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Abstract

In this article, we present some extensions of the rough set approach and we outline a challenge for the rough set based
research.
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The central problem of our age is how to act decisively in the absence of certainty.
Bertrand Russell (1950). An Inquiry into Meaning and Truth.
George Allen and Unwin, London; W.W. Norton, New York.

1. Introduction

We use notation introduced in [47]. The reader is also referred to the literature cited in [47].

The basic notions of rough sets and approximation spaces were introduced during the early 1980s (see, e.g.,
[42-44]). In this section, we give some introductory remarks on rough sets.

Rough set theory, proposed by Pawlak in 1982 [44,45], can be seen as a new mathematical approach to
vagueness. The rough set philosophy is founded on the assumption that with every object of the universe
of discourse we associate some information (data, knowledge). For example, if objects are patients suffering
from a certain disease, symptoms of the disease form information about patients. Objects characterized by
the same information are indiscernible (similar) in view of the available information about them. The
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indiscernibility relation generated in this way is the mathematical basis of rough set theory. This understand-
ing of indiscernibility is related to the idea of Gottfried Wilhelm Leibniz that objects are indiscernible if and
only if all available functionals take on identical values (Leibniz’s Law of Indiscernibility: The Identity of
Indiscernibles) [2,28]. However, in the rough set approach, indiscernibility is defined relative to a given set
of functionals (attributes).

Any set of all indiscernible (similar) objects is called an elementary set, and forms a basic granule (atom) of
knowledge about the universe. Any union of some elementary sets is referred to as a crisp (precise) set. A set
which is not crisp is called rough (imprecise, vague).

Consequently, each rough set has boundary region cases, i.e., objects which cannot with certainty be clas-
sified either as members of the set or of its complement. Obviously crisp sets have no boundary region ele-
ments at all. This means that boundary region cases cannot be properly classified by employing available
knowledge.

Thus, the assumption that objects can be “seen” only through the information available about them leads
to the view that knowledge has a granular structure. Due to the granularity of knowledge, some objects of
interest cannot be discerned and appear as the same (or similar). As a consequence, vague concepts, in contrast
to precise concepts, cannot be characterized in terms of information about their elements. Therefore, in the
proposed approach, we assume that any vague concept is replaced by a pair of precise concepts — called
the lower and the upper approximation of the vague concept. The lower approximation consists of all objects
which surely belong to the concept and the upper approximation contains all objects which possibly belong to
the concept. The difference between the upper and the lower approximation constitutes the boundary region of
the vague concept. These approximations are two basic operations in rough set theory.

Hence, rough set theory expresses vagueness not by means of membership, but by employing a boundary
region of a set. If the boundary region of a set is empty, it means that the set is crisp, otherwise the set is rough
(inexact). A nonempty boundary region of a set means that our knowledge about the set is not sufficient to
define the set precisely.

Rough set theory is not an alternative to but rather is embedded in classical set theory. Rough set theory
can be viewed as a specific implementation of Frege’s idea of vagueness, i.e., imprecision in this approach is
expressed by a boundary region of a set.

Rough set theory has attracted worldwide attention of many researchers and practitioners, who have con-
tributed essentially to its development and applications. Rough set theory overlaps with many other theories.
Despite this, rough set theory may be considered as an independent discipline in its own right. The rough set
approach seems to be of fundamental importance in artificial intelligence and cognitive sciences, especially in
research areas such as machine learning, intelligent systems, inductive reasoning, pattern recognition, mereol-
ogy, image processing, signal analysis, knowledge discovery, decision analysis, and expert systems. The main
advantage of rough set theory in data analysis is that it does not need any preliminary or additional informa-
tion about data like probability distributions in statistics, basic probability assignments in Dempster—Shafer
theory, a grade of membership or the value of possibility in fuzzy set theory (see, e.g., [13] where some com-
binations of rough sets with non-parametric statistics are studied).

This paper is structured as follows. In Section 2 we discuss some extensions of the basic rough set approach.
First, in Section 2.1 we present approximation spaces based on neighborhoods of objects and inclusion mea-
sures of neighborhoods into concepts. Illustrative examples of such approximation spaces are included. In Sec-
tion 2.2 inductive extensions of approximation spaces are defined. Such extensions are used in approximation
of partially defined concepts. Boundary regions of approximated concepts are changing together with the sub-
jective knowledge on which approximation is based. In Section 2.3 a relationship of this property with the
so-called higher order vagueness is pointed out. Approximation spaces are becoming more compound in
the case of information granulation or hierarchical learning. Some issues related to such approximation spaces
are discussed in Sections 2.4 and 2.5. In particular, the ontology approximation problem is formulated and its
importance for compound concept approximation is emphasized. This is a problem of approximation of
domain knowledge specified by vague concepts and dependencies between them given together with partial
information about the vague concepts. A generalization of mereology due to Lesniewski to rough mereology
is outlined in Section 2.6. Rough mereology has been developed for synthesis and analysis of compound
objects satisfying a given specification to a satisfactory degree. Finally, in Section 3 some information on
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the current methods and applications based on rough sets is included together with an example of the chal-
lenging research problem concerning approximation of compound concepts.

2. Extensions

The rough set concept can be defined quite generally by means of topological operations, interior and clo-
sure, called approximations [52]. It was observed in [44] that the key to the presented approach is provided by
the exact mathematical formulation of the concept of approximative (rough) equality of sets in a given
approximation space. In [45], an approximation space is represented by the pair (U, R), where U is a universe
of objects, and R C U x U is an indiscernibility relation defined by an attribute set (i.e., R = I(4) for some
attribute set A). In this case R is the equivalence relation. Let [x]z denote an equivalence class of an element
x € U under the indiscernibility relation R, where [x]g = {y € U: xRy}.

In this context, R-approximations of any set X C U are based on the exact (crisp) containment of sets. Then
set approximations are defined as follows:

e x € U belongs with certainty to X C U (i.e., x belongs to the R-lower approximation of X), if [x]z C X.

e x € U possibly belongs X C U (i.e., x belongs to the R-upper approximation of X), if [x]zg N X # 0.

e x € U belongs with certainty neither to the X nor to U — X (i.e., x belongs to the R-boundary region of X),
if [x]gN(U—X) # 0 and [x]gN X # 0.

Several generalizations of the above approach have been proposed in the literature (see, e.g.,
[1,18,41,71,76,83,84,87,93,100]). In particular, in some of these approaches, set inclusion to a degree is used
instead of the exact inclusion.

Different aspects of vagueness in the rough set framework are discussed, e.g., in [34,38,39,63,68].

Our knowledge about the approximated concepts is often partial and uncertain [23]. For example, concept
approximation should be constructed from examples and counterexamples of objects for the concepts [15].
Hence, concept approximations constructed from a given sample of objects are extended, using inductive rea-
soning, on objects not yet observed. The rough set approach for dealing with concept approximation under
such partial knowledge is presented, e.g., in [76]. Moreover, the concept approximations should be constructed
under dynamically changing environments [68,75]. This leads to a more complex situation where the boundary
regions are not crisp sets, which is consistent with the postulate of the higher order vagueness considered by
philosophers (see, e.g., [26]). It is worthwhile to mention that a rough set approach to the approximation of
compound concepts has been developed and at this time no traditional method is able directly to approximate
compound concepts [11,92]. The approach is based on hierarchical learning and ontology approximation
[8,36,41,70]. Approximation of concepts in distributed environments is discussed in [66]. A survey of algorith-
mic methods for concept approximation based on rough sets and Boolean reasoning in presented, e.g., in [4,64].

2.1. Generalizations of approximation spaces

Several generalizations of the classical rough set approach based on approximation spaces defined as pairs
of the form (U, R), where R is the equivalence relation (called indiscernibility relation) on the set U, have been
reported in the literature. Let us mention two of them.

A generalized approximation space' can be defined by a tuple AS = (U, I, v) where I is the uncertainty func-
tion defined on U with values in the powerset Pow(U) of U (I(x) is the neighborhood of x) and v is the inclusion
function defined on the Cartesian product Pow(U) x Pow(U) with values in the interval [0, 1] measuring the
degree of inclusion of sets. The lower A4S, and upper AS™ approximation operations can be defined in A4S by

AS.(X)={x e U:v(I(x),X) =1}, (1)
AS*(X)={x e U :v({(x),X) > 0}. (2)

! Some other generalizations of approximation spaces are also considered in the literature (see, e.g., [31,32,57,65,91,94-97]).
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In the standard case I(x) is equal to the equivalence class B(x) of the indiscernibility relation /(B); in case of
tolerance (similarity) relation T C U x U [62] we take I(x) = {y € U: xty}, i.e., I(x) is equal to the tolerance
class of 7 defined by x. The standard inclusion relation vggry is defined for X, Y C U by

card(XNY)

vori(X, ¥) = {0 |
1, otherwise.

if X is non-empty,

3)

For applications it is important to have some constructive definitions of 7/ and v.

One can consider another way to define /(x). Usually together with A4S we consider some set F of formulae
describing sets of objects in the universe U of AS defined by semantics ||| 45, 1.€., ||o|| 45 C U for any o € F.
Now, one can take the set

Nr(x) = {a € F:x € ol (4)

and I(x) = {||o||4s : @ € NHx)}. Hence, more general uncertainty functions having values in Pow(Pow(U)) can
be defined and in the consequence different definitions of approximations are considered. For example, one
can consider the following definitions of approximation operations in A4S:

AS,(X)={x e U:v(Y,X) =1 for some Y € I(x)}, (5)
AS°(X)={xe U:v(Y,X) >0 forany Y € I(x)}. (6)
There are also different forms of rough inclusion functions. Let us consider two examples.

In the first example of a rough inclusion function, a threshold ¢ € (0,0.5) is used to relax the degree of inclu-
sion of sets. The rough inclusion function v, is defined by

1, if VSRI(X,Y) = l—t,
v(X,Y) = %, if 1 <vspi(X,Y) <1—1, (7)
0, if VSRI(X, Y) g t.

This is an interesting “rough-fuzzy” example because we put the standard rough membership function as an
argument into the formula often used for fuzzy membership functions.

One can obtain approximations considered in the variable precision rough set approach (VPRSM) [100] by
substituting in (1), (2) the rough inclusion function v, defined by (7) instead of v, assuming that Y'is a decision
class and N(x) = B(x) for any object x, where B is a given set of attributes.

Another example of application of the standard inclusion was developed by using probabilistic decision
functions. For more detail the reader is referred to [79-81].

The rough inclusion relation can be also used for function approximation [76] and relation approximation
[89]. In the case of function approximation the inclusion function v* for subsets X, Y C Ux U, where X, Y C %
and Z is the set of reals, is defined by

card(my (XNY :
v*(X,Y):{mr(d(ln('(X))))’ if 7T1(X)7é®, (8)
17 lf TCl(X) == @,

where 7, is the projection operation on the first coordinate. Assume now, that X is a cube and Y is the graph
G(f) of the function f : # — . Then, e.g., X is in the lower approximation of f'if the projection on the first
coordinate of the intersection X N G(f) is equal to the projection of X on the first coordinate. This means that
the part of the graph G(f) is ““well” included in the box X, i.e., for all arguments that belong to the box pro-
jection on the first coordinate the value of f'is included in the box X projection on the second coordinate.

The approach based on inclusion functions has been generalized to the rough mereological approach
[41,56,55,58] (see also Section 2.6). The inclusion relation xp,y with the intended meaning x is a part of y
to a degree at least r has been taken as the basic notion of the rough mereology being a generalization of
the Lesniewski mereology [29,30]. Research on rough mereology has shown importance of another notion,
namely closeness of compound objects (e.g., concepts). This can be defined by xc/, .y if and only if xu.y
and yu,.x.
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Rough mereology offers a methodology for synthesis and analysis of objects in a distributed environment of
intelligent agents, in particular, for synthesis of objects satisfying a given specification to a satisfactory degree
or for control in such a complex environment. Moreover, rough mereology has been used for developing the
foundations of the information granule calculi, aiming at formalization of the Computing with Words para-
digm, recently formulated by Lotfi Zadeh [98]. More complex information granules are defined recursively
using already defined information granules and their measures of inclusion and closeness. Information gran-
ules can have complex structures like classifiers or approximation spaces. Computations on information gran-
ules are performed to discover relevant information granules, e.g., patterns or approximation spaces for
compound concept approximations.

Usually there are considered families of approximation spaces labeled by some parameters. By tuning such
parameters according to chosen criteria (e.g., minimal description length) one can search for the optimal
approximation space for concept description (see, e.g., [4]).

2.2. Concept approximation

In this section, we consider the problem of approximation of concepts over a universe U™ (concepts that
are subsets of U™). We assume that the concepts are perceived only through some subsets of U™, called sam-
ples. This is a typical situation in the machine learning, pattern recognition, or data mining approaches
[15,27,33]. We explain the rough set approach to induction of concept approximations using the generalized
approximation spaces of the form A4S = (U, 1,v) defined in Section 2.1.

Let U C U™ be a finite sample. By IT;; we denote a perception function from P(U™) into P(U) defined by
I (C)= Cn U for any concept C C U™. Let A4S = (U, I,v) be an approximation space over the sample U.

The problem we consider is how to extend the approximations of I1( C) defined by A4S to approximation of
C over U™. We show that the problem can be described as searching for an extension AS¢= (U, I¢,vc) of
the approximation space A4S, relevant for approximation of C. This requires to show how to extend the inclu-
sion function v from subsets of U to subsets of U™ that are relevant for the approximation of C. Observe that
for the approximation of C it is enough to induce the necessary values of the inclusion function v¢ without
knowing the exact value of I(x) C U™ for x € U™.

Let AS be a given approximation space for I1(C) and let us consider a language L in which the neighbor-
hood I(x) C U is expressible by a formula pat(x), for any x € U. It means that I(x) = ||pat(x)||y C U, where
||lpat(x)|| v denotes the meaning of pat(x) restricted to the sample U. In case of rule based classifiers patterns
of the form pat(x) are defined by feature value vectors.

We assume that for any new object x € U™\ U we can obtain (e.g., as a result of sensor measurement) a
pattern pat(x) € L with semantics ||pat(x)||,,~ C U*. However, the relationships between information granules
over U™ like sets: ||pat(x)||,~ and ||pat(y)||~, for different x,y € U™, are, in general, known only if they can
be expressed by relationships between the restrictions of these sets to the sample U, i.e., between sets
11y(|pat(x)]] ) and Iy ([[pat(y)]| ).

The set of patterns {pat(x) : x € U} is usually not relevant for approximation of the concept C C U*. Such
patterns are too specific or not enough general, and can directly be applied only to a very limited number of
new objects. However, by using some generalization strategies, one can search, in a family of patterns defin-
able from {pat(x): x € U} in L, for such new patterns that are relevant for approximation of concepts over
U™. Let us consider a subset PATTERNS(AS,L,C) C L chosen as a set of pattern candidates for relevant
approximation of a given concept C. For example, in case of rule based classifier one can search for such can-
didate patterns among sets definable by subsequences of feature value vectors corresponding to objects from
the sample U. The set PATTERNS(AS,L,C) can be selected by using some quality measures checked on
meanings (semantics) of its elements restricted to the sample U (like the number of examples from the concept
I (C) and its complement that support a given pattern). Then, on the basis of properties of sets definable by
these patterns over U we induce approximate values of the inclusion function v on subsets of U™ definable by
any of such pattern and the concept C.

Next, we induce the value of vc on pairs (X,Y) where X C U™ is definable by a pattern from
{pat(x) : x € U} and Y C U™ is definable by a pattern from PATTERNS(AS,L,C).
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Finally, for any object x € U™\ U we induce the approximation of the degree vc(||pat(x)||,~,C) applying a
conflict resolution strategy Conflict_res (a voting strategy, in case of rule based classifiers) to two families of
degrees:

{ve(||pat(x)|| =, lpat|| =) : pat € PATTERNS(AS,L,C)}, 9)
{ve(||pat||y~, C) : pat € PATTERNS(AS,L,C)}. (10)

Values of the inclusion function for the remaining subsets of U™ can be chosen in any way — they do not have
any impact on the approximations of C. Moreover, observe that for the approximation of C we do not need to
know the exact values of uncertainty function /- — it is enough to induce the values of the inclusion function
ve. Observe that the defined extension v of v to some subsets of U™ makes it possible to define an approx-
imation of the concept C in a new approximation space ASc.

Observe that one can also follow principles of Bayesian reasoning and use degrees of v to approximate C
(see, e.g., [46,82,85]).

In this way, the rough set approach to induction of concept approximations can be explained as a process
of inducing a relevant approximation space.

2.3. Higher order vagueness

In [26], it is stressed that vague concepts should have non-crisp boundaries. In the definition presented in
[47], the notion of boundary region is defined as a crisp set BN z(X). However, let us observe that this definition
is relative to the subjective knowledge expressed by attributes from B. Different sources of information may
use different sets of attributes for concept approximation. Hence, the boundary region can change when we
consider these different views. Another aspect is discussed in [68,75] where it is assumed that information
about concepts is incomplete, e.g., the concepts are given only on samples (see, e.g., [15,27,35]). From
[68,75] it follows that vague concepts cannot be approximated with satisfactory quality by static constructs
such as induced membership inclusion functions, approximations or models derived, e.g., from a sample.
Understanding of vague concepts can be only realized in a process in which the induced models are adaptively
matching the concepts in a dynamically changing environment. This conclusion seems to have important con-
sequences for further development of rough set theory in combination with fuzzy sets and other soft comput-
ing paradigms for adaptive approximate reasoning.

2.4. Information granulation

Information granulation can be viewed as a human way of achieving data compression and it plays a key
role in the implementation of the strategy of divide-and-conquer in human problem-solving [98]. Objects
obtained as the result of granulation are information granules. Examples of elementary information granules
are indiscernibility or tolerance (similarity) classes (see, e.g., [47]). In reasoning about data and knowledge
under uncertainty and imprecision many other more compound information granules are used (see, e.g.,
[61,59,65,72,73]). Examples of such granules are decision rules, sets of decision rules or classifiers. More com-
pound information granules are defined by means of less compound ones. Note that inclusion or closeness
measures between information granules should be considered rather than their strict equality. Such measures
are also defined recursively for information granules.

Let us discuss shortly an example of information granulation in the process of modeling patterns for com-
pound concept approximation (see, e.g., [6-10,36,78,90]). We start from a generalization of information sys-
tems. For any attribute a € 4 of an information system (U, 4) we consider together with the value set V, of a a
relational structure £, over the universe V, (see, e.g., [77]). We also consider a language %, of formulas (of the
same relational signature as %,). Such formulas interpreted over %, define subsets of Cartesian products of
Va. For example, any formula o with one free variable defines a subset ||«||, of V,. Let us observe that the
relational structure %, (without functions) induces a relational structure over U. Indeed, for any k-ary relation
r from %, one can define a k-ary relation g, C U* by (x1,...,x;) € g,if and only if (a(x)), . . .,a(x;)) € r for any
(X1,...,X) € U*. Hence, one can consider any formula from %, as a constructive method of defining a subset
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of the universe U with a structure induced by #,. Any such a structure is a new information granule. On the
next level of hierarchical modeling, i.e., in constructing new information systems we use such structures as
objects and attributes are properties of such structures. Next, one can consider similarity between new con-
structed objects and then their similarity neighborhoods will correspond to clusters of relational structures.
This process is usually more complex. This is because instead of relational structure %, we usually consider
a fusion of relational structures corresponding to some attributes from 4. The fusion makes it possible to
describe constraints that should hold between parts obtained by composition from less compound parts.
Examples of relational structures can be defined by indiscernibility, similarity, intervals obtained in discreti-
zation or symbolic value grouping, preference or spatio-temporal relations (see, e.g., [18,27,71]). One can
see that parameters to be tuned in searching for relevant® patterns over new information systems are, among
others, relational structures over value sets, the language of formulas defining parts, and constraints.

2.5. Ontological framework for approximation

In a number of papers (see, e.g., [40,74]), the problem of ontology approximation has been discussed
together with possible applications to approximation of compound concepts or to knowledge transfer (see,
e.g., [5,37,69,67,74)).

In the ontology [88] (vague) concepts and local dependencies between them are specified. Global dependen-
cies can be derived from local dependencies. Such derivations can be used as hints in searching for relevant
compound patterns (information granules) in approximation of more compound concepts from the ontology.
The ontology approximation problem is one of the fundamental problems related to approximate reasoning in
distributed environments. One should construct (in a given language that is different from the ontology spec-
ification language) not only approximations of concepts from ontology but also vague dependencies specified
in the ontology. It is worthwhile to mention that an ontology approximation should be induced on the basis of
incomplete information about concepts and dependencies specified in the ontology. Information granule
calculi based on rough sets have been proposed as tools making it possible to solve this problem. Vague
dependencies have vague concepts in premisses and conclusions. The approach to approximation of vague
dependencies based only on degrees of closeness of concepts from dependencies and their approximations
(classifiers) is not satisfactory for approximate reasoning. Hence, more advanced approach should be devel-
oped. Approximation of any vague dependency is a method which allows for any object to compute the argu-
ments “for” and ‘“against” its membership to the dependency conclusion on the basis of the analogous
arguments relative to the dependency premisses. Any argument is a compound information granule (com-
pound pattern). Arguments are fused by local schemes (production rules) discovered from data. Further
fusions are possible through composition of local schemes, called approximate reasoning schemes (AR
schemes) (see, e.g., [9,41,59]). To estimate the degree to which (at least) an object belongs to concepts from
ontology the arguments “for” and ‘“‘against” those concepts are collected and next a conflict resolution strat-
egy is applied to them to predict the degree.

2.6. Mereology and rough mereology

This section introduces some basic concepts of rough mereology (see, e.g., [53,54,56,59-61)).

Exact and rough concepts can be characterized by a new notion of an element, alien to naive set theory in
which this theory has been coded until now. For an information system .« = (U, 4), and a set B of attributes,
the mereological element ely is defined by letting

xely X if and only if B(x) C X. (11)

Then, a concept X is B-exact if and only if either xe/; X or xel; U \ X for each x € U, and the concept X is
B-rough if and only if for some x € U neither xel; X nor xel; U\ X.

2 For target concept approximation.
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Thus, the characterization of the dichotomy exact-rough cannot be done by means of the element notion of
naive set theory, but requires the notion of containment (C), i.e., a notion of mereological element.

The Lesniewski Mereology (theory of parts) is based on the notion of a part [29,30]. The relation = of part
on the collection U of objects satisfies

1. if xmy then not ymx; (12)
2. if xmy and ynz then xnz. (13)

The notion of mereological element e/, is introduced as
xel,y if and only if xny or x = y. (14)

In particular, the relation of proper inclusion C is a part relation = on any non-empty collection of sets, with
the element relation e/, = C.

Formulas expressing, e.g., rough membership, quality of decision rule, quality of approximations can be
traced back to a common root, i.e., v(X, Y) defined by Eq. (3). The value v(X, Y) defines the degree of partial
containment of X into Y and naturally refers to the Lesniewski Mereology. An abstract formulation of this
idea in [56] connects the mereological notion of element e/, with the partial inclusion by introducing a rough
inclusion as a relation v C Ux U x [0, 1] on a collection of pairs of objects in U endowed with part = relation,
and such that

1. v(x,y,1) if and only if xel,y; (15)
2.1f v(x,y,1) then (if v(z,x,r) then v(z,y,7)); (16)
3. if v(z,x,r) and s < r then v(z,x,s). (17)

Implementation of this idea in information systems can be based on Archimedean t-norms [56]; each such
norm 7 is represented as 7(r,s) = g(f(r) + f(s)) with f, g pseudo-inverses to each other, continuous and
decreasing on [0, 1]. Letting for (U, 4) and x,y € U

DIS(x,y) ={a €4 :a(x) #a(y)}, (18)

and
. . d(DIS (x,

v(x,y,r) if and only if g(%) =, (19)
v defines a rough inclusion that satisfies additionally the transitivity rule

V(x,y, I”),V(y,z, s) (20)

v(x,z, T(r,s))
Simple examples here are: the Menger rough inclusion in the case f{r) = —Inr, g(s) = ¢ * yields v(x, y,r) if and
card(DIS(x,p))

only if e «?@ > r and it satisfies the transitivity rule:

V(va’vr)av(yvzaS) (21)

v(xvyar's)
i.e., the tnorm T is the Menger (product) t-norm r-s, and, the Lukasiewicz rough inclusion with
fix) =1 — x = g(x) yielding v(x,,r) if and only if 1 — W > r with the transitivity rule:

V(X y, 1), (3,2, 8)
v(x,y, max{0,r +s—1})’

(22)

1.e., with the Lukasiewicz t-norm.

Rough inclusions [56] can be used in granulation of knowledge [98]. Granules of knowledge are constructed
as aggregates of indiscernibility classes close enough with respect to a chosen measure of closeness. In a nut-
shell, a granule g,(x) about x of radius r can be defined as the aggregate of all y with v(y, x,r). The aggregating
mechanism can be based on the class operator of mereology (cf. rough mereology [56]) or on set theoretic
operations of union.
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Rough mereology [56] combines rough inclusions with methods of mereology. It employs the operator of
mereological class that makes collections of objects into objects. The class operator Cis satisfies the require-
ments, with any non-empty collection M of objects made into the object Cls(M)

if x € M then xel,CIls(M), (23)
if xel,Cls(M) then there exist y,z such that yel x,yel z,z € M. (24)

In case of the part relation C on a collection of sets, the class Cls(M) of a non-empty collection M is the union
UM.

Granulation by means of the class operator Cls consists in forming the granule g.(x) as the class
Cls(y : v(y,x,r)). One obtains a granule family with regular properties (see [93]).

3. Rough sets: a challenge

There are many real-life problems that are still hard to solve using the existing methodologies and technol-
ogies. Among such problems are, e.g., classification of medical images, control of autonomous systems like
unmanned aerial vehicles or robots, problems related to monitoring or rescue tasks in multi-agent systems.
All of these problems are closely related to intelligent systems that are more and more widely applied in dif-
ferent real-life projects.

One of the main challenges in developing intelligent systems is discovering methods for approximate rea-
soning from measurements to perception, i.e., deriving from concepts resulting from sensor measurements
concepts enunciated in natural language that express perception [98].

Nowadays, new emerging computing paradigms are investigated attempting to make progress in solving
problems related to this challenge. Further progress depends on a successful cooperation of specialists from
different scientific disciplines such as mathematics, computer science, artificial intelligence, biology, physics,
chemistry, bioinformatics, medicine, neuroscience, linguistics, psychology, sociology. In particular, different
aspects of reasoning from measurements to perception are investigated in psychology [3,24], neuroscience
[51], layered learning [90], mathematics of learning [51], machine learning, pattern recognition [15], data mining
[27] and also by researchers working on recently emerged computing paradigms such as computing with words
and perception [98], granular computing [41], rough sets, rough-mereology, and rough-neural computing [41].

One of the main problems investigated in machine learning, pattern recognition [15] and data mining [27]is
concept approximation. It is necessary to induce approximations of concepts (models of concepts) from avail-
able experimental data. The data models developed so far in such areas like statistical learning, machine learn-
ing, pattern recognition are not satisfactory for approximation of compound concepts resulting in the
perception process. Researchers from the different areas have recognized the necessity to work on new methods
for concept approximation (see, e.g., [11,92]). The main reason is that these compound concepts are, in a sense,
too far from measurements which makes the searching for relevant (for their approximation) features infeasible
in a huge space. There are several research directions aiming at overcoming this difficulty. One of them is based
on the interdisciplinary research where the results concerning perception in psychology or neuroscience are
used to help to deal with compound concepts (see, e.g., [15]). There is a great effort in neuroscience towards
understanding the hierarchical structures of neural networks in living organisms [14,51]. Also mathematicians
are recognizing problems of learning as the main problem of the current century [51]. The problems discussed so
far are also closely related to complex system modeling. In such systems again the problem of concept approx-
imation and reasoning about perceptions using concept approximations is one of the challenges nowadays. One
should take into account that modeling complex phenomena entails the use of local models (captured by local
agents, if one would like to use the multi-agent terminology [25,99]) that next should be fused. This process
involves the negotiations between agents [25] to resolve contradictions and conflicts in local modeling. This
kind of modeling will become more and more important in solving complex real-life problems which we are
unable to model using traditional analytical approaches. The latter approaches lead to exact models. However,
the necessary assumptions used to develop them are causing the resulting solutions to be too far from reality to
be accepted. New methods or even a new science should be developed for such modeling [16].

One of the possible solutions in searching for methods for compound concept approximations is the layered
learning idea [90]. Inducing concept approximation should be developed hierarchically starting from concepts
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close to sensor measurements to compound target concepts related to perception. This general idea can be
realized using additional domain knowledge represented in natural language. For example, one can use prin-
ciples of behavior on the roads, expressed in natural language, trying to estimate, from recordings (made, e.g.,
by camera and other sensors) of situations on the road, if the current situation on the road is safe or not. To
solve such a problem one should develop methods for concept approximations together with methods aiming
at approximation of reasoning schemes (over such concepts) expressed in natural language. Foundations of
such an approach are based on rough set theory [45] and its extension rough mereology [41,55,56,58], both
discovered in Poland.

Objects we are dealing with are information granules (see Section 2.4). Such granules are obtained as the
result of information granulation [98].

Computing with Words and Perception “derives from the fact that it opens the door to computation and
reasoning with information which is perception-rather than measurement-based. Perceptions play a key role in
human cognition, and underlie the remarkable human capability to perform a wide variety of physical and
mental tasks without any measurements and any computations. Everyday examples of such tasks are driving
a car in city traffic, playing tennis and summarizing a story”’ [98].

The rough mereological approach [41,55,56,58] is based on calculi of information granules for constructing
compound concept approximations. Constructions of information granules should be robust with respect to
their input information granule deviations. In this way also a granulation of information granule construc-
tions is considered. As the result we obtain the so-called AR schemes (AR networks) [41,55,56,58]. AR
schemes can be interpreted as complex patterns [27]. Searching methods for such patterns relevant for a given
target concept have been developed [41]. Methods for deriving relevant AR schemes are of high computational
complexity. The complexity can be substantially reduced by using domain knowledge. In such a case AR
schemes are derived along reasoning schemes in natural language that are retrieved from domain knowledge.
Developing methods for deriving such AR schemes is one of the main goals of our projects.

The outlined research directions create foundations toward understanding the nature of reasoning from
measurements to perception. These foundations are crucial for constructing intelligent systems for many
real-life projects.

4. Conclusions

The rough set concept has led to its various generalizations. Some of them have been discussed in the arti-
cle. Among extensions not discussed in this paper is the rough set approach to multi-criteria decision making
(see, e.g., [17-22,49,50,86]).

Recently, it has been shown that the rough set approach can be used for synthesis and analysis of concept
approximations in the distributed environment of intelligent agents. We outlined the rough mereological
approach and its applications in calculi of information granules for synthesis of information granules satisfy-
ing a given specification to a satisfactory degree. Finally, we have discussed a challenge for research on rough
sets related to approximate reasoning from measurements to perception.
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