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WITOLD NOWACKI

NOUVEAUX COURANTS DANS LES RECHERCHES PORTANT
SUR LA THERMOELASTICITE

Introduction

a

Depuis ces des derniéres années nous assistons 4 un développement
imposant de la thermoélasticité. Ceci est di, en premier lieu, aux demandes
pressantes présentées a la science par la technique aéronautique qui a pris
un essor remarquable. Le développement de la science de la thérmoélasti-
cité est aussi stimulé par le progrés réalisé dans le domaine de la cons-
truction de machines de tout genre, ainsi que dans le domaine de la techno-
logie chimique et surtout dans celui de la technologie nucléaire.

Pendant la premiére décade aprés la deuxiéme guerre mondiale C’est
surtout la théorie classique des contraintes thermiques qui a été dévelop-
pée par rapport aux parcours thermiques non stationnaires.

La théorie des contraintes thermiques se base sur les principes de la théorie
classique de I'élasticité, ainsi que sur la présomption que les constantes du
matériel ne varient pas et qu'elles sont indépendantes de la température.
Ces présomptions retrécissent, bien entendu, 'applicabilité de solutions
a certains intervalles de températures déterminées.

Cependant, au cours des derniéres années, le probléme du couplage
du champ de température et de celui de déformation a pris de plus en plus
d’importance, ainsi que le probléme des contraintes thermiques dans les
corpsanisotropes et hétérogénes.

Le premier probléme mentionné présente un vif intérét du point de
vue des connaissances scientifiques. Par contre, le probléme des contraintes
thermiques dans les corps anisotropes prend actuellement un sens pratique
par suite de 1'application, de plus en plus répandue, des matériaux & struc-
ture anisotrope macroscopique pour la construction des machines et des
appareils aéronautiques.

De méme nous pouvons constater un développement remarquable
des recherches portant sur les contraintes thermiques stationnaires aux
températures élevées. C’est notamment la température élevée qui est res-



4 WITOLD NOWACKI

ponsable de I'hétérogénéité du matériel. Les coefficients du matériel de-
viennent des fonctions de température et, par cela méme, le flux étant
stationnaire, des fonctions d’emplacement.

Dans le rapport que voici, nous laissons de coté les problémes des
contraintes thermiques dans les corps géométriquement non linéaires.
Nous nous proposons de passer en revue les résultats obtenus dans quel-
ques domaines mentionnés et, si possible, de souligner les tendances des
recherches qui se frayent le chemin d’une maniére digne d'intérét.

Couplage du champ de température et du champ de déformation

Dans un solide, le champ de température est lié au champ de défor-
mation. Le changement de la quantité de chaleur dans un élément du
volume provoque un état de déformation et de contrainte. Inversement,
la charge d'un corps — c’est-a-dire le champ de déformation d aux fac-
teurs mécaniques — provoque la formation d’un champ de température
dans le corps. Une partie de ’énergie mécanique, due & la déformation
du corps, se transforme en énergie thermique,

Le couplage du champ de température avec celui de déformation
nous permet de traiter les problémes élastocinétiques d’une fagon plus
précise, de déterminer le champ de température formé sous I'influence
des charges variant dans le temps, de prendre en considération I'influence
du champ de température, par exemple, sur la vitesse de propagation
des ondes élastiques. Enfin, le couplage des champs nous conduit au phé-
nomeéne connu de la dissipation thermoélastique dans un corps élastique.

Le couplage des champs de température et de déformation a été postulé
par J. Duhamel [1]: I’équation élaigie de la conductibilité thermique
a été introduite par W. Voigt [2] et H. Jeffreys [3]. On trouvera un exposé
général et détaillé concernant cette équation dans les travaux de M. A. Biot
[4], K. Zoller [5] et P. Chadwick [6]; un exposé sur I'unicité des solutions
peut étre trouvé dans le travail de J. H. Weiner [7].

L’équation linéarisée de la conductibilité thermique (en admettant
toutefois que I’accroissement de la température par rapport  1'état naturel
du corps soit petit) est la suivante

I - . Q
(1) V2T ——T—negpp =——.

e #
L'expression T = Ty — Ty, T désigne ici la température absolue, I'état
T =0 étant défini comme état initial ot les contraintes, aussi bien que
les déformations dans le corps, n'existent pas. Ensuite % = A/oc, ol 1 désigne
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le coefficient de la conductibilité thermique, ¢ —la chaleur spécifique
174
et p — la densité. Dans l'expression (1) nous avons: Q = -{;, ou W dé-

signe la quantité de chaleur, formée dans un élément-unité de volume,
; T

pendant une unité de temps. Nous avons, en outre, 7 = ?zo ol

y = (32 2u) ay= Kas, K désigne ici le module de compressibilité, tandis

que a; — le coefficient de dilatation thermique. Et, pour terminer, ;5 désigne

i . d
la dilatation, 7= 0, T, €xi = 0t exx: (0.; étant égal au 77y

Nous allons maintenant associer aux équations (1) les équations de
déplacement de la théorie d’élasticité

2) ot ek + (A p) up, i1 + Fi—y T4 = oliy.

Ainsi, le systéme d’équations de thermoélasticité se trouve au complet.
Dans les équations (2) u désigne le vecteur de déplacement, F—celui de for-
ces massiques, 4, 4 —les constantes de Lamé, constantes isothermiques.

Les équations (1) et (2) ont été construites en se basant sur la thermo-
dynamique des processus irréversibles [4], [6]. On admet le processus
élastique comme étant réversible, tandis que le processus thermique ne
I’est pas.

Nous écrirons maintenant les équations (1) et (2) sous une forme vecto-
rielle, & savoir:

2]"._1 i div ii =.__2
(3) %  T—ndivi =
©)] uV2u -+ (A + p) grad dive 4 F—y grad T = pii.

En décomposant les vecteurs de déplacement et de la force massique en
deux parties: potentielle et rotative
u = grod ¢ +rot ¢,

©) F = o(gradd - roty).

et en introduisant (5) dans (3) et (4) nous obtenons — aprés avoir éliminé
la température — le systéme d’équations que voici:

1 1 mQ 1
(6) (V3 —‘—;{)g) (VZ ‘—‘_cz_()f) -—Bar,vzfp = —7—‘——(V2——‘33)'§

*'-'1

P 1 =
@) qu.v——;q: —a% &e=m.
3 &
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. A+2
Dans les équations ci-dessus ¢j = = = (L

, oll ¢; représente

la vitesse de propagation d’une onde élastique longitudinale et ¢; — celle
d'une onde transversale.

La température est liée a la fonction ¢ par la relation suivante:

1 1 )
) T—E(VE—C—%&)Q"{—W.

On voit, d’aprés les équations (6) et (7) que pour ¥ =0 on n’obtient
dans 'espace thermoélastique illimité que des ondes longitudinales.

Par contre, si les sources de chaleur n’existent pas Q = 0 et si ¥ = 0,
on aura dans I'espace thermoélastique illimité des ondes transversales
seulement, ce qui ne donne pas lieu au couplage du champ de température
avec celui de déformation.

Dans un corps élastique limité on aura des ondes longitudinales, ainsi
que des ondes transversales.

Dans le cas, ol les changements de température et des forces massi-
ques procédent, dans le temps, & une allure ralentie, nous pouvons négli-
ger les termes inertiaux dans les équations (4) et considérer le probléme
comme quasi statique.

Pour le cas d’un corps illimité, posant que u; = ¢,; les équations (3) et (4)
peuvent étre réduites au systéme de deux équations:

) 1 . Q
© VD= Py Pigm— =,

b4

(10) V2p =mT.
Eliminant la fonction @ des équations ci-dessus, nous obtenons

1 0 1 el S
2 _—— = —— —_— —
(11) V2T ?ﬂ;T = ; ;¢+E’ e =nm.
L’équation de conductibilité thermique revét ici la méme forme [8] que
pour le probléme non couplé.

Remarquons que, pour un probléme stationnaire, ’équation (1) de-
vient une équation de type Poisson; les champs de température et de dé-
formation ne sont pas couplés.

On n’a résolu jusqu’ici qu'un nombre tout a fait restreint de problémes,

aussi bien plans que spatiaux. Ceci est dfi aux grandes difficultés d’ordre
mathématique du probléme.
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C’est ainsi que H. Deresiewicz [9] et ensuite P. Chadwick et I. N. Sned-
«don [10] ont considéré le probléeme de propagation des ondes harmoni-
ques dans l'espace thermoélastique illimité.

Le probléme de propagation des contraintes thermiques dans les bar-
res métalliques dues, soit & I’excitation thermique, soit & I’excitation mécani-
que, a été considéré par ILN. Sneddon [11]. 11 a donné aussi une solution
-approximative basée sur la méthode des perturbations. J. Ignaczak [12]
a indiqué une autre méthode d’obtenir la solution pour une barre semi-
-infinie, méthode expédiente dans le cas de conditions homogénes aux
limites, les conditions initiales étant admises comme hétérogenes.

Le probléme de la propagation des ondes de surface de Rayleigh dans
un milieu thermoélastique, le libre échange thermique étant admis dans
le plan limitant le demi-espace élastique, a été Iobjet d” une étude de
E. J. Lockett [13]; le probléme de la propagation des ondes thermoélasti-
-ques harmoniques dans une couche élastique a été considéré par W. No-
wacki et M. Sokotowski [14].

Les ondes harmoniques longitudinales se propageant dans les cylindres
pleins et vides — en tenant compte des effets thermoélastiques — ont été
étudiées dans le travail de E. J. Lockett [15]. J. Ignaczak et W. Nowacki
[16], [17] ont étudié les oscillations forcées périodiques des cylindres aux
profils rectangulaires dues A leur échauffement, ainsi que le probléme
des oscillations forcées de plaques d’épaisseur moyenne.

L’action des sources de chaleur dans Pespace thermoélastique illimité
fut I'objet de plusieurs ouvrages. C’est ainsi que Zorski [18] considérait
le probléme de ’action d’une source momentanée et concentrée de chaleur,
appliquant 4 ce probléme, caractérisé par la symétrie sphérique, la trans-
formation de Laplace.

G. Eason et I. N. Sneddon [19], ainsi que F. J. Lockett et I. N. Sned-
don [20] ont donné une solution du probléme de la propagation des con-
traintes, en admettant une distribution arbitraire des sources de chaleur,
-aussi bien dans I'espace que dans le temps. Ils ont eu recours & la techni-
que Fourier, en appliquant la transformation quadruple exponentielle.

W. Nowacki [21] a proposé quelques solutions en forme fermée pour
les sources de chaleur variant dans le temps d’une fagon harmonique.

Une ample littérature a été consacrée au probléme de la propagation
des contraintes dans le demi-espace thermoélastique, échauffé a la sur-
face ou bien excité aux oscillations par des forces mécaniques.

Clest ainsi que le probléeme de ’échauffement inégal de la surface li-
mitant le demi-espace thermoélastique, en tenant compte de la technique
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de transformation exponentielle de Fourier, a été étudié¢ dans le travail
mentionné de G. Eason et L. N. Sneddon [19] *.

Le probléme de Lamb, élargi sur le demi-espace thermoélastique,
caractérisé aussi bien par la symétrie axiale que plane, a été I'objet d’un
travail de W. Nowacki [21]. Ajoutons que les résultats d’ordre général
n’ont, dans une certaine mesure qu'un caractére formel. Il a été impos-
sible, m&me dans les cas les plus simples, d’obtenir des résultats sous forme
fermée a I'aide fonctions connues; les résultats ont été présentés, pour
la plupart, sous forme d’intégrales impropres.

Notons aussi quelques travaux concernant la solution approximative
du probléme du demi-espace thermoélastique: M. Lessen [23] et R. Het-
narski [24], ainsi que R. Muki et S. Breuer [25], ont donné une solution
du probléme de V. I. Danilovskaya [26] pour de petites valeurs du temps ¢,
élargi sur le milieu thermoélastique. Une solution intéressante a été don-
née par G. Paria [27]. Elle concerne les cas de I'échauffement du plan
limitant le demi-espace élastique & la température 6(r,0) H() ol H(2)
désigne la fonction de Heaviside. La solution de Paria est valable pour
le probléme caractérisé par la symétrie axiale, pour de petites valeurs.
du temps £

G. A. Nariboli [28] a présenté une solution analogue, valable pour les
valeurs petites du temps ¢ et concernant le cas de I'espace thermoélastique
avec un vide. Le bord du vide est échauffé a la température Ty H(?).

Le probléme caractérisé par la symétrie axiale, en rapport 4 la con-
centration des contraintes, dues au flux plan de chaleur (le flux varie
dans le temps d’une fagon harmonique) autour d’un vide cylindrique
ou sphérique, a été considéré dans le travail de J. Ignaczak et W. No-
wacki [29].

Comme on le voit — et notre revue de littérature le prouve — on n’a
résolu jusqu’ici que les problémes le plus simples. Les solutions sous forme
fermée ont été obtenues seulement pour quelques cas particuliers, uni-
dimensionnels, en admettant que la température ou les forces, varient
dans le temps d’une fagon harmonique.

Il nous semble que les recherches futures seront dirigées, avant tout,
vers les solutions de problémes ol les changements des charges et de tem-
pérature dans le temps seront traités comme arbitraires. Vu la complexité

* Cette solution comporte deux parties, a savoir: I'intégrale singuliére et la solution
générale choisies de fagon A satisfaire toutes les conditions aux limites sur le bord dw
demi-espace. L'intégrale singuliére se rapporte au milieu thermoélastique (e = 0). La
solution compléte peut &fre trouvée dans le travail de W. Nowacki [22].
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mathématique du probléme, on doit s’attendre plutdt a des solutions ap-
proximatives,

Etant donné que le couplage thermoélastique n’influence que faible-
ment le changement des contraintes, on peut appliquer, avec résultat,
la méthode des perturbations. Cette méthode s’avére particuliérement
efficace pour les problémes quasi statiques.

Le groupe des problémes qui s’imposent ensuite, c’est I'élaboration
des méthodes générales d’intégration du systéme d’équations différen-
tielles (3), (4), de transformation dudit systéme dans un systéme d’équa-
tions intégrales, de donner des solutions de ces équations sous forme
intégrale, similaire 4 la présentation intégrale de Kirchhoff et Poisson
pour le probléme élastique [30]. Ajoutons que c’est M. Rosenblatt qui,
déja en 1910 [31], a fait les premiers pas dans cette direction, bien que
les conditions aux limites admises aient borné la portée de ses recherches.

On peut présumer que les recherches futures porteront aussi sur les

problémes concernant les corps thermoélastiques anisotropes et thermo-
-visco-élastiques,

Contraintes thermiques dans les corps anisotropes

Si la théorie des contraintes thermiques dans les corps homogénes
posséde une ample et riche littérature scientifique, le probléme des con-
traintes thermiques dans les corps anisotropes n’inspire pas d’intérét
semblable et les considérations qui le concernent sont plutét rares. Cect
est di non seulement au fait qu’il comporte des problémes d’ordre mathé-
matique beaucoup plus compliqués, mais aussi au fait que I'application
pratique du probléme est jusqu'a nos jours beaucoup plus restreinte.
Cependant, on a affaire maintenant, de plus en plus fréquemment, aux
matériaux de structure macroscopique et anisotrope (p. ex., plaques,
disques, coques, tubes aux parois fortes) accusant différentes propriétés
élastiques et thermiques selon les directions considérées.

Nous donnons ci-dessous un apergu des problémes déja résolus, ainsi
que les relations générales, en indiquant les travaux ou les problémes
particuliers sont traités d’une fagon plus détaillée. Dans un corps, ac-
cusant I’anisotropie générale rectiligne, ’équation de la conductibilité
thermique (en négligeant le couplage du champ de déformation et du
champ de température) peut étre écrite comme suit [32]

(1) Ai_’f T,ﬁ — oc -'f‘ =—W, 1’.} = l: 2.3

ol Ay = Ay désignent les coefficients de la conductibilité thermique.
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Les relations entre les composantes de I’état de déformation, de con-
trainte et de température, ainsi que la loi Hooke-Duhamel généralisée,
sont données par les formules

) gy=aguow+oayT, Ljki1=1273,

le nombre de 81 coefficients (elastic compliance constants) étant réduit — vu
les propriétés de symétrie

3) et = gtk = Ajikl

au nombre de 36. Cependant, lesdits coefficients ne déterminent pas d’une
fagon directe les constantes du matériel, leur valeurs variant avec les chan-
gements de direction de I'axe des coordonnées. C’est seulement aprés
avoir appliqué la théorie des invariants & la transformation des formes
lindaires sus-dites et en postulant existence d’une fonction homogéne
quadruple de V'énergie élastique qu’on peut réduire le nombre de coef-
ficients ayx: encore de 15, pour obtenir, pour un corps accusant 1’aniso-
tropie la plus générale (structure triclinique), 21 coefficients indépendants.
Les grandeurs ag; apparaissant dans (2) —appelées les coefficients de dila-
tation thermique linéaire — forment un tenseur symétrique ay = ay; [33].

Gréce 4 la symétrie, nous obtenons des structures de plus en plus
simples. C’est ainsi que, pour la structure monoclinique, nous avons 13 con-
stantes élastiques, mutuellement indépendantes, pour la structure ortho-
rombique — 9, hexagonale — 5, cubique — 3 et, enfin, pour la structure
isotropique — 2 coefficients.

En résolvant (2) par rapport & ¢y, nous obtenons

“@ oy=Auynen+puyT, LjklI=1273,
ol
Asjin = Ak = Aprt, Py = Pau.

On appelle les valeurs Ay des constantes rigiditées.
En introduisant la formule (4) dans les équations du mouvement

(5) o13,5 = Qi

et en exprimant les déformations par les déplacements en tenant compte
des relations

1
(6) &= (ut,5 + 15,0
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aprés avoir rangé les équations par rapport a u;, nous obtenons les équa-
tions de déplacement suivantes:

i
(7) 5 i (i, 4w, 5),5+ Pu T3 = elis
ou bien
) Lij(up) + Py T3 =0

ou Ly désignet certains opérateurs linéaires différentiels de second genre
des variables du temps et de ’espace. La solution des équations (7) peut
étre composée de deux solutions partielles, & savoir: la solution # sa-
tisfaisant au systéme d’équations non homogeénes (7) et la solution z
satisfaisant au systéme d’équations

u; étant exprimée i 'aide de trois fonctions ¢ (i = 1, 2, 3). Les fonctions y;
satisferont, bien entendu, aux équations homogénes

)] |Ligl 5 = 0.

Il est permis de considérer les fonctions y; comme fonctions de Galer-
kin, pour un corps anisotrope, étendues sur les problémes dynamiques [34].

Du point de vue formel, on peut obtenir une solution du systéme d’équa-
tions (1) et (7) en appliquant la transformation intégrale quadruple de
Fourier. Cependant, les tentatives en vue d’obtenir, par cette méthode, une
solution servant a calculer un probléeme tridimensionnel quelconque, aussi
bien pour un corps accusant I’anisotropie générale que I’anisotropie ortho-
gonale (orthotropie) ont échoué [35] jusqu'ici.

Le théoréme de Betti peut &étre sans peine étendu au cas d’un corps
anisotrope.

(10) _[ Fy buydV + f pydup dI' + j Ty 00y dV =
V ol JE
— [ o zqu—l—f@p;uidI"-{—féT’ ayy oy AV
v Ir v

On peut démontrer également que le changement de volume d'un
corps libre de charges sur la surface peut étre présenté sous la forme sui-
vante [36]

(11) AV = J‘ Tagx dV.
v
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Les équations de déplacement, pour un milieu d'une orthotropie cur-
viligne arbitraire, ont été établies et discutées dans le travail de J. No-
winski, W. Olszak et W. Urbanowski, [37]. Trois exemples ont été résolus,
dont le premier concerne un cylindre a parois fortes, échauffées d’une
maniére inégale, accusant une orthotropie cylindrique; le second — un
probléme analogue pour un disque, le troisitme enfin — concerne le cas
d’une coque sphérique d’orthotropie sphérique chauffée d'une maniére
inégale.

W. Olszak [38] a formulé des remarques intéressantes concernant 1’état
libre de contraintes dans les corps anisotropes soumis & un échauf-
fement. 11 a démontré que pour les corps susceptibles d’ une déformation
libre et accusant l’anisotropie rectiligne, seule une répartition linéaire
de température ne provoque pas de contraintes. Cependant, pour les
corps 4 anisotropie curviligne, les équations de compatibilité des dé-
formations impliquent des restrictions beaucoup plus grandes que celles
pour les corps 4 anisotropie rectiligne. C'est ainsi, p. ex., que pour les
milieux a orthotropie cylindrique, seulement la répartition constante
de température ne provoque pas de contraintes; pour les corps a ortho-
tropie sphérique, tout champ de température différent de zéro provoque
un état de contrainte.

Parmi les problémes tridimensionnaux, c’est le probléeme des con-
traintes thermiques stationnaires et quasi statiques dans un corps a aniso-
tropie transversale qui a été le mieux étudié, B. Sharma [39] p.ex., exa~
mine les contraintes thermiques dues & I’échauffement d'un plan limitant
le demi-espace élastique; il est arrivé a la solution du probléme en intro--
duisant deux fonctions de contraintes satisfaisant a I’équation différentielle
du second degré. Z. Mossakowska et W. Nowacki [40] ont élaboré une
méthode différente en introduisant trois fonctions de déplacement. Ces
fonctions étendent la fonction de Galerkin sur le probléme thermoélasti--
que dans les corps anisotropes. Ont été résolus et présentés, sous forme
fermée, les problémes de contraintes thermiques dues & 1’action des sources.
de chaleur dans un espace illimité et dans un demi-espace élastique en
tenant compte de différentes conditions aux limites statiques, aussi bien
que thermiques. Une solution analogue a été donnée pour le cas de I'action
d’un noyau de la déformation thermoélastique. Le probléme de I’échauf-
fement stationnaire d’un demi-espace et d’une couche élastiques a été-
considéré dans le méme travail. Les auteurs ont démontré que les con-
traintes a vecteur normal, au plan limitant un demi-espace, ne disparais--
sent pas — comme cela a lieu dans le probleme de E. Sternberg et E. L. Mac
Dowell [41] — mais tendent vers zéro & mesure que I’isotropie transver--
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sale passe & l'isotropie. Les auteurs ont encore donné la solution de quel-
ques problémes quasi statiques concernant ’action d’une source instan-
tanée de chaleur dans un espace et un demi-espace élastique. A, Singh [42]
a réussi a obtenir les solutions de quelques problémes de contraintes ther-
miques caractérisées par la symétrie axiale dans le demi-espace a isotropie
transversale en faisant usage de deux fonctions de déplacement. Les pro-
blémes bidimensionnels ont regu une considération assez ample. Cest
ainsi que W. W. Pell [43] a analysé le probléme de fléchissement et de
pression simultanés d’une planche anisotrope, dus au champ stationnaire
de température, variant d’'une fagon linéaire le long de I’épaisseur de la
plaque; 'auteur a consacré une analyse plus détaillée a la plaque circulaire.

J. Mossakowski [44], en faisant usage de la méthode de la fonction
variable complexe, a obtenu des solutions de problémes concernant I’action
des sources de chaleur dans une plaque semi infinie & anisotropie isogone.
L’introduction de la fonction des contraintes, analogique a celle d’Airy
pour les plaques isotropes [45], est avérée une méthode expédiente pour
résoudre les problémes traités. Les méthodes de solution du probléeme
des plaques orthotropes en appliquant les fonctions du type de celle d’Airy
et de Marguerre ont été élaborées par P. P, Teodorescu [46]. On peut,
d’ailleurs, tenir compte de I’analogie de la plaque élaborée par Dubas et
Tremmel [47], [48], pour les problémes d'un disque orthotrope.

Deux problémes dynamiques ont été résolus jusqu’ici, & savoir: le pro-
bléme de déterminer les contraintes dans un demi-espace anisotrope pour
le cas ou dans un plan paralléle au bord x; = 0 une source plane non
stationnaire de chaleur [49], [50] est placée. Le champ de température,
les composantes de 1'état de contrainte et de déplacement ne dépendent
que des variables xjetf.

Contraintes thermiques dans les corps hétérogénes isotropes

La théorie d’élasticité des corps hétérogénes isotropes constitue un
domaine de la théorie générale de I’élasticité actuellement en plein essor. Le
terme «hétérogénéité du matériel» est employé ici au sens de hétérogénéité
macroscopique. Les grandeurs mécaniques, les modules d’élasticité E, G, le
coefficient u do Poisson et la densité p sont des fonctions de I'emplace-
ment. Elles varient d’une fagon continue; dans le cas particulier d’une varia-
tion discontinue nous nous trouvons en présence d’un milieu stratifié.

Les premiers ouvrages concernant le milieu non homogéne traitaient
de la propagation des ondes élastiques dans les problémes de séismologie
[51]—[56] (La densité et les propriétés mécaniques de la crofite terrestre
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varient avec sa profondeur). Les problémes statiques d’élasticité d’un
milieu non homogéne ont attiré I’attention de nombreux auteurs [57], [58];
le Symposium d’IUTAM a Varsovie en 1958 a été destiné a I’étude de ces
problémes [59].

Nous allons considérer un corps non homogene ol les propriétés
mécaniques et thermiques sont, toutes les deux, fonctions de 'emplace-
ment, étant indépendantes du temps ct de la température; la variation
de ces valeurs provient des procés technologiques au cours de la production
(béton, barres en acier, etc.). Les relations entre les contraintes et les dé-
formations peuvent étre présentées sous la forme suivante:

(N o1y =2uey; + (Aekx —yT) by,

oll les symboles p, A,y = (34+42u) u; désignent les fonctions de I'emplace-
ment, c’est & dire elles dépendent des coordonnées x. En introduisant (1)
dans les équations de mouvement

(2 oi,j + Fy = ol

et en exprimant les déformations par les déplacements, nous arrivons
aux équations de déplacement suivantes:

Q) pugr + 1A+ 20) e, k), 0 — pstr, ko — 24,0 ur ke +
+ (U, + up, ) g+ Fo— (T),o = otly, i=1,2,3.
Nous pouvons écrire ces équations dans la notation vectorielle 4 savoir:

(4)  uV?u— pgrad divu— 2 grad div u+ 2 (grad p-@) +
-+ grad [(4 + 2u) div u] ++ F; — grad (y7) = cii,

oll ¢ désigne le tenseur de déformation. L’équation de la conductibilité
thermique prendra la forme

(5) (AT 1) x—coT =— W

ol 1 désigne le coefficient de la conductibilité thermique.

Les équations de déplacement (3), ainsi que I’équation de la conducti-
bilité thermique (5) sont des équations linéaires aux coefficients variables.
C’est I’équation (5) qui est responsable des difficultés mathématiques,
parce qu’il n’est possible d’obtenir des solutions en fonction connue que
dans des cas trés peu nombreux. On doit donc attendre que les recherches
sur les corps non homogénes aboutiront a des solutions approximatives,
basées sur les méthodes variationnelles et orthogonales. Il va de soi, que
les principes généraux établis par d’Alembert, Hamilton et Castigliano
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resteront vrais pour les corps non homogenes, les valeurs u, 4, a;, 1 étant
considérées comme variables. Analogiquement. le théoréme de réciprocité
de E. Betti pour les déplacements restera vrai dans ce cas, ainsi que toutes
les conséquences qui en découlent. P. ex.:

(6) f ey dV = oy f a; TdV, f oredV = 0.
v 1

v

Au cours des derniéres années, en raison de I'emploi de plus en plus
fréquent d’éléments de construction exposés a des températures hautes,
nous assistons au développement d'un nouveau courant de recherches,
tenant compte de I’effet de la température sur les propriétés mécaniques et
thermiques du corps. Le corps devient non homogéne sous l'influence
du champ de température; donc, ces propriétés dépendent de I'emplace-
ment du corps. Dans ce cas, au lieu des relations (5) nous écrirons

T
(M oy=2pey+ [ﬂam— (32 +2p) f ae (1) ﬂ'??] 6y, 4,j=1,2,3.
0

Les valeurs A, p, ot dépendent de la température, c’est-a-dire
p=plTkx), A=2A[T0)].

En introduisant les déformations dans les équations d’équilibre, pour
le cas du probléme stationnaire, nous arrivons au systéme d’équations (3).
ol les termes d’inertion sont négligés. En plus, nous avons

1= wrTe, Ai=~Ar-Ty
et

T
YT = (32 + 210 [ ar () .
0

L’équation de la conductibilité thermique est non linéaire
® D Tl =—W.

Si nous introduisons la fonction auxiliaire

T
1

(8" G =5 | # (@) dr=G[T(x)]
v 0
nous pouvons réduire I'équation (8) & la forme

1 '
(8”) v2 G (xr) — —2—, W(xr), Aoz const.
0
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En résolvant cette équation, nous obtenons le champ de température
sous forme implicite (8°).

Dans le cas considéré, la difficulté consiste a résoudre 1’équation (8)
«de conductibilité thermique. En connaissant le champ de température
et la dépendance des coefficients de la température, ainsi que de 'emplace-
ment, nous pouvons résoudre les équations de déplacement qui consti-
tuent les équations linéaires différentielles partielles avec les coefficients
variables. Pour faire face aux difficultés et résoudre ces équations, il est
indispensable d’introduire quelques simplifications. Nous pouvons ad-
mettre, p.ex., que le coefficient de Poisson est constant; nous pouvons

aussi poser v = > que le corps est incompressible. Une autre simpli-
T

fication peut étre admise pour la dilatation thermique &0 = [ a;(x) dn:
0

une valeur moyenne &0 = a T.

Jusqu’ici on n’a résolu qu’un nombre minime de problémes [60], [66].
Ces solutions concernent principalement 1'état de déformation dans un
disque circulaire, un cylindre vide et une sphére vide. En posant 1'indé-
pendance » de température et la valeur moyenne de l’expansion thermi-
que, nous avons les équations de déplacement suivantes [65]:

a. pour I'état plan de déformation et pour un champ de température
caractérisés par la symétrie axiale

ou

u 1—» OE
2 "'{E[afr+i-:_(‘+”)“:i"]}= — —uw, r=(@+D"

b. pour I'état plan de contrainte

ouy  uy  1—w ]} 1—2y u, OE
T —

1—» r or’
c. pour le probléme caractérisé par la symétrie sphérique
oup ~up 14w ]} 2(1—2») uz OE
e ‘)“{E[oﬂ'+? T— %= 1—y R &’
R=(P+ )"

(10) ()g-{E ‘5'1‘—’_-"—‘1+v{1¢

; . 1 .
On peut en déduire que si I'on admet que » = 7 » on arrive a une

simplification importante, étant donné qu’alors les parties droites des
équations (10) et (11) disparaissent. Par conséquent, la solution de ces
équations se trouve simplifiée de beaucoup.

J. Nowinski [61] examine les contraintes thermiques dans un cylindre
A parois fortes en posant E(T)=Eye™T ou bien E(r) = Egy #r. S. A. Seste-
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rikov [64] partant des les mémes prémisses, étudie les contraintes thermi-
ques dans un disque. J. Nowinski dans un autre travail [66] étudie I’état
. ; : 1
de contrainte dans une sphére pleine et dans une autre vide, ol » = X
T
et &0 = [ a(n) dn; il a obtenu une solution sous une forme fermée,
0

: : 1
R. Trostel [62] dans les travaux cités ci-dessus en posant » =E

a réussi 2 donner une solution exacte de I’équation (10). Dans un second
ouvrage [63], il développe une méthode de perturbation pour résoudre
les équations de déplacement, en posant que le module E varie lentement
avec T
1 0E d E
(ig“E—) = ep (T).
0

¢ désigne ici le petit paramétre. Ayant recours a la méthode de pertur-
bation, R. Trostel a résolu le probléme de contraintes thermiques dans un
tube a parois fortes oll » = const # %et A(T), a;(T) sont des fonctions liné-
aires de température. M. Sokotowski [65] étudia les contraintes thermiques
dans un cylindre infini et dans une sphére, dues 4 I’échauffement de la surface
extérieure et a l'effet des sources de chaleur, en posant » = const et ad-
mettant que les dérivées de £ sont si petites par rapport au rayon qu'il
est permis de négliger les parties droites des équations [9]—[11]. Le point
essentiel est de considérer la variabilité du coefficient de conductibilité 7 (7)
et de formuler les principes selon lequels les contraintes thermiques aug-
mentent (dépendant du genre de la variabilité de 1(7) et de la direction
du flux de chaleur), resp. diminuent.

Il ne se présente aucune difficulté d’étendre les principes d’Alembert
et d’Hamilton sur les corps ol la non-homogénéité est le résultat de la
température élevée. Cependant il faut tenir compte du fait que les va-
leurs u, A dépendent de la température.

J.Nowinski [67] a généralisé le théoréme réciproque de Betti-Rayleigh sur
le cas des corps élastiques dont les propriétés dépendent de la température.

Afin d’appliquer ce théoréme aux problémes thermo-élastiques aux
propriétés dépendant de la température, il y a lieu de résoudre auparavant
un probléme élastique connexe pour un corps non homogéne «de par
sa nature méme». Le théoréme réciproque de Betti a la forme

T
(12) [Fudv+ fp;u‘df'=fA;deag(r)dr—l—fF‘u;dV-l— [peuiar,
| 4 r v 0 4 r
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ol les déplacements sont dus a Ieffet des forces p;, F; dans un corps non
homcgine (T = 0), tandis que les déplacements u; sont dus a I'effet des
forces pi, Fi et du champ de température dans ce méme corps non homo-
gine; A; désignent la somme des contraintes normales provoquées par
les forces pj, Fy. Le déplacement thermoélastique, p.ex., dans un corps ¥ est
donné par la formule générale
T
(13) ()= [ A" dV [y
v 0
ol la somme des contraintes A’ (xr,&,) doit étre trouvée dans la solution
du probléme classique pour le corps non homogene, exposé & I’action
des forces concentrées uniformes au point (&;) de V le long de laxe x.
On a, en particulier,

T
(14) [eyav =y [av [ a)an,
v v 0
pour un corps libre de traction. Donc,
¢
(15) AV= [ eV =g [av [ a(n)dn
v v 0
et
(16) fo';;;.;dVZO,
Z

analogiquement comme pour un corps homogéne.

Contraintes thermiques dans les corps physiquement non linéaires

Nombre de matériaux de construction n’obéissent pas a la loi de varia=
tion linéaire entre les composantes de 1’état de déformation et celui de con-
trainte (la loi Hooke), méme dans la région de petites déformations et
dans la région élastique. La non linéarité du type mentionné — due a la
structure physique du matériel — est appelée la non-linéarité physique.

1l résulte de I’essence méme des relations entre les contraintes et les
déformations que ces derniéres n’augmentent pas proportionellement
aux chang ments des charges. Donc, le principe de superposition des
effcts de charges ne s’applique pas. Cependant I’action des forces est sou-
mise au principe de succession d’actions ce qui d’ailleurs ne change pas,
en général, I'effet final de I'action du systéme de forces — la loi de I'inter-
changeabilité des forces est ici en vigueur. ‘
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On a proposé déja quelques variantes de la théorie non linéaire physi-
que d’élasticité [68]—[71]. Les problémes des contraintes thermiques,
stationnaires du point de vue de la théorie non linéaire physique d’élasti-
cité, ont été considérés pour la premiére fois dans le travail de F. Jindra
[72], se basant sur la théorie de H. Kauderer [70].

Conformément & cette théorie les relations entre I'état de contrainte
et celui de déformation peuvent &tre présentées sous la forme suivante:

¢y s = 2Gy () ey,
(2) Ok = 3Kx (Ekk) (€kk m— 3(1.', T).

Les symboles sy et ey désignent ici, respectivement, les déviateurs
de I’état de contrainte et de celui de déformation, tandis que y (3) et % (exx)
sont des fonctions de P’extension et de la compression, compte tenu de
(3) lim % (exx) = 1, limy () =1

i 0 v=0
d’ol suit que pour egx — 0 et 9§ — 0 les relations (1) et (2) tendent a se
conformer & la loi Hooke, donnée par les formules

(4) Sty = 26815, Ok — 3K (8,;,-,;- — 3&; T),

ol G, K désignent, respectivement, le module du glissement simple et le
module de compressibillité de la théorie linéaire.

En résolvant les équations (1) et (2) par rapport aux déformations
nous obtenons:

g(1d) k (s0) | y .
) £¢5=2—G°0::+'{[‘§E—Eg(f§) oo +aT(dy, 1,j=123

o
ol g =g (), k= k(sp) désignent les fonctions des variables 5o = —3%,
= %—et les valeurs gy, 7o sont les invariantes de la forme

1 T2 ,
0 = 7T Okk, T 3\7 [(o11 — 00)% + (032 — 00)? + (033 — 00)?] +
+ o+ 0%+ a3 |}-

L’application des relations (5) présente des avantages particuliérement
expédients si on réussi & présenter les fonctions k(sg) et g(tp) sous la forme
de séries entiéres

& k(so) =14k, 5o+ K25z + ey

g(fo)=1+gz!%+g4t3+....
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Les cocfficients dans les séries ci-dessus désignent les constantes du
matériel. Dans les nombreux cas résolus jusqu’ici (la torsion d’une barre,
I'état plan de contrainte dans les disques) H. Kauderer ct ses collabora-
teurs, basant sur les résultats obtenus dans les expériences effectuées au
laboratoire, proposent — comme premiére approximation — d’accepter
les relations suivantes:

©) k(s)=1 g@)=1+g1n.

Ces relations indiquent que Ueffet de la non linéarité physique est
bzaucoup plus grande sur les glissements simples que sur les change-
ments d: volume du corps.

F. Jindra, dans le travail que nous venons de citer, a considéré deux
problémes unidimensionnels, a savoir: il a réussi & déterminer les par-
cours dz contraintes dans une balle vide et dans un disque annulaire de
faible épaisseur F. Jindra a posé un flux stationnaire de chaleur, déterminé
d l'aide de I’équation de conductibilité thermique, aux coefficients cons-
tants.

Dans les deux cas, grice a I'élimination du déplacement, on obtient
les équations linéaires pour les contraintes radiales. En faisant profit
de la relation (7) et en appliquant la méthode des perturbations, I'auteur
arrive & déterminer la distribution des contraintes radiales. Les calculs
des exemples cités (pour le cuivre pur) démontrent qu’on obtient —
par rapport A la théorie linéaire — des changements importants, parti-
culierement pour le bord intéricur d’une balle vide et des anneaux.

La complexité des équations non linéaires aussi bien pour les déplace-
ments que pour les contraintes, ne permet pas d’espérer qu’on obtiendra
d:s solutions exactes. En ce qui concerne les solutions des problémes
physiques non linéaires, les méthodes approximatives peuvent s’avérer
tres efficaces, notamment la méthode de Galerkin et la méthode des per-
turbations,
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