont négligés. En plus, nous avons

et

J
b

L'équation de la conductibilité thermique est non linéaire

(8) [X'(T)T,k],jc = -W.

Si nous introduisons la fonction auxiliaire
T

(8 ') G (T) = jr fx' (T) dx = G [T (*«)]
o

nous pouvons réduire l'équation (8) à la forme

(8 ") V2 G (xr) = TrW(xr), X'o = const.
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En résolvant cette équation, nous obtenons le champ de température
sous forme implicite (8').

Dans le cas considéré, la difficulté consiste à résoudre l'équation (8)
•de conductibilité thermique. En connaissant le champ de température
et la dépendance des coefficients de la température, ainsi que de l'emplace-
ment, nous pouvons résoudre les équations de déplacement qui consti-
tuent les équations linéaires différentielles partielles avec les coefficients
variables. Pour faire face aux difficultés et résoudre ces équations, il est
indispensable d'introduire quelques simplifications. Nous pouvons ad-
mettre, p. ex., que le coefficient de Poisson est constant; nous pouvons

1
aussi poser v = — que le corps est incompressible. Une autre simpli-

2 T

fication peut être admise pour la dilatation thermique eO = j at (??) dr] :
une valeur moyenne e° = a* T. °

Jusqu'ici on n'a résolu qu'un nombre minime de problèmes [60], [66].
Ces solutions concernent principalement l'état de déformation dans un
disque circulaire, un cylindre vide et une sphère vide. En posant l'indé-
pendance v de température et la valeur moyenne de l'expansion thermi-
que, nous avons les équations de déplacement suivantes [65]:

a. pour l'état plan de déformation et pour un champ de température
caractérisés par la symétrie axiale

f \dur ur 1) 1— v dE

(9) dr[E[— + -—(!+„) «;r|[ =—r -ur, r
b. pour l'état plan de contrainte

(10)
diir u,- l—v ~\) l—2vur dE
— + — — a*tT \\ = — ,
or r 1 + v J) 1 — v r or

c. pour le problème caractérisé par la symétrie sphérique

2(1— 2v) uR dE

1—r ~R~dR'

On peut en déduire que si l'on admet que v = —, on arrive à une

simplification importante, étant donné qu'alors les parties droites des
équations (10) et (11) disparaissent. Par conséquent, la solution de ces
équations se trouve simplifiée de beaucoup.

J. Nowiński [61] examine les contraintes thermiques dans un cylindre
.à parois fortes en posant E(T) = Eo e~ßT ou bien E(r) = EQ ur. S. A. Śeste-
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rikov [64] partant des les mêmes prémisses, étudie les contraintes thermi-
ques dans un disque. J. Nowinski dans un autre travail [66] étudie l'état

de contrainte dans une sphère pleine et dans une autre vide, où v = —,
T 2

et e° = / at (r)) drj ; il a obtenu une solution sous une forme fermée.
0 1

R. Trostel [62] dans les travaux cités ci-dessus en posant v — —

a réussi à donner une solution exacte de l'équation (10). Dans un second
ouvrage [63], il développe une méthode de perturbation pour résoudre
les équations de déplacement, en posant que le module E varie lentement
avec T

\ dE

e désigne ici le petit paramètre. Ayant recours à la méthode de pertur-
bation, R. Trostel a résolu le problème de contraintes thermiques dans un

tube à parois fortes où v = const ^ —- et 1 (T), at (T) sont des fonctions liné-
aires de température. M. Sokołowski [65] étudia les contraintes thermiques
dans un cylindre infini et dans une sphère, dues à réchauffement de la surface
extérieure et à l'effet des sources de chaleur, en posant v = const et ad-
mettant que les dérivées de E sont si petites par rapport au rayon qu'il
est permis de négliger les parties droites des équations [9]—[11]. Le point
essentiel est de considérer la variabilité du coefficient de conductibilité 1(7*)
et de formuler les principes selon lequels les contraintes thermiques aug-
mentent (dépendant du genre de la variabilité de I (T) et de la direction
du flux de chaleur), resp. diminuent.

Il ne se présente aucune difficulté d'étendre les principes d'AIembert
et d'Hamilton sur les corps où la non-homogénéité est le résultat de la
température élevée. Cependant il faut tenir compte du fait que les va-
leurs fj,, X dépendent de la température.

J. Nowiński [67] a généralisé le théorème réciproque de Betti-Rayleigh sur
le cas des corps élastiques dont les propriétés dépendent de la température.

Afin d'appliquer ce théorème aux problèmes thermo-élastiques aux
propriétés dépendant de la température, il y a lieu de résoudre auparavant
un problème élastique connexe pour un corps non homogène «de par
sa nature même». Le théorème réciproque de Betti a la forme

T

(12) JF'tutdV+ fp'tutdr= fA'(dVJat(r)dr+ fFtu'tdV+ fptu',dr,
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où les déplacements sont dus à l'effet des forces p\, FÎ dans un corps non
homcgîne (T = 0), tandis que les déplacements ut sont dus à l'effet des
forces pi, Fi et du champ de température dans ce même corps non homo-
gène; A\ désignent la somme des contraintes normales provoquées par
les forces p\, Ff. Le déplacement thermoélastique, p.ex., dans un corps Test
donné par la formule générale

T

(13) Ui (xr) = f A'dVJ at (rj) drj
v o

où la somme des contraintes A'(xr, £r) doit être trouvée dans la solution
du problème classique pour le corps non homogène, exposé à l'action
des forces concentrées uniformes au point (£r) de V le long de l'axe xt.

On a, en particulier,
T

(14) J Bi,dV=ôt}JdV fat(rj)dn,

V V 0

pour un corps libre de traction. Donc,

T

(15) AV = f e
y

et
(16)

analogiquement comme pour un corps homogène.

Contraintes thermiques dans les corps physiquement non linéaires

Nombre de matériaux de construction n'obéissent pas à la loi de varia-
tion linéaire entre les composantes de l'état de déformation et celui de con-
trainte (la loi Hooke), même dans la région de petites déformations et
dans la région élastique. La non linéarité du type mentionné — due à la
structure physique du matériel — est appelée la non-linéarité physique.

Il résulte de l'essence même des relations entre les contraintes et les
déformations que ces dernières n'augmentent pas proportionellement
aux changments des charges. Donc, le principe de superposition des
effets de charges ne s'applique pas. Cependant l'action des forces est sou-
mise au principe de succession d'actions ce qui d'ailleurs ne change pas,
en général, l'eifet final de l'action du système de forces — la loi de l'inter-
ëhaiïgsabilité des forces est ici en vigueur.
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On a proposé déjà quelques variantes de la théorie non linéaire physi-
que d'élasticité [68]—[71]. Les problèmes des contraintes thermiques,
stationnaires du point de vue de la théorie non linéaire physique d'élasti-
cité, ont été considérés pour la première fois dans le travail de F. Jindra
[72], se basant sur la théorie de H. Kauderer [70].

Conformément à cette théorie les relations entre l'état de contrainte
et celui de déformation peuvent être présentées sous la forme suivante:

(1) %

(2) akk = 3Kx (eu) 0 » — 3at T).

Les symboles si) et ey désignent ici, respectivement, les déviateuis
de l'état de contrainte et de celui de déformation, tandis que y (ipl) et H (skk)
sont des fonctions de l'extension et de la compression, compte tenu de

(3) lim K (BU) = 1, lim y (^) = 1

d'où suit que pour ekk -»• 0 et ipl -> 0 les relations (1) et (2) tendent à se
conformer à la loi Hooke, donnée par les formules

(4) % = IQeij, akk = 3K (ekk — 3>at T),

où G, K désignent, respectivement, le module du glissement simple et le
module de compressibillité de la théorie linéaire.

En résolvant les équations (1) et (2) par rapport aux déformations
nous obtenons:

g(tl) \\k(s0) 1

(5) e« = ^ff« + \ [ l F ~ 2 ^ r T
o u g — g'Oo)) k = k (s0) désignent les fonctions des variables s0 = — ,

f0 = —ü)-et les valeurs c0, r0 sont les invariantes de la forme
Ûr

1 2(1
= — Okk, 4 = J \y [Ol 1 — ffo)2 + (»22 — Ol))2 + (tf33 —

L'application des relations (5Ï présente des avantages particulièrement
expédients si on réussi à présenter les fonctions k(so) et g(t0) sous la forme
de séries entières
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Les coefficients dans les séries ci-dessus désignent les constantes du
matériel. Dans les nombreux cas résolus jusqu'ici (la torsion d'une barre,
l'état plan de contrainte dans les disques) H. Kauderer et ses collabora-
teurs, basant sur les résultats obtenus dans les expériences effectuées au
laboratoire, proposent •— comme première approximation — d'accepter
les relations suivantes:

(7) k(so)=l, g(Ą) = l+g2tl

Ces relations indiquent que l'effet de la non linéarité physique est
bsaucoup plus grande sur les glissements simples que sur les change-
ments d; volume du corps.

F. Jindra, dans le travail que nous venons de citer, a considéré deux
problèmes unidimensionnels, à savoir: il a réussi à déterminer les par-
cours di contraintes dans une balle vide et dans un disque annulaire de
faible épaisseur F. Jindra a posé un flux stationnaire de chaleur, déterminé
à l'aide de l'équation de conductibilité thermique, aux coefficients cons-
tants.

Dans les deux cas, grâce à l'élimination du déplacement, on obtient
les équations linéaires pour les contraintes radiales. En faisant profit
de la relation (7) et en appliquant la méthode des perturbations, l'auteur
arrive à déterminer la distribution des contraintes radiales. Les calculs
des exemples cités (pour le cuivre pur) démontrent qu'on obtient —
par rapport à la théorie linéaire — des changements importants, parti-
culièrement pour le bord intérieur d'une balle vide et des anneaux.

La complexité des équations non linéaires aussi bien pour les déplace-
ments que pour les contraintes, ne permet pas d'espérer qu'on obtiendra
d^s solutions exactes. En ce qui concerne les solutions des problèmes
physiques non linéaires, les méthodes approximatives peuvent s'avérer
très efficaces, notamment la méthode de Galerkin et la méthode des per-
turbations.
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