18. JAHRG.
 1926
 CEISCHIRTET

Schriftleitung: Professor Dr. W. Guertler und Dipl.-Ing. H. Groeck
VDI-Verlag G. m. b. H. - Berlin SW 19, Beuthstraße 7

Die Metallbetriebe und ihre technisch-wissenschaftliche Entwicklung in den letzten Jahren.

Von Oberingenieur J. Czochralski, Frankfurt a. M.

Abstract

Vortrag auf der Hauptversammlung 1925 der Deutschen Gesellschaft für Metallkunde in Breslau. - Bedeutung einer planmäßigen stoffkundlichen Buchführung in den Betrieben. Rohstoffkontrolle. Verwéndung von Altmetallen. Beispiele aus der P'raxis, angewandt auf Kupfer, Zink, Messing, Zinn, Bronze, Blei, Aluminium und Aluminiumlegierungen. Gießgeschwindigkeit. Chemische Analyse. Werstoffverluste im Betrieb.

In jedem Beruf bedarf man ciner irgendwie gearteten Buchführung. Der Arzt führt sein Journal, der Chemiker macht in systematischer Form seine Aufzeichnungen. In den Prüfungsanstalten ist man der einfachen Form des Registrierens wohl schon ein Stück vorausgeeilt. Auch der Betricbsingenieur braucht ganz eingehende statistische Aufzeichnungen, wenn sich diese als wesentlicher Organisationsbestandteil auswirken sollen. Nur der mit dem Materialprüfungswesen betraute Technologe verfügt leider heute noch nicht über eine Buchführung, aus der er eine hinreichende Kunde über die Beschaffenheit der von ihm verwendeten llaustoffe gewinnen kann. Wenn man die technischen Buchfülrungen mit den in kaufmännischen Betricben üblichen vergleicht, so muß man mit Bedauern feststellen, daß die technische Buchführung vielleicht nur mit der Kladde des Kaufmannes vergleichbar ist. Eine planmäßige stoffkundliche Buchführung ist dem Ingenieur im allgemeinen noch etwas Unbekanntes, obwohl sie manchenorts schon in Gebrauch stehen dürfte. Im nachstehenden sei versucht, die Anregung zu einer solchen stoffkundlichen Buchführung zu gehen.

Selbstverständlich wird diese Buchführung nicht rein mechanisch entwickelt werden dürfen, sondern sie wind stets auf streng wissenschaftlicher Grundlage aufzubaucn sein. Nur dam wird man das technische Arbeitsgebiet übersehen und die letzten Folgerungen aus den wissenschaftlich-technischen Feststellungen ziehen können. Ein Gedanke muß aber jeder stoffkundlichen Buchführung vorangesetzt werden, und zwar im Hinblick auf die Zuverlässigkeit der Zahlenwerte: Zahlen sind gefährliche Mittel; man kann mit ihnen weder beweisen noch widerlegen, wenn ihre Zuverlässigkeit nicht hinreichend ist. Falsche Zahlen sind daher oft schlimmer als gar keine.

Die in dieser Arbeit mitgeteilten Zahlenangaben stammen zum Teil aus neuerer Zeit, zum Teil reichen sie in die Vorkricgsjahre zurück. Gerade die Angaben aus der Zeit vor dem Kriege dürfen aber insofern wertvoll sein, als damals umfassende statistische Aufstellungen verhältn:̈smäßig selten gemacht und während der Kriegsjahre kaum an irgend einer Stelle fortgeführt worden sind. Heute hört man allenthalben die Frage:

Wie war damals das Material beschaffen? Wie waren die chemische Zusammsetzung, die physikalischen Konstanten, wie waren die Güteziffern in den letzten Friedensjahren, und wie ist das Material heute gegenüber damals beschaffen? Leider stellt sich in den meisten Fällen heraus, daß uns wertvolle Angaben wohl für immer verloren gegangen sind. Wemn man heute die Eigenschaften eines amerikanischen Wirebars aus der Vorkriegzeit nachprüfen will, so muß man mit Betrübnis feststellen, daß in ganz Deutschland, ja vielleicht in ganz Europa und im übrigen Ausland kein einziger Walzbarren für diesen Zweck aufgetrieben werden kann, wenn vielleicht nicht hier und da zufällig ein vergessenes Museumsstück sein bescheidenes Dasein fristet. Untersuchungen an Vorkriegs-Werkstoffen stellen sich aber heute vielfach als notwendir heraus, da eben unscre damaligen Feststellungen weitaus nicht den Anforderungen an eine exakte Stoffkunde genügten. Die für den Vortrag benutzten Zahlenangaben können zwar heineswegs Anspruch auf unbedingte Zuverlässigkeit erheben, besonders soweit es sich um die Vorkriegzeit hândelt. Da sie aber keiner nachträglichen Verbesserung und Prüfung mehr unterzogen werden können, dïrfte ihre Bekanntgabe auch in der vorliegenden Form nicht unerwünscht erscheinen.

Rohstoffkontrolle.

Eine der wichtigsten Vorbedingungen für einen gecrdneten Betrieb ist die chemische Kontrolle der Rohstoffe. Wird diese sorgsam genug durchgeführt, so bleibt der Betrieb vor Uberraschungen bewahrt, die sich häufig genug schwerwiegend auswirken këninen. Bei einer sorgfaltigen Rohstoffkontrolle wird der Betriebsingenieur seine besondere Aufmerksamkeit nur darauf zu richten brauchen, daß die Erzeugnisse in ihrer Qualität nioht durch zusätzliche Verunreinizungen geschädigt werden. Die getroffenen Maßnahmen werden sich also um so wirksamer zeigen können, je höhere Anforderungen an den Stab der Techniker und an die. Belegschaft gestellt werden können. Alle diese Arbeiten und Bestrebungen werden dahingegen so lange wirkungslos bleiben müssen, als die mangelhafte Beschaffenheit der. Rohstoffe die noch so guten betriebs-
technischen Maßnahmen durchkreuzt. Ein zeitgemäß denkender Technologe sollte es sich daher zum Grundsatz machen, in den Fertigungsgang nur Rohstoffe aufzunehmen, über deren Beschaffenheit er jederzeit hin-

Abb. 1. Chemische Charakteristik von KER-Kupfer.

Abb. 2. Chemische Charakteristik von CQ-Kupfer.

Abb. 4. Chemische Charakteristik von MRA-Kupfer.
reichend unterrichtet ist. Er wird alsdann weitgehend gegen Zu fälligkeiten, die von der Zusammensetzung des Rohstoffes abhängen, gesichert sein und den Erzeugnissen aus diesen Rohstoffen weit geringere Aufmerksamkeit zuzuwenden brauchen, als wenn er von unzu-
reichend geprüften Werkstoffen ausgegangen wäre. Ist der Betrieb im übrigen so ausgestaltet; daß Verunreinigungen durch Fremdmetalle nicht vorkommen konnen, so wird den weitestgehenden Anforderungen, die man heute an einen neuzeitlich geleiteten Croßbetıieb stellen kann, Genüge geleistet sein.

Verwendung von Altmetallen.

Eine Quelle, die die Güte der metallischen Erzeugnisse stets mehr oder weniger bedroht, ist die Verwendung von Altmetallen und Altlegierungen. In dieser Hinsicht wird in den meisten Betrieben noch ziemlich sorglos vorgegangen. Meist kommt man dabei auch glimpflich davon. Manches anormale Verhalten ist aber auf die Art und Weise der Altmetallverwertung zu buchen. Aus allen möglichen E-wägungen heraus werden die Altmetalle in Form von Handelstücken dem Guß hinzugefügt. Entscheidend hịrfür dürften in den meisten Fällen Erwägungen der Wettbewerbfähigkeit sein. Die Verwendung von Rohmetallmischern ist in den meisten Werken heute noch unbekannt. Sie dürften sich auf die Dauer nicht rur infolge der Verbesserung der Eigenschaften, sondern auch in betriebswirtschaftlicher Hinsicht mehr als bezahlt machen. Hinsichtlich der Verbesserung der Eigenschaften werden einerscits Ungleichmäßigkeiten in der Erzeugung wirksam ausgeschaltet und anderseits gewisse schädliche Beinengungen leicht bis auf dic

Abb. 3. Chemische Charakteristik von BER-Kupfer.

Grenze der Unwirksamkeit verdünnt. Betriebswirtschaftlich kommt der Gewimn in der Jahresausschußziffer, d. h. im Verhältnis der brauchbaren zu den unbrauchlaren Erzeugnissen und schließlich als unbeziffer-. barer Ertrag in dem Ruf eines Qualitätswerkes zum Austrag.

Die vernachlässigte Rohstoffkontrolle kamn nur selten durch Betriebstüchtigkeit ersetzt werden, weil sie mit der krassen Forderung der Sachlichkeit in der Behandlung der Stoffgüte im Widerspruch steht. Die übrigen Vorgänge, d. h. die darauffolgende Verarbeitung und Veredlung, sind mehr das Werk menschlicher Fertigkeiten, und auf diesem Gebiete wird sich daher dic Betriebstüchtigkeit am ehcsten als fruchtbar erweisen können. Genaue Kenntnisse der Beschaffenheit ier Rohstoffe, verbunden mit der Betriebsertiichtigung, werden der Industrie auch künftighin die Wege weisen. Wie diese zusammenwirken, sei an den folgenden Beispielen unter Heranzichung der wichtigsten technischen Metalle (außer Eisen) erläutert.

Das Kupfer.

Statistische Angaben über die chemische Kontrolle des Kupfers als Rohstoffes sind in Abb. I bis 4 zusammengestellt worden. Die einzelnen Punkte sind jeweils Mittel aus je 10 Analysen. Auf der Wagerechten sind die Betriebsjahre, auf der Senkrechten die Verunreinigungen, wo nichts anders vermerkt, in hundertstel Prozenten aufgetragen worden. Die Kupfermarke K ER (Hüttenwerke C. W. Kayser \& Co., Berlin), Abb. I, und B ER (Baltimore Copperworks, Baltimore), Abb. 3, fallen durch ihren hohen Sauerstoffgehalt auf, während die besonders geschätzte amerikanische Kupfermarke CQ (Raritan Copperworks), Abb. 2, und das deutsche Raffinade-Kupfer MRA (Mansfelder Raffinade-Kupfer), Abb. 4, einen wesentlich geringeren Sauerstoffgehalt aufweisen. Der Gehalt an Blei, Eisen, Antimon, Schwefel liegt jeweils etwa unter o,02 vH. Bemerkenswert ist der charakteristische Nickelgehalt des Mansfelder Raffinade-Kupfers.

Wenn man die Kurvenzüge einer kritischen Wertung unterzieht, so erscheint der vielfach sehr schroffe Verlauf der Kurven etwas absonderlich. Man fühlt sich zu der Fragestellung veranlaßt, ob dieser sprunghafte Verlauf durch die Arbeitsbedingungen allein verursacht sei oder aber, ob auch der analytische Chemiker hieran wohl beteiligt ist. Die Kenntnis der statistischen Großzahlen soll aber nicht nur dem Betriebsmann in seiner

Abb. 5. Abhängigkeit der elektrischen Leitfähigkeit des Elektrolytkupfers von den Verunreinigungen.
fachlichen Erziehung nachhelfen, sondern auch dem Chemiker zu Hilfc kommen und ihm Mittel an Hand geben, eine schärfere Kritik an der eigenen Arbeit zu ühen. Solches Kurvenmaterial hat noch den Vorzug, daß es die Dinge plastisch wiedergibt und daß os hilft, Widersprüche schnell und in bestimmter Form aufzudecken.

Warum wir über die Zusammensetzung genau unterrichtet sein müssen, beantwortet anschaulich Abb. 5, welche die Abhängigkeit der elektrischen Leitfähigkeit des Elektrolytkupfers von dem Prozentgehalt an Verunreinigungen wiedergibt. In Bestätigung dessen, daß auch das reine Kupfer kein einheitliches Metall, sondern eine Legierung ist, ändert sich auch die elektrische Leitfähigkeit mit steigendem Sauterstoffgehalt, und zwar nimmt sie anfänglich zu, bis bei etwa 0,06 bis $0,09 \mathrm{vH}$ der Hüchstwert der Leitfähigkeit crreicht wird. Alsdann nimmt die elektrische Leitfähigkeit allmählich wieder ab. In Wirklichkeit verbessert ein Gehalt an Sauerstoff die elektrische Leitfähigkeit
des Kupfers nicht. Durch den Sauerstoffgehalt wird nur die Dichte des Metalls erhöht, und das sauerstoffhaltige Kupfer verhält sich beim Gießen günstiger als dias völlig sauerstoffreie Metall. Völligg sauerstoffreies. Kupfer. kann betriebsmäßig ülerhaupt nicht mit Erfolg vengossen werden, da es beim Erstarren durch und durch blasig wird. Man kann diesen Mangel zwar durch Zusätze von Reduktionsmitteln wie Phosphor beheben, das ist im Grunde aber wiederum ein Legierungsvorgang. Geringfügige Phosphorgehalte drücken jedoch die elektrische Leitfähigkeit noch viel stärker herunter als Sauerstoff und die meisten übrigen Metalle. Man pflegt daher bei Leitungskupfer einen gewissen Sauerstoffgehalt viel lieber in Kauf zu nehmen als einen Zusatz andrer Legierungsbestandteile. Der Reihe nach beeinflussen die Leitfähigkeit im ungünstigen Sinne: Arsen, Aluminium, Antimon, Eisen, Silizium, Zimn, Zink, Wismut, Blei, Schwefel, Silber, Gold, Kobalt und Tellur.

Nicht alle Eigenschaften können aber in ihrer Abhängigkeit von dem Gehalt an Verunreinigungen so eindeutig festgelegt wenden wie die elektrische Leitfähigkeit, und gerade die wichtigen technologischen Eigenschaften wie Festigkeit, Zähigkeit und Bildsamkeit werden heute noch nach Verfahren bestimmt, die an sich so große Streuungen aufweisen, daß die kleinen Einflüsse gewisser Legierungszusätze auf die Eigenschaften in diesen Streuungsbereichen völlig aufgehen. Es ist in allen diesen Fällen schwierig, über den Einfluß gewisser Beimengungen auf die Eigenschaften eindautige Angaben zu machen. Die Zahlenunterlagen, dic in den Prüfungsanstalten riesenhaft angewachsen sind, können kaum zur Schaffung angenäherter Richtlinien beitragen. Der Technologe, der die Kupferbarren von $100 \mathrm{~cm}^{2}$ Quersohnitt und darüber auf Drälite von $0,02 \mathrm{~mm}$ Dmr. . verarbeiten muß, nimmt unter Limständen empfindlicher gewisse Güteunterschiede walı als unsere PräzisionsMeßmaschinen. Wir haben heute noch keine wissenschaftlich geklïrte Stoffkunde uber den Einfluß gewisser Beimengungen, und zwar sowohl der Qualität als auch der Quantität der Zusatzstoffe nach. Trotzdem hünnen gewisse Stoffe in ihrer schädlichen Wirkung zunächst hinreichend eindeutig erkannt werden. Dic schädlichsten unter ihnen scheinen die Metalle Blei und Wis mut zu sein. Blei macht in Mengen von einigen Zehnteln, Wismut in Mengen von einigen Hundertsteln Prozenten das Kupfer kalt- und warmbrüchig und für Ziehzwecke meist gänzlich ungeeignet. Uber die Wirkung der übrigen Verunreinigungen und der diese Wirkung aufhebenten Stoffe herrscht noch ein ziemliches Durcheinander der Ansichten.

Auch über die Rolle des Sauerstoffes werden immer wieder $Z_{\text {weifel }}$ und Bedenken erhoben. Oxydationsprobe, Zähpol̄-, Fein- oder Garpolprobe sind in der Bewertung noch immer Angelegenheit des Auges und nicht der Messung und Wissenschaft. Vielleicht wird aber dem Sauerstoff zu große Ehre erwiesen und statt dessen die Beurteilung wichtiger Umstände andrer Art versäumb. Diese dürften vornehmlich in der Korngröße und der Korngliederung, mit andern Worten in der Kristallmorphologie zu suchen sein.

Auf die Bedeutung der Korngröße und Korngliederung bei der Knethearbeitung sei nur ganz beiläufig hingewiesen. Nicht selten lassen sich an ganzen Wirebar-Sendungen Kantenrisse beim Auswalzen beobachten, obwohl die Arbeitsbedingungen weitgehend unverändert beibehalten worden sind. Die Temperatur der Walzbarren, die Umlaufsgeschwindigkeit der Walzen, die Glühart und die Glïhdauer, die Art und
der Betrag der Querschnittsabnahme sind unverändert geblieben, und trotzdem zeigt ein erheblicher Teil des umgesetzten Metalles Anrisse an den Kanten, gemäß Abb. 6. Auch im Hinblick auf die Zusammensetzung können keine Unregelmäbigkeiten festgestellt werden, nur in der Korngröß und der Korngliederung unterscheiden sich die rissigen Barren von den einwandfreien, und zwar durch einen grobnadeligen Gefügeaufbau, der in äußersten Fällen die in Abb. 7a wiedergegebene Gefügeausgestaltung annehmen kann. Metalle

Abb. 6. Beim Walzen rissig gewordene Kupferbarren (rd. $1 / 8$ nat. Größe).
von grobnadeligem Aufbau pflegen gewisse mechanische Schwächen aufzuweisen.

Es wird in solchen Fällen häufig von der Walzenkalibrierung abhängen, ob das Walzgut noch unbeschadet durch die Walzenstraße läuft oder ob'es hierbei die ersten Spuren der Zerstörung in Form von Kantenrissen oler Grobbrüchen zeigt. Dieser Grenzfall uler kritischen Beanspruchung kann unter Umständen durch die Walzenkalibriernng schon hervorgerufen werden. In sehr lehrreicher Weise veranschanlichen dies Abb. 8 und 9. Abb. 8 zeigt das Walzgefuige eines ursprünglich grobnadelig kristallisierten Walz-

Ist das Material mechanisch einwandfrei, so pflegt es dieser Forderung bis zu einem gewissen Grade zu genügen. Bei grobnadeligem Gefüge wird aber die Plastizität in der Regel alsbald erschöpft sein. Dies gibt sich in der Bruchbildung zu erkennen. Diese Ränder müssen also alle Anzeichen mangelnder Knetbearbeitung aufweisen. Die Rekristallisation dieser Zonen muß andern Teilen des Querschnittes gegenäber zurückbleiban. Daß dies tatsächlich der Fall ist, zeigt die rechte Ecke in Abb. 8. Der Deformationsgrad

Abb.8. Querschnitt durch einen im Spießkantkaliber gewalzten ungleichmäßig beanspruchten Kupferbarren; erster Stich.
. Geätzt mit Ammoniumpersulfat i: io
(rd. $1 / 2$ nat. Größe).
reichte nicht aus, um eine Rekristallisation einzuleiten. Man findet fast stets, daß in der Nähe der Risse Kennzeichen ker stattgehabten Rekristallisation fehlen. Bemerkenswert ist es ferner, daß die gegenüberliegende

Abb. 7 a.
Querschnitt durch einen schlecht walzbaren, nadlig kristallisierten Kupferbarren. Geătzt mit Ammoniumpersulfat 1 : 10 (rd. $2 / 3$ nat. Größe).
barrens, dessen Gefügeaufbau etwa der in Abb. 7a wiedergegebenen Probe entsprach. Dieses Material war den bei der Spießkant-Kalibrierung vorkommenden hohen Beanspruchungen nicht ganz gewachsen. Es zeigte daher bereits nach den ersten Stichen zahlreiche grobe Kantenrisse, ähnlich denen in Abb. 6. Bei der Spießkant-Kalibrierung wird nur stets eins der beiden diametral gegenüberliegenden Kantenpaare der unmittelbaren Druckwirkung ausgesetzt, während das andere wagerecht liegende Kantenpaar nur insoweit beansprrucht wird, als die Zähigkeit des Materials eine Längsdehnung dieser Randteile zuläßt.

Abb. 7 b .
Querschnitt durch einen gut walzbaren, feinkörnigen Kupferwalzbarren. Geătzt mit Ammoniumpersulfat 1 : 10 (rd. $2 / 3$ nat. Größe).

Ecke keine Rekristallisations-Anomalien aufweist. Dies hängt aber damit zusammen, daß die diametral gegenüberliegenden Kanten des Gußbarrens metallographisch ungleichwertig sind, und zwar insofern, als eine von ihnen infolge der Formausgestaltung stets form-, dic andere luftgekühlt ist. Erfahrungsmäßig zeigen aber nur die formgeküllten Kanten die Neigung zur Ausbildung von Kantenrissen, während bei den lultgekühlten Kanten diese Erscheinung, wenn überhaupt, dann nur vereinzelt auftritt. Es ist ferner bemerkenswert, daß die der rechten Ecke gleichwertige, in der Abbildung unten liegende Ecke normal rekristallisiertes Korn zeigt. Das
ist aber insofern ohne weiteres erklärlich, als es sich hierbei um die eine Hälfte des Kantenpaares handelt, das dem Walzendruck unmittelbar ausgesetzt war.

Ganz anders verhält sich aber das gleiche grobnadelige Material, wenn die Beanspruchung nicht im Spießkant-Kaliber, sondern im sogenannten Kastenkaliber erfolgt, vgl. Abb.9. Die Beanspruchung setzt hierbei nicht in der Richtung zweier diametral gegenüberliegender Ecken ein, sondern in der Richtung einer Flächenpaar-Normalen. Hierbei ist der ganze Querschnitt ziemlich gleichmäßig dem Walzendruck ausgesetzt. Das Metall wird zwar auch gestreckt, bekanntlich können aber alle Metalle unter dieser Druck-Zug - Beanspruchung viel weitergehende Verformungen unbeschadet erleiden als bei freier Zugbeanspruchung. Dieser Fall zeigt in eindeutiger Weise, daß auch der Walzwerkstechniker seine Rechnung umsonst machen kann, wenn or gewisse grundlegende Werkstoffeigenschaften außer acht läßt. Der Vorteil der Spießkant-Kalibrierung dürfte sich in vielen Fällen nur schwierig nachweisen lassen, wenn man ihr nicht die geometrisch gtinstigeren Bedingungen, die vielleicht einen etwas vergrößerten Metallumsatz zu-

Abb. 9. Querschnitt durch einen im Kastenkaliber gewalzten ziemlich gleichmäßig beanspruchten. Kupferbarren; erster Stich.
Geätzt mit Ammoniumpersulfat 1 : 10 (rd. $3 / 4$ nat. Größe).
lassen, zugute rechnct.: Ein vielleicht unumstrittener Vorteil der Spießkant-Kalibrierung liegt wohl darin, daß sie wechselweise für Rund- und Vierkantbarren benutzt werden kann.
$\mathrm{Daß}$ sich das grobnadelige Gefüge als das mechanisch schwächere erweist, dürfte wohl auf verschiedene Ursachen zurückzuführen sein. Rein geometrisch betrachtet, erscheint vas grobnadelige Gefuge vielleicht schon deswegen benachteiligt, weil es weniger verklammert und verzapft ist. Man hat den Eindruck, als ob die Rissc- und. Bruchbildung weniger behindert von statten gehen könnte als in feinkristallinen Gefügen, auch dann, weln man annimmt, daß der Bruch die einzelnen Kristallkörner durchquert. Aber noch ein weiterer Umstand scheint zur Schwächung des Querschnittes wesentlich beizutragen, nämlich die kristallographisch ähnliche Orientierung der Nadeln. Hierauf konnte bereits vor einigen Jahren hingewiesen werden ${ }^{1}$), also bevor dies noch mit Hilfe der Röntgenstrahlen entschieden worden war. Eine erncute, gemeinsam mit E. Schmid durchgeführte Bestimmung der Orie:ntierung mit Röntgenstrahlen führte zu folgenden Werten:

1) Der Körnungsgrad und die physikalisch-technischen Eigenschaften der Metalle, Stahl u. Eisen Bd. 36 (1916) S. 863.

Metall Probe Orientierung

Aluminium . . $\begin{array}{r}1 \\ 2 \\ \hdashline \\ \hline\end{array}$	eine Hauptachse parallel der Nadelachse mit einer Streuung von 0 bis 8°
Kupfer $\begin{array}{r}1 \\ 2 \\ 3\end{array}$	ine Hauptachse parallel der Nadelachse mit einer Streuung von 0 bis 8°

Demnach stehen fast alle Nadeln mit einer Hauptachse (Würfelnormalen) senkrecht auf den Abkühlungsflächen. Das Aggregat gleicht dlaher mehr oder weniger einem Einkristall. Diese kristallographisch ähnliche Orientierung dürfte vor allem die großen mechanischen Unterschiede im Verhalten des grobnadelig kristallisierten und des feinkörnigen Metalls erklären.

Die hier beschriebenen Erscheinungen sind keineswegs nur dem Kupfer eigentümlich, sie können vielmehr bei allen möglichen Metallen und Legierungen beobachtet werden. Sie sind daher grundlegend und können technologisch nicht aufmerksam genug beachtet werden. Je schwieriger sich ein Metall verwalzen läßt, um so mehr wird sich auch der Einfluß der Korngröße und der Korngliederung in der Bearbeitbarkeit bemerkbar machen. Als bekannte Beispiele dieser Art seien die Zimmbronzen (sogenannte Postbronze) mit 4,6 und 8 vH Sn und auch die Bronze mit I vH Mg genannt, die erhebliche Schwierigkeiten bei der Knetbearbeitung bieten. Zeigen diese Blöcke nun grobnadeliges, kristallographisch ähnlich gelagertes Korn, so werden diese Schwierigkeiten noch wesentlich erhöht, so daß gelegentlich ganze Gußlieferungen verworfen werden müssen. Auch bei Aluminiumbronze mit 6 bis 8 yH Al kann ähnliches beobachtet werden. Daß bei Eisen und Aluminium grobnadeliger Gefügeaufbau häufig auftritt und $z u$ groben Unregelmäßigkeiten beim Walzen führen kann, ist bereits des öfteren festgestellt worden. Am empfindlichsten dürfte aber in dieser Beziehung das Zink sein.

In der letzten Zeit ist auch wiclerlolt darüber berichtet wonden, rlaß in Amerika Walztarren in einem Zug auf I mm ausgewalzt worden scien. Thwieweit diese Angaben zutreffen, mag dahingestellt werden. Auf jeden lall dürfte es wertvoll sein, , Näheres hieruiber zut etfaliren. Durch Phosphorgehalte von wenigen hundertstel Prozenten kam die Biegezahl des Kupfers : erheblich heraufgesetzt werden, ohne daß die Leitfähigkeit gleich stark sinkt. Beim Auswalzen von Kupferplatten ist es wichtig, zu beachten, daß die Oberseite besonders gekemzeichnet wird. In England und Amerika pflegt man die an der Luft erstarrte Oberflảche mit ",top" zu bezeichnen, auch die fertigen Bleche erhalten an der Oberseite die gleiche Bezeichaung. : Bekanntlich ist die an der Luft erstarrte Seite der Walzbarren stets wesentlich oxydulreicher als rlie Unterseite, dic mit der Gußform in Beriihrung steht. Der Oxydulgehalt der Oberseite kann sich auf das Zehnfache und darüber anreichern. Es ist bekannt, daß sich oxydulreiches Kupier nur schwierig polieren läßt, die polierten Flächen erscheinen von matten Wolken durchzogen. Dieser Schönheitsfehler kann bei geeigneter Kennzeichnung beider Oberflächen vermieden werden.

Bei der Prüfung von kupfernen Feuerkisten wird noch immer dic Warm-Biegeprobe angewandt. Die Priifung wird allgemein als sehr zweckmäßig anerkannt. Bei der Durchführung der Priifung muß man indes im Auge behalten, daß jede zusätzliche Verformung auch Rekristallisations-Erscheinungen auslösen kann, und zwar wird das sich ergebende Korn um so gröber sein, je geringfügiger die Beträge der nichtelastischen Verformung waren. In vielen Fällen wird bereits das Zer-
sägen der Stäbe hinreichen, um beim Warm-Biegeversuch eine Rekristallisation der' Randzonen cinzuleiten. Werden die Proben nachträglich geätzt, so können leicht irrtümliche Folgerungen aus dem Ätzbild im Hinblick auf die Qualität der Blöcke gezogen werden, während die Erscheinung lediglich mit zusätzlichen nichtelastischen Verformungen im Zusammenhang steht. In einigen Fällen waren in der Tat solche irrtümliche Folgerungen Anlaß zur Beanstandung. Dicser Fall zeigt auch mit aller Schärfeund Deutlichkeit, wie leicht an weichgeglühten Metallen Gefügeanomalien auftreten können, besonders dürfte sich auch diese Erscheinung im Betrieb bei Feucrkisten bemerkbar
machen, die längere Zeit im Gebrauch stehen. Kleine Verletzungen durch Hieb oder Stob können beim Ausgleichen sehr weitgehende Rekristallisationen des Metalls nach sich ziehen, deren Gefährlichkeit um so größer ist, je geringer der Grad der nichtelastischen Verformung ist. In solchen Fällen wird man stets grobes Korn erwarten müssen, das in äuliersten Fällen bei gegebener Blechdicke zul Körnern von mehreren Zoll Dmr. anwachsen hann. In frühern Jahren, als man über die Rekristallisationsvorgänge nur wenig wußte, pflegte man solches Material dem Lieferwerk als verbrannt zur Verfügung zurcllen.
[RS 66r]
(Schluß folgt.)

Bücherschau ${ }^{1}$).

Die Aluminium-Industrie. Von Dr. R. Debar. Zweite, neu bearbeitete Auflage. Friedr. Vieweg \& Sohn, Braunschweig 1925. 338 S . mit 6I Abb. Preis geh. 20 RM., geb. 22,50 RM.
Das Buch stellt die neubearbeitete Auflage eines Buches von Dr. F. Winteler dar. Im ersten Teile wird neben dem Vorkommen des Aluminiums in der Natur die geschichtliche Entwicklung der Herstellung des Aluminiums und der Entstehung der Aluminiumindustrie geschildert.

Der zweite, ausführlichste Teil behandelt die heutige Aluminiumgewinnung in Deutschland, zunächst die Herstellung der Tonerde aus dem Bauxit. Hierbei werden u.a. auch die einzelnen Patente, die die Herstellung von Tonerde aus Aluminiumsilikaten betreffen, besprochen. Ferner werden auch die analytischen Verfahren zur Untersuchung des Bauxites, des Rotschlammes, des Hydrates, der fertigen Tonerde, sowie des Kryoliths und Aluminiumfluorids angegeben. In demselben Abschnitt behandelt der Verfasser die Herstellung, das Brennen und die Untersuchung der Elektrodenkohlen. Der zweite Unterabschnitt des zweiten Teiles betrifft den Ofenbetrieb, d.h. die Gewinnung des metallischen Aluminiums durch die Elektrolyse des Tonerdegemisches, die Reinigung des Aluminiums, die analytische Bestimmung der Verunreinigungen usw. Das neue elektrolytische Reinigungsverfahren der Aluminum Company of America ist noch nicht erwähnt.

Der dritte Teil befaßt sich mit. den Eigenschaften des Aluminiums, und zwar den physikalischen, elektrochemischen und chemischen Eigenschaften.

Im vierten Teil werden die Legierungen des Aluminiums behandelt, zunächst mehr allgemein das Studium der Aluminiumlegierungen, alsdann die leichten verformbaren Legierungen, z. B. das Duralumin, die englische Y-Legierung. duraluminähnliche Legierungen des Auslandes, Aludur u. a. Dabei werden auch die eigentlich nicht unter den Titel des Buches fallenden Elektronlegierungen ausführlich erwähnt. Darnach werden die Gußlegierungen, wie Silumin, und schließlich kurz Lautal und Skleron behandelt. Bei diesen Legierungen ist eine scharfe Trennung der Legierungen und eine systematischere Einteilung noch 2 zu vermissen.

Weitere Unterabschnitte dieses. Teiles betreffen die schweren Aluminiumlegierungen mit spezifischem Gewicht über 3, namentlich die Aluminiumbronzen, ferner das Löten und Schweißen des Aluminiums und seine Oberflächenveredelung.

Der fünfte Abschnitt behandelt die Verwendungsgebiete des Aluminiums und seiner Legierungen. In einem Anhang ist eine Ubersicht über die deutschen Patentschriften auf dem Aluminiumgebiet gegeben.

Das Buch, dessen Inhalt durch zahlreiche Abbildungen erläutert und vervollständigt wird, wird namentlich dem Metallhüttenmann viel Nutzen bringen. Dagegen ist der Legierungsfachmann vielleicht etwas zu kurz gekommen, da die neuen Legierungen und Forschungen auf diesem Gebiete dem Verfasser zur Zeit der Abfassung wohl noch nicht hinreichend bekannt waren und daher zum Teil nur andeutungsweise und etwas unsystematisch erwähnt sind.
[RS 673]
K. L. M.

Der Spritzguß. Handbuch zur Herstellung von Fertigguß in Spritz-, PreB-, Vakuum- und SchleuderguB. Von Alfred Uhlmann. Zweite erweiterte Auflage. Berlin 1925 , M. Kray. Preis geb. 18 M.

Die neue Auflage des Buches ist ebenso wie die erste trotz des viel versprechenden Vorwortes nichts weiter als eine

[^0]Zusammenstellung von zum Teil veralteten Aufsätzen aus amerikanischen Zeitschriften, Patentschriften usw., die ohne Quellenangabe kritiklos und ohne erkennbaren Plan aneinander gereiht sind. Was der Verfasser aus eigenem hinzutut, ist größtenteils unklare Theorie, die mehr zur Verwirrung unerfahrener Leser als dazu beiträgt, ,den Neulingen mit positiven Daten an Hand zu gehen, damit sie von vornherein auf brauchbarer Basis beginnen."' (vergl. das Vorwort).

In der vorliegenden Auflage befaßt sich Uhlmann eingehend mit den Legierungen, weil, wie er im Vorwort mit Recht sagt. ,die geringen Legierungskenntnisse geradezu verheerend gewirkt haben und es daher galt, hier gründlich aufzuräumen". Wie Uhlmann dieser Aufgabe gerecht wird, zeigt unter anderem der folgende Satz aus dem theoretischen Teil dieses Abschnittes: ,Durch Vermischung der Metalle, also Legierung derselben miteinander wird die Schmelztemperatur derselben teils erniedrigt, teils erhöht, teils .uberhaupt ausgeschaltet." Auf Grund seiner Entwicklungen bezeichnet der Verfasser dann eine Anzahl von Legierungen als besonders geeignet für Spritzguß. Die von ihm aufgeführten Legierungen sind jedoch zum Teil völlig ungeeignet, da sie nicht zeitbeständig sind und ihre Verwendung gerade zu den Mibständen gefuhrt hat, die Uhlmann bekämpfen will. Auch bringt er verschiedene Zahlentafeln von leichtflüssigen Legierungen, die durchaus keine Spritzgußlegierungen sind. Eine Aluminiumlegierung mit $\mathbf{2 2 v H}$ Zink führt er als besonders geeignet an. Auf Seite 12 beginnt er einen Artikel über, ,Aluminium-Spritzguß" und schreibt darin: ,,Das fast ausschließlich verwendete Legierungsmaterial ist praktisch 2,6 Aluminium, 20,4 Kupfer, $4^{6,2} 2$ Zink, 30,8 Zinn." Das ist aber eine ausgesprochene Zinnbronze mit einem Aluminiumzusatz, somit dem Schädlichsten, was einer solchen Legierung zugesetzt werden kann. Dem Verfasser ist bei dem ganzen Absatz nämlich ein Irrtum unterlaufen, da er versehentlich an einen amerikanischen Aufsatz über Kokillenguß geraten ist und diesen falsch tubersetzt hat.

Das Buch wimmelt auch sonst von Fehlern und Widersprüchen. Die wenigen Beispiele müssen zur Kennzeichnung des ganzen Buches genügen. Ich stehe mit einer Reihe ähnlicher Beispiele zur Verfugung und kann auf Grund meiner sorgfältigen Durcharbeitung des Buches vor seinem Gebrauch nicht genug warnen. [RS 686]
A. Kaufmann.

Bei der Schriftleitung eingegangene Bücher.
 (Besprechung vorbehalten.)

Laboratoriumsbuch für den Eisenhütten- und StahlwerksChemiker. Von A. Kropf, Halle a. S. 1925, Wilhelm Knapp. 97 S. m. 21 Abb. Preis: geh. 5,20 RM ., geb. 7 RM.
Chemische Technologie der Leichtretalle und ihrer Legierungen. Von F. Regelsberger, Leipzig 1926, Otto Spamer. 385 S. m. 15 Abb. Preis: geh. 26 RM., geb. 29 RM.
Die Brinellsche Kugeldruckprobe. Von P. W. Döhmer. Berlin 1925, Julius Springer. 186 S. m. 147 Abb. Preis: 18 RM.
Die Pforzheimer Bijouterie-Industrie in und nach dem Kriege. Von A. Dissinger, Karlsruhe 1925, G. Braun. 224 S. Preis: 7,50 RM.
Einführung in die Metallographie. Von P. Goerens. 5. Aufl. Halle a. S. 1926, Wilhelm Knapp. 372 S. m. 447 Abb. Preis: geh. 16,50 RM., geb. 18,50 RM.
Amerikas Gießereiwesen. Von U. Lohse, Berlin 1926, VDIVerlag G. m. b. H. 59 S. m. 54 Abb. Preis: 4.50 RM . Bördeln und Ziehen in der Blechbearbeitungstechnik. Von E. Ruhrmann, Berlin 1926, VDI-Verlag G. m. b. H. 35 S. m. 36 Abb. u. 7 Zahlentafeln. Preis: 6 RM.

Die Metallbetriebe und ihre technisch-wissenschaftliche Entwicklung in den letzten Jahren.

Vun Oberingenieur J. Czochralski, Frankfurt a. M.

(Schluß von S. 6.)

Das Zink.
Die zeichnerische Darstellung der statistischen Werte der chemischen Zusammensetzung einiger wichtiger Zinksorten ist in Abb. io bis 13 gegeben. Die einzelnen Punkte der Kurven sind wiederum Mittelwerte aus je 10 Analysen. Auf der Wagerechten sind die

Abb. 10.
Chemische Charakteristik von HohenloheZink.

Betriebsjahre, auf der Senkrechten die Gohalte an Verunreinigungen aufgetragen wonden. Das Hohenloher Zink, Abb. ıo, das Paulinenhïtte-Zink, Abb. ı2, und das Zink der Friedrichshütte, Abb. ı3, zeichnen sich durch eine ziemliche Cleichmäßigkeit in der Zusammensetzung aus. Der Bleigehalt liegt hart an etwa ivH,

Albb. 11.
Chemische
Charak-
teristik
von
Hugo-Zink.
der Eisengehalt schwankt zwischen o,03 und $0,05 \mathrm{vH}$. Das Hugo-Zink, Abb. it, weist einen etwa gleich hohen Eisengehalt auf, während der Bleigehalt in weiten Grenzen $z w i s c h e n$ etwa 1 und $2 v H$ schwankt.

Im wesentlichen unterscheidet man mehrere Zinksorten, und zwar das Grobzink mit einem Bleigehalt
von mehr als i, 5 vH , entsprechend Abb. in, das Garantiezink, dessen Bleigehalt nicht mehr als $\mathrm{I}, 5 \mathrm{vH}$ betragen darf - diesen Fonderungen entsprechen ctwa dic Zinksorten gemäß Abb. ıo, 12 und 13 -, und das Feinzink mit einen Bleigehalt von weniger als $0,1 \mathrm{vH}$. Der Bleigehalt ist von ausschlag-

gebender Bedeutung, wenn das Zink für die Messingherstellung Verwendung finden soll. Die Druckmessingsorten müssen möglichst frei von Blei sein, wenn die Bleche sich für das Tiefziehen eignen sollen. Der Bleigehalt darf alsdann einige hundertstel Prozente nicht übersteigen. Für die Herstellung von Druckmessing verwendet man daher die reinsten Feinzinksorten. Umgekehrt liegen die Verhältnisse beim sogenannten Schraubenmessing, bei dem ein hoher Blei-

gehalt erwïnscht ist. Soll sich das Schraubenmessing gut und spritzig verarbeiten lassen, so muß es etwa 2 bis 3 vH Blei enthalten. Man verwendet für diese Messingsorten zweckmäßig ein Grobzink mit Bleigehalten bis $z u 5 v H$. Als man die ersten metallographischen Erkemntnisse in die Metallbetriebe zu übertragen versuchte, war man mancherorts bestrebt, dei Bleigehalt im Schraubenmessing bis auf Spuren herunterzusetzen. Man ist aber alsbald eines Besseren belehrt worden, indem die Betriebe, die das Schrauben-

Abb. 14. Innerkristalline Kaltbrüche in Rohzink. $1,5 \times$ verg. (im Original 1,8). Geätzt mit Chromsảurelösung 1:10.
messing verarbeiten, die Güte der bleifreien Messinge übereinstimmend beanstandeten.

Das Zink gehört zu den sehr spröden Metallen. Diese Eigenschaft ist in der Spaltbarkeit des Metalls parallel zur Basis- und Prismenfläche begründet. Die Neigung zu der innerkristallinen Spaltbarkeit zeigt anschaulich Abb. 14. Die Spaltflächen gehen nicht an den Korngrenzen entlang, sondern durchqueren in ziemlich geradlinigem Verlauf das Einzelkorn. Das Zink zeigt ausgeprägte Neigung zur Transkristallisation, wic dies Abb. I 5 zeigt. Es ist ohne weiteres verständlich, daß die transkristalline Gefügegliederung, verbunden mit der ausgesprochenen Spaltbarkcit, das Zink zu einem bei der Verarbeitung besonders empfindlichen Metall stempelt. Der Technologe wird es also gerade be diesem Metall anstreben müssen, schon das Gußerzeugnis besonders feinkörnig herzustellen, wenn er Störungen bei der Knetverarbcitung vermeiden will. Das Zink gehört zu den Metallen, die sich bei der Knetveranbeitung wohl immer noch am ungleichmäBigsten verhalten. Ungewöhnlich hohe Dehnung und Plastizität wechseln mit Kurzbrüchigkeit und grober Spaltbarkeit. Welche Beträge gelegentlich das Dehnungsvermögen erreichen kann, zeigen die in Abb . 16 wiedergegebenen beiden Proben von Zink-Einkristallen nach Polany i^{2}). Kristalle von mehreren Millimetern Durchmesser lassen sich auf diese Weise zu Fäden von wenigen hundertstel Millimetern Dicke ausziehen. Vielleicht wird man es noch einmal lernen, diese merkwürdige Eigenschaft der Zinkkristalle (ähnlich verhält sich auch das Zinn) technologisch auszunutzen.

Abb. 15. Querschnitt durch einen schlecht walzbaren, nadelig kristallisierten Zinkbarren, rd. $4 / 5$ nat. Größe.

[^1]

Abb. 16 und 16a. Zink-Einkristalle mit außergewöhnlich weitgehend ausgebildetem Fließkegel (nach Polanyi).

Das Zinn.

Statistische Zahlen über die chemische Prüfung des durch den hohen Reinheitsgrad bekannten BankaZ inns und des ebenso bekannten, aber weniger reinen Lamm-Zinns sind in Abb. 17 und 18 zeichnerisch zusammengefaßt worden. Die einzelnen Punkte sind wiederum Mittel aus je io Analysenwerten. Auf der Wagerechten sind die Betricbsjahre, auf der Senkrechten die Gehalte an Verunreinigungen in tausendstel Prozenten abgetragen. Wenn man von dem einen Ausfallwert für Kupfer absieht, so schwanken die Eisen-, Antimon- und Kupfergehalte des Banka-Zinns um einige tausendstel Prozente, während das Blei den mittleren

Abb. 17. Chemische Charakteristik von Banka-Zinn.

Abb. 18. Chemische Charakteristik von Lamm-Zinn.

Gehalt von etwa $0,004 \mathrm{vH}$, gemäß Abb: 17 , erreicht.: Das Lamm-Zim hat einen durchschnittlichen Eisen- und Antimongehalt von einigen tausendstel Prozenten, einen Kupfergehalt von einigen hundertstel Prozenten und cinen Bleigehalt bis zu etwa $0,1 \mathrm{vH}$.

Abb. 19. Zinnfolie, die infolge eines geringen Aluminiumgehaltes beim Lagern brüchig wurde.: (nach Heyn und Wetzel)
nat. Größe.
Das Zinn ist der wichtigste Zusatz bei den Bronzen und dem Rotguß. Dic Legierungen werden zweckmäßig mit Zinn- oder Phosphorkupfer desoxydiert. Der Gehalt an Phosphor soll nach der Desoxydation nur wenige hundertstel Prozente betragen. Zu Drähten lassen sich Zinnbronzen nur schwierig verarbeiten (Webdrahtbronze mit 6 vH Sn). Man bringt dies in Zusammenhang mit der Anwesenheit von Zimnsäure-Einschlïssen, die in Form von Häuten die Eigenschaften von Feindrähten ungünstig beeinflussen. Daher werden die

Abb. 20. Chemische Charakteristik von Perth Amboy-Blei.
Walzplatten (für Schneidedraht) meist nach dem sog. Schleudergußverfahren hergestellt. Die Umdrehungszahl der umlaufenden Form beträgt 300 bis 500 Umdr. $/ \mathrm{min}$. Auf diese Weise werden die mechanischen Verunreinigungen in die Randzonen gedrängt; ihre schädliche Wirkung wird dadurch erheblich herabgesetzt.

Auf den schädlichen Einfluß des Aluminiums auf das Zinn ist erstmalig von Heyn und Wetzel hingewiesen worden. Schon geringe Mengen von Aluminium können das Zinn verderben. Eine Zinnfolie, die nur wenige hundertstel Prozent Aluminium enthält, zerfällt schon beim Liegen in winzige Bruchteile. Dies veranschaulicht Abb. ig nach Heyn und Wetzel ${ }^{3}$). Für die Folien- und Tubenherstellung dürfte diese Feststellung nicht ohne Bedeutung sein.

Das Blei.

In Abb. 20 bis 22 sind einige statistische Zahlen über die chemische Zusammensetzung von mehreren
${ }^{2}$) Mitt. d. K.W.I. f. Metallforschung Bd. 1 (1922) S. 4.

Weichbleisortén zeichnerisch dargestellt. Die einzelnen Punkte der Kurven sind wiederum Mittel aus je 10 Analysen. Auf der Wagerechten sind die Betriebsjahre, auf der Senkrechten die Gehalte an Verunreinigungen in tausendstel Prozenten aufgetragen. Bei allen drei Bleisorten ist der Eisengehalt außerordentlich gering und erreicht kaum den Betrag von o,001 vH, während der Antimongehalt bis zu $0,006 \mathrm{vH}$ ansteigt. Der Kupfergehalt nimmt ungefähr einen Mittelwert zwischen dem dieser beiden Bestandteile ein. Wichtig für die Beurteilung des Weichbleis ist besonders der Wismutgehalt, der bei guten Weichbleisorten in der Regel nur einige tausendstel Prozente betragen darf, bei andern bis zu einigen hundertstel Prozenten ansteigen kann. Bleisorten mit noch höherem Wismutgehalt können nur noch für Sonderzwecke verwendet werden, da das niedrigschmelzende Eutektikum das Weichblei sehr warmbrüchig macht. Seine Hauptverwendung findet das Blei in der Kabelindustrie sowie für die Herstellung von Bleirohren und Bleilagermetallen. Nach neueren Feststellungen werden dem Blei für Kabelmäntel an Stelle

Abb. 21. Chemische Charakteristik von 'Tarnowitzer Blei.

Abb. 22. Chemische Charakteristik von Balbach-Blei.
von Zinn und Antimon (3 bzw. ivH) $0,5 \mathrm{vH}$ Kadmium zugesetzt ${ }^{4}$). Wenig bekannt, aber technologisch besonders bemerkenswert ist das sog. Stoßverfahren für die Herstellung von Bleirohren. Das Verfahren beruht auf einem ähnlichen Grundsatz, wie er zur Herstellung von Einkristallen aus Schmelzen angewandt wird ${ }^{5}$).

Abb. 23. Chemische Charakteristik von SEMF-Aluminium.
Das flüssige Metall wird stoßweise über einen Dorn zum Ausquellen gebracht, wobei ein Teil des Metalls ring förmig erstarrt. Im weitern Arbeitsverlauf kristallisieren an das bereits erstarrte Rohrende weitere Teile der Schmelze an. Durch das ununterbrochen fortgesetzte Verfahren erhält man in einfacher Weise endlose Rohre beliebiger Länge. Die maschinelle Einfichtung ist außerondentlich einfach und geeignet, in vielen Fällen die bekannten kostspieligen Bleipressen zu ersetzen ${ }^{6}$).

Das Aluminium.

Endlich geben die Abb. 23, 24, 25 und 26 eine Zusammenstellung der statistischen Zahlen uiber die chemische Zusammensetzung verschiedener Aluminiumsorten. Die cinzelnen Punkte sind wiederum Mittel aus je io Analysen. Auf der Wagerechten sind die Betriebsjahre, auf der Senkrechten die Gehalte an Verunreinigungen in tausendstel Prozenten ab-
${ }^{4}$) D.R.P. 405148.
${ }^{5}$) Z. f. Phys. Chemie Bd. 92 (1917) S. 219.
$\left.{ }^{6}\right)$ D.R.P. 380336.

Alb. 24. Chemische Charakteristik von AIAG-Aluminium.
getragen. Die chemische Charakteristik der vier Aluminiumsorten, darunter NAC (Northern Aluminium Comp.), BACL (Brit. Aluminium Comp. Ltd.), SEMF (Soc. Electro-Métallurgique Française) und AIAG (Aluminium-Industrie A.-G., Neuhausen) ist im wesentlichen nur wenig verschieden. Die beiden amerikanischen Marken haben die niedrigsten Gehalte an Eisen und Silizium, während das Aluminium französischer und schweizerischer Herkunft einen etwas höheren Gehalt an diesen Bestandteilen auf. weist. Bemerkenswert ist ferner, daß die Gehalte an

Abb. 25. Chemische Charakteristik von BACL-Aluminium.
Eisen und Silizium sich ziemlich das Gleichgewicht halten. Neuerdings wird nach einem amerikanischen Verfahren ${ }^{7}$) cin Reinaluminium hergestellt, dessen Gehalt an Eisen und Silizium nur nocil wenige hundertstel Prozent beträgt. . Das Verfahren scheint technologisch soweit durchgebildet zu sein, daß dieses Reinaluminium schon jetzt zu einem Preise, der etwa doppelt so hoch ist wie der des Aluminiums, erhältlich ist.

In bezug auf die Förderung der Beständigkeit der Aluminiumlegierungen sind einige Fortschritte zu verzeichnen. Besonders guten Korrosionsschutz gewähren Kadmiumiaberzüge. Abb. 27 zeigt Aluminiumproben, die auf diese Weise geschïtzt worden sind (Abb). 27 a und c), neben solchen ohne Schutzüherzug (Abb. 27b und d). Die Einwirkungsdater der 2,5 vII-haitigen Quecksilbernitrat-Lösung betrug bei den Proben a und $b 6$ st, hei den Proben c und $d 48$ st. Es ist bemerkenswert, daß die Probe d während dieser Zeit zum größten Teil bereits aufgelöst worden ist, während die Proben a und c noch völlig unverändert erhalten geblieben sind. Auch in andern Angriffsmitteln zeigen die mit einem Kadmiumüherzug versehenen Proben wesentlich größere Beständigkeit. Die Kạdmiumüberzüge scheinen gegenüber $Z_{i m n i b e r z u ̈ g e n ~ w e s e n t l i c h e ~}^{\text {en }}$ - Vorzüge aufzuweisen.
${ }^{7}$) Abgeändertes Hoopes-Verfahren der Aluminium CO_{n} of America; vgl. Z. f. Metallk. Bd. 17 (1925) S. 234.

Abl. 26. Chemische Charakteristik von NAC-Aluminium.

Die härtbaren Aluminiumlegierungen haben im allgemeinen die Eigenschaft, im veredelten Zustand bestandiger zu sein als im unveredelten. Das Verhalten einer veredelten Aluminiumlegierung im Vergleich zu einer unveredelten Probe des gleichen Metalls, die einer mehrjährigen Einwirkung der Atmosphäre ausgesetzt waren, veranschaulicht Abb. 28. Während wie obere veredelte Probe im wesentlichen unverändert geblieben ist, zeigt die unveredelte untere Probe grobe Anfressungen. Die Korrosion war bereits so tiefgreifend, dals sich von dem Metall bröckelige Rinden von mehreren Millimetern Dicke loslüsten. Viele Klagen über die geringe chemische Widerstandsfähigkeit von Aluminiumlegierungen dürften wohl verschwinden, wenn die Veredlung mit der erforderlichen Sorgfalt durchgefïhrt
ihrer Benutzung für Freileitungen nach und nach Ab stand genommen wurde.

Es ist schon wiederholt und von verschiedenen Seiten darauf hingewiesen worden, welche Hoffnungen im allgemeinen und insbesondere in Deutschland auf die neuzeitlichen Aluminiumlegierungen gesetzt werden. Diese Hoffnungen können aber nur dann in Erfüllung gehen, wemn es gelingen wird, auch dic in diese Legierungen gesetzten Erwartungen zu verwirklichen. Die technische Entwicklung kennt in dieser Bezichung keinerlei Zugeständnisse. Wenn die technische Uberlegenheit nicht vorhanden ist, so pflegen weder nationale noch etwaige finanzwirtschaftliche Rücksichten einen solchen Baustoff auf die Daucr lebensfähig zu crhalten. Mit Recht hat also auf dem Gebiete der neuzeitlichen Alu-

Abb. 27
Korrosion von Aluminiumblechen mit und olne KadmiumUberzug.

Probe a) mit,
Probe b) ohne Kadmiumüberzug nach 6 stündigem .Angriff in einer $2,5 \mathrm{vH}$ - haltigen schwach salpetersauren Quecksilbernitratlösung.
3/8 nat. Größe.
Probe c) mit,
Probe d) ohne Kadmiumüberzug nach 48 stündigem Angriff in einer $2,5 \mathrm{vH}$-haltigen schwach salpetersauren Quecksilber-

Nitratlösung.
$3 / 8$ nat. Größe.
würde. Neben dem Duralumin ${ }^{\text {s }}$) gehören heute $z u$ den bekanntesten Arten der veredlungsfähigen Legierungen das Scleronv) (cine lithiumhaltige Legierung), sowie das Aeron ${ }^{10}$) und $\mathrm{Lauta}{ }^{11}$) (beides Legierungen von Aluminium-Silizium mit bestimmten Kupfergehalten). Als besonders seewasserbeständig gilt

Abb. 28. Hochwertige Aluminiumlegierung, die mehrere Jahre dem Angriff der Atmosphäre ausgesetzt war, rd. 4/5 natürl. Größe.
a) vercdelt (fast unverändert)
b) unveredelt (stark korrodiert).
auch die K.S.-Legierung ${ }^{12}$), die unter der Bezeichnung "seewasserfest" bekannt ist; sie enthält neben Magnesium auch etwas Antimon. Dagegen haben sich die Kupfer-Aluminiumlegicrungen allein auf die Dater als sehr wenig widerstandsfähig erwiesen, so daß von

[^2]miniumlegierungen eine rege internationale Tätigkeit eingesetzt ${ }^{12}$ a). Wir sind noch in den Anfängen, und diese Anfänge haben uns schon gezeigt, wie weit wir bereits vom Reinaluminium abgerückt sind und wic sehr man schon jetzt die hochwertigen Aluminiumlegierungen als Eaustoffe zu bevorzugen beginnt.

Betriebsiuberwachung.

Mit der statistischen Zergliederung der Arbeitsvorgänge sind aber die Aufgaben des Technikers noch nicht erfüllt; sie sind lediglich der Grundstock für seine aufbauende Tätigkeit. Es ist nicht die Aufgabe dieser Ausführungen, bei den rein betriebsmäßigen aufbauenden Arbeiten des Technikers zu verweilen, vielmehr sollen an dieser Stelle nur diejenigen technologischen Faktoren behandelt werden, welche mit seiner aufbauenden Tätigkeit aufs engste verknüpft sind. Es gibt cine grolse Zahl von Verfahren, die noch aus der vortechnischen Zeit stammen und dic in ihren wesentlichen Teilen noch wenig erforscht sind. Hierzu gehören die Verfahren der Guß- und Metallveredlung in flüssigen und festen Zustand und viele Vorgänge der Veredlung durch Wärmebehandlung, um nur einige Beispicle aus dem engeren Gebiete der Mctallkunde zu nemen.

Wenn man den Gießvorgang selbst einer analytischen Zergliederung und Auswertung unterzieht. so steht vielleicht an erster Stelle die Frage, welchen Einfluß z. B. die Gießgeschwindigkeit auf den Zinkausbrand eines Messings mit einem Zinkgehalt von etwa 40 vH ausuibt. Eine Antwort auf diese Frage gibt die in Abb. 29 wiedergegebene Kurve. Bei einer Gießleistung von $25 \mathrm{~kg} / \mathrm{min}$ beträgt der Zinkausbrand 3 vH .

[^3]Mit steigender Gießleistung verringert sich auch die Ausbrandziffer; bei einer Gießleistung von $30 \mathrm{~kg} / \mathrm{min}$ beträgt der Zinkausbrand nur noch $1,5 \mathrm{vH}$, bei einer solchen von $40 \mathrm{~kg} / \mathrm{min}$ nur noch etwa $0,8 \mathrm{vH}$, während bei der ungewöhnlich hohen Gießleistung von $55 \mathrm{~kg} / \mathrm{min}$ der Zinkausbrand nunmehr noch $0,5 \mathrm{vH}$ beträgt. Dieser Wert dürfte zugleich wohl auch als Höchstleistung zu bezeichnen sein. Anderseits dürfte die Gießleistung von $25 \mathrm{~kg} / \mathrm{min}$ entsprechend einem Zinkausbrand von 3 vH im praktischen Betrieb kaum zu unterschreiten sein,

Abb. 29.
Abhăngigkeit des Zinkausbrandes (Messing) von der Gießleistung.
da das Metall bei noch langsamerer Anbeit beim Vergießen leicht einfrieren wïrde. Der Kurve kann entnommen werden, daß die Schwankungen in der Zu sammensetzung des Metalls in weitem Ausmaße durch die Arbeitsgeschwindigkeit ausgeglichen werden können.

Abb. 30. Steigerung der Gießleistung beim Messing.

Abb.31. Zinkausbrand während des Gießens von Messing.

- Solche grundsätzlichen Arbeitsvorgänge von den nebensächlichen und weniger wichtigen Arbeitsvorgängen abzugrenzen, gehört zu den dringendsten Aufgaben des neuzeitlichen Technologen. Wie sich die Beachtung dieser einfachen Maßnahmen in der Betriebsbilanz auswirkt, soll an weiteren Beispielen gezeigt werden.

Abb. 30 veranschaulicht den Anstieg der Gießleistung in der Zeitdauer von 2 Betriebsjahren. Die anfängliche Leistung von etwa $25 \mathrm{~kg} / \mathrm{min}$ konnte nach und nach auf den Betrag von $50 \mathrm{~kg} / \mathrm{min}$ gesteigert werden, das ist also eine Erhöhung von rd. 100 vH . Da die Gießdauer im Verhältnis zu den andern Arbeitsvorgängen der Zeitdauer nach nur geringfügigen Anteil nimmt, so ist diese Maßnahme auf die Ersparnis an Lohnstunden ohne nennenswerten Einfluß, dahingegen werden die Schwankungen in der Zusammensetzung der Legierung, in diesem Falle des Messings, weitgehend eingeengt, wie dies Abb 31 leicht erkennen
läßt. Der zu Beginn der Kurve auftretende große Zinkausbrand fällt mit der anfänglich geringen Gießleistung zusammen, während bei den höchsten GießIeistungen der Zinkausbrand nur noch etwa ein Drittel des ursprünglichen Betrages aufweist, also von etwa 3 vH auf I vH gesunken ist. Die Abweichungen vom Sollwert sind in Abb. 32 im Schaubild dargestellt. Wählt man die enge Toleranz von $\pm 0,5 \mathrm{vH}$ Zink zur Grundlage, die in manchen Betrieben bis auf \pm I vH erweitert wird, so kann festgestellt werden, dals in dem ersten Betriebsjahre selbst die Toleranz von \pm I vH durchgehend überschritten wonden ist, während in zweiten Betriebsjahre schon die verhältnismäßig enge Toleranz von $\pm 0,5 \mathrm{vH}$ fast durchgehend eingehalten werden konnte. Außerdem, ist die mittlere Sollzusammensetzung, die anfänglich stets einen zu niedrigen Zink- und zu hohen Kupfergehalt erkennen läßt, dem beabsichtigten Verhältnis sehr angenähert worden. Für die enge Toleranz von $\pm 0,5 \mathrm{vH} \mathrm{Zn}$ ergeben sich infolge Schwankungen in der Zusammensetzung für das Gußerzeugnis die in der Abb. 33 wiedergegebenen AusschuBziffern. Der Ausschuß konnte auf diese Weise bereits schon nach kurzer Zeit von 60 auf 40 und. weiter auf 20 , ja sogat zeitweilig auf 10 vH herabgesetzt werden. Dies nur als Beispiel!

Abb.32. Abweichungen vom Sollwert (Messing).

Abb. 33. Ausschuß infolge von Schwankungen in der Zusammensetzung (Messing).

Der exakten stofflichen Oberwachung der Betriobsmaterialien und Baustoffe stent vor allem die Unvollkommenheit der chemischen Prüfverfahren noch immer hinderlich im Wege. Die analytische Prüfung geht dem Technologen nicht genügend an Hand, um ihm bei der Bewältigung der zahlreichen und schwierigen Aufgaben die Dienste zu leisten, auf die er unbedingten Anspruch erheben muß. Man kann heute wohl sagen, daß die Stoffanalyse mit der übrigen technischen Entwicklung keineswegs Schritt gehalten hat. Freilich scheinen sich in allerjüngster Zeit ganz neue Wege für diese Prüfungen zu eröffnen. Es sei hier an die Verwendung der Röntgenstrahlen für die Stoffanalyse erinnert, die geeignet erscheinen, auf diesem Gebicte vielleicht in der Zukunft Wandel $z u$
schaffen. Damit sollen keineswegs die grundsätzlichen Vendienste der analytischen Chemie auf allen Gebieten industrieller, technischer und wissenschaftlicher Tätigkeit irgendwie herabgemindert werden. Eine solche Behauptung kömte nur auf Grund sachlicher Unkenntms gefällt werden. Die hier geübte Kritik erstreckt sich vielmchr auf die unmittelbare praktische Anwendung der chemisch-analytischen Verfahren inı schaffenden Betriebe, in dem ohne Zeitverlust ein Arbeitsvorgang dem andern folgt (Hochofenbetrieb, Polen und andere Reduktionsvorgänge); sie soll mehr dazu dienen, die allgemeine Aufmerksamkeit auf neue grundsätzliche Wege der Stoffanalyse überhaupt hinzulenken. Heute steht der mit der materialpriufungs-technischen Überwachung der Stoffe betraute Techniker oder Ingenieur vielfach noch hilflos und verlassen da. Die Bestimmungsverfahren sind meist zu zeitraubent und zu wenig zuverlässig. In Hinsicht auf die Vervollkommnung der analytischen Kontrolle wird noch Grundlegendes geschehen muissen.

Neuere metallographische Erkenntnisse haben, wie hekannt, der Stoffanalyse manche neue Wege erschlossen. Es sei nur an die planimetrische Bestimmung des Kupferoxyduls im Kupfer, des Kohlenstoffs im Eisen und vieler anderer Bestandteile erinnert. In diesem Zu sammenhange erscheint es vielleicht angebracht, die mikrographischen und chemisch-analytischen Befunde einer vergleichenden Auswertung zu unterziehen. Die Ergebnisse sind in Abb. 34 zusammengestellt. Es han-

Abb. 34. Gegenaberstellung der chemischen und metallographischen Befunde des Siliziumgehaltes im Silumin.
delt sich um die Bestimmung des Siliziums in der Aluminium-Siliziumlegierung Silumin ${ }^{12}$). Die ${ }^{-}$ausgezogene Kurve entspricht den analytischen Befunden, die gestrichelte der metallographischen Auswertung nach dem Planimetrierverfahren, das in vielen Fällen auch durch Schätzung ersetzt werden kann. Die anfänglich großen Abweichungen in den Siliziumgehalten konnten durch exakte Bestimmungen der chemischen Aualyse zur Last gelegt werden. Bei Präzisionsanalysen bestand weitgehende Ubereinstimmung mit den nach dem Planimetrierverfahren gewonnenen Ergebnissen. Von der Charge 41 an machen sich wieder gewisse Ab weichungen bemerkbar, die, wie durch Kontrollversuche wiederholt festgestellt werden konnte, auf die größere Streuung bei den chemischen Befunden zurückzuführen sind. Aus den Zahlenergebnissen geht auch für das Silumin hervor, daß die chemische und metallographische Stoffanalyse Zahlenwerte ergibt, die nur um cinige zelintel Prozent verschieden sind; gleichzeitig aber, daß die auf chemisch-analytischem Wege gefun-
${ }^{13}$) Vgl. Z. f. Metallk. Bd. 13 (1921) S. 507.
denen Siliziumgehalte häufiger einen gewissen Fehlbetrag ergeben. Der dargestellte Fall liegt insofern besonders günstig, als es sich beim Silumin um eine typische eutektische Legierung handelt, bei der kleine Abweichungen von der eutektischen Zusammensetzung sich im mikroskopischen Bild außerordentlich leicht nachweisen lassen. Zweifellos dürfte aber in manch anderm Falle die metallographische Stoffanalyse za gleich guten Ergebnissen führen.

Großzahiforschung.

- Uber die große Bedeutung der statistischen Auswertungsverfahren, die in der letzten Zeit zu cinem systematischen Wissensgebiet, der sogenannten Großzahlforschung sich entwickelt haben, ist von verschicdenen Seiten ausführlich berichtet worden. Es sei hier nur an die führenden Darlegungen von D aeves ${ }^{14}$) und Goerens ${ }^{15}$) erinnert. Dieses Verfahren ist wie kein anderes geeignet, die Leistungen eines Betriebes zuverlässig und klar zu erkennen. An Hand der Ergebnisse dieses Verfahrens sind dem Techmologen erst die Zusammenhänge in bezug auf Soll- und Garantiewerte seiner Baumaterialien klar geworden. Nicht nur die Häufigkeitszahl selbst, sondern auch der Charakter der Häufigkeitskurven ist kennzeichnend für die Güte und die sonstigen Eigenheiten der Baustoffe. Mit dem tieferen Eindringen in das Wesen der Großzahl werden sich dem Materialprïfungswesen noch ganz neue Hilfsmittel erschließen.

Verluste in der Presserei.

Auf eine unerfreuliche Erscheinung in den Metallbetricben möge nachstehende Zusammenstellung, vgl. Zahlentafel r, den weniger Eingeweihten hinweisen; sie betrifft die Strangpresserei. Man scheut sich immer, die Zahlen dieser Zusammenstellung öffentlich zu erörtern, und doch kann jedes Werk aus ihnen lernen. Ein Vergleich zeigt, daß hier nur Mittelmäßigkeit gegen Mittelmäßigkeit steht, und es ist erstaunlich, wie geringfïgig die Schwankungen unter den einzelnen Werken sind. Bei einer den Arbeitsgängen der Herstellung entsprechenden Unterteilung entfallen von dem Ausschul3 in der Gießerei beim Werk I auf Asche $2,2 \mathrm{vH}$, auf Spritzer $1,5 \mathrm{vH}$, auf Abbrand $2,5 \mathrm{vH}$, zusammen 6,2 vH ; beim Werk II auf Asche 4 vH , auf Spritzer $3,75 \mathrm{vH}$, auf Abbrand $3,25 \mathrm{vH}$, zusammen II vII und beim Auslandswerk III zusammen 5 vH vom Einsatz. Während also Werk I mit dem Auslandswerk III annähernd übereinstimmende Ausschußzahlen zu verzeichnen hat, ist dic Ausschußziffer des Werkes II etwa doppelt so hoch.

Zahlentafel.I. Werkstoff-Verluste in der Gießerei und beim Pressen.

Arbeitsgang	Werk I vII	Werk II viI	Auslandswerk $11 I$ vII	Bemerkungen	
Gießerei $\left\{\begin{array}{l}\text { Asche } \\ \text { Spritzer } \\ \text { Abbrand }\end{array}\right.$	2,2 1,5 2,5	4 $3,5-4$ $3-3,5$	2 3	$\}$ vom Einsatz	
Schopfen (Kopfabfall)	\} 10,5	11-12	8	vom Ausguß	
Pressabfall (Strangpresse)	25	30-32	37,7 $\{$	$\stackrel{\text { vom }}{\text { Preßblock }}$	
Gesamt	51,7	\|51,5-55,5		50,7	-

[^4]Auf das Schopfen der Barren (d. h. das Abschneiden rles lunkerigen Barrenteils) entfallen auf das Werk I $10,5 \mathrm{vH}$, auf das Werk II $1 \mathrm{I}, 5 \mathrm{vH}$ und auf das Auslandswerk III 8 vH auf den Ausguß bezogen. Wiederum erreicht also das Werk II die höchste Ausschußziffer, während die Ausschußziffer des Auslandswerkes III nicht unwesentlich tiefer liegt. Der Preßabfall auf der Strangpresse beträgt für das Werk I $35 v \mathrm{VI}$, für das Werk II 3I vII, für das Auslandswerk III $37,7 \mathrm{vH}$. Es ist bemerkenswert, daß das Werk II den geringsten Preßabfall zu verzeichnen hat, während vas Auslanulswerk III eine Abfallziffer von $37,7 \mathrm{vH}$ erreicht. Das Werk I nimmt eine Zwischenstellung ein. Demnach hat es den Anschein, als ob die Werke I und II bei der Sichtung des Vorerzeugnisses sorgfältiger verfahren als das Auslandswerk III, ein Umstand, der sich am Ausbringen der brauchbaren Preßerzeugnisse wiederum deutlich bemerkbar macht. Der Gesamtausschuß für das Werk I beträgt $5 \mathrm{I}, 7 \mathrm{vH}$, für das Werk II $53,5 \mathrm{vH}$ und für das Auslandswerk III $50,7 \mathrm{vH}$. Der Unterschied in den Ausbringen erreicht den Höchstbetrag von nur $2,8 \mathbf{v H}$. Dieser Fall zeigt in krassester Form die Un-

Abb. 35. Temperatur-Zeit-Einfluß auf die. Veredlung von Silumin.
sinnigkeit des Verheimlichungswesens. Nicht unsere Geschäftsbeflissenheit ist es, die die technischen Dinge bestimmend beeinflußt, sondern in erster Linie sind es die Stoffeigenschaften, die untrügerisch und gebieterisch ilıre Rechte erheischen. Wie im übrigen Leben, so auch in der Stoffwirtschaft entspricht immer der Einsatz dem Gewim.

Arbeitsbedingungen und Eigenschaften.

Wie man bei einer geordneten Betriebsführung zu Zahlenergebnissen gelangt, dic eine weitgehende Uberwachung eines Erzeugnisses sichern und dem Betriebe die Durchdringung der technisch-wissenschaftlichen Aufgaben erleichtern, möge an einem Schlußbeispiel noch erläutert werden. Der Veredlungsvorgang beim Silumin ${ }^{18}$) ist bekanntlich von der Veredlungstemperatur cinerseits und von der Zeitdaner dieser Veredlung anderseits in hohem Malse abhängig. Diese beiden Umstände sind bestimmend für den erreichbaren (irad der

[^5]Kornverfeinerung. Nun ist aber die Korngröße eines Gußstückes ferner noch von den Bedingungen beim Abkühlen abhängig. Da diese Bedingungen beim Vergießen von Silumin mehr oder weniger als gleichibleibend angesehen werden können (Sandgud, geringe Schwankungen in der Gießtemperatur), so können diese Einflüsse schlechthin bei dieser Betrachtung außer acht gelassen werden. Da die Korngröße wiederum bestimmend auf die Festigkeit und Dehmung cinwirkt, so müssen ganz bestimme Zahlenbeziehungen zwischen den Arbeitsbedingungen einerseits und der Korngröße, Festigkeit und Dehnung anderseits bestehen. Diese Beziehungen sind im Schaubild, Abb. 35, veranschaulicht worden. Lei je höherer Temperatur die Veredlung vorgenommen wird, um so kürzer muß ihre Zeitdataer sein. Bei miedrigen Veredlungstemperaturen muß anderseits aber die Einwirkungsdauer groß genug sein, um eine Verteilung der reagierenden Stoffe auf dem Wege der Diffusion zu gewährleisten. Stellt man an das Gußerzengnis dic Bedingung, daß seine Korngröle $0,1 \mathrm{~mm}$ nicht übersteigen soll, so würden alle hergestellten Legierungen zu verwerfen sein, deren Korngröße diesen Betrag überschreitet, d. h. Legierungen, deren Zusammensetzung außerhalb einer gedachten l'arallelen zur Grundflache entsprechend einer Korngröße von $0,1 \mathrm{~mm}$ liegen. Dieser Teil des Schaubildes, der die kritischen Gehiete umfaßt; ist durch starke. Linienzüge besonders gekemnzeichnct. Die günstigsten Arbeitsbedingungen liegen unterhalb dieses kritischen Gebietes. Um feinkörniges Gefäge $z u$ erlalten, muls man also die Veredlungstemperatur möglichst niedrig und die Einwirkungsdater der Veredlung angemessen kurz halten. Wie sehr sich der Einfluß der Korngrölse in den mechanischen Eigenschaften des Erzeugnisses widerspiegelt, zeigen die auf der Senkrechten mit eingezeichneten Festigkeits- und Dehnungszahlen. An der Hand eines solchen Arbeitschaubildes wird sich der Betrieb bei dem Auftreten gelegentlicher Anomalien immer wieder zurecht finden können.

Ausblick.

Wenn an der Hand dieser wenigen Beispiele versucht worden ist, einen Einblick in die technisch-wissenschaftliche Entwicklung der Metallbetriebe in den letzten Jahren zu geben, so ist es wohl selbstverständlich, daß dabei nur die grundsätzlichen Gesichtspunkte flüchtig gestreift werden konnten. Die Ubertragung der Ergebnisse auf gleiche oder ähnliche Fälle ist Sache des tätigen Fachmannes, der in seinen Maßnahmen das Erreichbare mit dem Erstrebenswerten zu vereinen hat. Und noch ein Wort! Man hört häufig Klagen darüber, daß die wissenschaftlichen Restrebungen in der Praxis und in den Betrieben nicht immer das halten, was sie halten sollen. Häufig wird dann im Zusammenhang mit diesen Dingen ein Urteil über die Wissenschaft selbst gefällt, und nur zu oft wird sie zu einer überflüssigen Einrichtung gestempelt. Der wahre Grund liegt aber nicht im Versagen der wissenschaftlich-technischen Erkenntnis, sondern vielmehr darin, dab es uns nicht immer gelingt, wissenschaftlich genug zusein.
[RS6GI]

Der Meinungsaustausch, der sich an den Vortrag anschloß, wirl im nächsten Heft der Zeitschrift veröffentlicht werden.

[^6]
[^0]: ${ }^{1)}$ Vgl. auch S. 15 .

[^1]: ${ }^{2}$) Z. f. Physik Bd. 12 (1922) S. 58.

[^2]: ${ }^{8}$) Dürener Metallwerke A.-G., Düren Rheinland, vgl. Z. f. Metallk. Bd. 16 (1924) S. 122 .
 ${ }^{9}$) Metallbank und Metallurgische Gesellschaft A.-G., vgl. Z. f. Metallk. Bd. 16 (1924) S. 436 .
 ${ }^{10}$) Metallbank und Metallurgische Gescllschaft A.-G., vgl. Z. f. Metallk. Bd. 16 (1924) S. 436.
 11) Vereinigte Aluminiumwerke A.- G., Lautawerk, vgl. Z. f. Metallk. Bd. 16 (1924) S. 343.
 ${ }^{12}$) Karl Schmidt, G. m. b. H., Neckarsulm.

[^3]: ${ }^{12 a}$) Vgl. auch u. a. Z. f. Metallk. Bd. 17 (1924) S. 64/65 u. 77/84.

[^4]: ${ }^{14}$) Z. d. V. D. I. Bd. 67 (1923) S. 643; Z. f. Metallk. Bd. 13 (192I) S. 78; s. a. Z. f. Metallk. Bd. IS (192G) S. 35.
 $\left.{ }^{15}\right)$ Stahl u. Eisen Bd. 43 (I 23) S. irgi.

[^5]: ${ }^{19}$) Z. f. Metallk. Bd. 15 (1923) S. 78.

[^6]: Eingegangen, II. Dezember 1925.

