
European Journal of Operational Research 166 (2005) 649–654

www.elsevier.com/locate/dsw
Some remarks on conflict analysis

Zdzisław Pawlak

Warsaw School of Information Technology, ul. Newelska 6, 01 447 Warsaw, Poland

Received 1 September 2002; accepted 1 September 2003
Available online 12 August 2004
Abstract

Study of conflicts is of greatest importance both practically and theoretically. Conflict analysis and resolution play
an important role in business, governmental, political and lawsuits disputes, labor-management negotiations, military
operations and others. Many formal models of conflict situations have been proposed and studied. In this paper we
outline a new approach to conflict analysis, which will be illustrated by a simple tutorial example of voting analysis
in conflict situations.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Conflict analysis and resolution play an impor-
tant role in business, governmental, political and
lawsuits disputes, labor-management negotiations,
military operations and others. To this end many
mathematical formal models of conflict situations
have been proposed and studied, e.g. [1–6,9].

Various mathematical tools, e.g., graph theory,
topology, differential equations and others, have
been used to that purpose.

Needless to say that game theory can be also
considered as a mathematical model of conflict
situations.
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In fact there is no, as yet, ‘‘universal’’ theory
of conflicts and mathematical models of conflict
situations are strongly domain dependent.

We are going to present in this paper still
another approach to conflict analysis, based
on some ideas of rough set theory––along the
lines proposed in [6]. We will illustrate the
proposed approach by means of a simple tuto-
rial example of voting analysis in conflict
situations.

The considered model is simple enough for easy
computer implementation and seems adequate for
many real life applications but to this end more
research is needed.

Last but not least, it is worthwhile to mention
that conflict analysis seems to be important for
ed.
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decision theory. Rough set based decision support
plays important role in decision theory, see e.g. [8],
but in order to exploit this relationship in conflict
analysis more research is needed.
2. Basic concepts of conflict theory

In this section we give after [6] definitions of
basic concepts of the proposed approach.

Let us assume that we are given a finite, non-
empty set U called the universe. Elements of U will
be referred to as agents. Let a function
v :U!{�1,0,1}, or in short {�, 0,+}, be given
assigning to every agent the number �1, 0 or 1,
representing his opinion, view, voting result, etc.
about some discussed issue, and meaning against,

neutral and favorable, respectively.
In order to express relations between agents we

define three basic binary relations on the universe:
conflict, neutrality and alliance. To this end we first
define the following auxiliary function:

/vðx; yÞ ¼
1 if vðxÞvðyÞ ¼ 1 or x ¼ y;

0 if vðxÞvðyÞ ¼ 0 and x 6¼ y;

�1 if vðxÞvðyÞ ¼ �1:

8><
>:

ð1Þ

This means that, if /v(x,y) = 1, agents x and y

have the same opinion about issue v (are allied

on v); if /v(x,y) = 0 means that at least one agent
x or y has neutral approach to issue v (is neutral on
v), and if /v(x,y) = �1, means that both agents
have different opinions about issue v (are in conflict
on v).

In what follows we will define three basic rela-
tions Rþ

v , R
0
v and R�

v on U2 called alliance, neutral-

ity and conflict relations respectively, and defined
as follows:

Rþ
v ðx; yÞ iff /vðx; yÞ ¼ 1; ð2Þ

R0
vðx; yÞ iff /vðx; yÞ ¼ 0; ð3Þ

R�
v ðx; yÞ iff /vðx; yÞ ¼ �1: ð4Þ

It is easily seen that the alliance relation has the
following properties:

(i) Rþ
v ðx; xÞ,

(ii) Rþ
v ðx; yÞ implies Rþ

v ðy; xÞ,
(iii) Rþ

v ðx; yÞ and Rþ
v ðy; zÞ implies Rþ

v ðx; zÞ,
i.e., Rþ
v is an equivalence relation. Each equivalence

class of alliance relation will be called coalition with
respect to v. Let us note that the condition (iii) can
be expressed as ‘‘a friend of my friend is my friend’’.

Remark. Formation of coalitions is a very import
issue in conflict analysis and many results have
been obtained in this area. However we refrain to
discuss this problem here in detail, and we want
only to point out that the idea of coalition is a
consequence of the assumed alliance relation.

For the conflict relation we have the following
properties:
(iv) not R�
v ðx; xÞ,

(v) R�
v ðx; yÞ implies R�

v ðy; xÞ,
(vi) R�

v ðx; yÞ and R�
v ðy; zÞ implies Rþ

v ðx; zÞ,
(vii) R�

v ðx; yÞ and Rþ
v ðy; zÞ implies R�

v ðx; zÞ.

Conditions (vi) and (vii) refer to well-known
sayings ‘‘an enemy of my enemy is my friend’’
and ‘‘a friend of my enemy is my enemy’’.

For the neutrality relation we have

(viii) not R0
vðx; xÞ,

(ix) R0
vðx; yÞ ¼ R0

vðy; xÞ.

Let us observe that in the conflict and neutrality

relations there are no coalitions.
The following property holds Rþ

v [ R0
v [ R�

v ¼
U 2 because if (x,y) 2 U 2 then Uv(x,y) = 1 or
Uv(x,y) = 0 or Uv(x,y) = �1 so ðx; yÞ 2 Rþ

v or
ðx; yÞ 2 R0

v or ðx; yÞ 2 R�
v . All the three relations

Rþ
v ;R

0
v ;R

�
v are pairwise disjoint, i.e., every pair of

objects (x,y) belongs to exactly one of the above de-
fined relations (is in conflict, is allied or is neutral).

With every conflict situation we will associate
a conflict graph G ¼ ðRþ

v ;R
0
v ;R

�
v Þ.

An example of a conflict graph is shown in
Fig. 1.

Solid lines are denoting conflicts, dotted lines––
alliance, and neutrality, for simplicity, is not
shown explicitly in the graph. Of course, B, C,
and D form a coalition.
3. Information systems and decision tables

In what follows we will employ basic concepts of
rough set theory to analysis of conflict situations.



Fig. 1. Exemplary conflict graph.
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An information system is a data table, whose
columns are labeled by attributes, rows are labeled
by objects of interest and entries of the table are
attribute values.

Formally, by an information system we will
understand a pair S = (U,A), where U and A,
are finite, non-empty sets called the universe,
and the set of attributes, respectively. With every
attribute a 2 A we associate a set Va, of its val-

ues, called the domain of a. Any subset B of A

determines a binary relation I(B) on U, which
will be called an indiscernibility relation, and de-
fined as follows: (x,y) 2 I(B) if and only if
a(x) = a(y) for every a 2 A, where a(x) denotes
the value of attribute a for element x. Obviously
I(B) is an equivalence relation. The family of all
equivalence classes of I(B), i.e., a partition deter-
mined by B, will be denoted by U/I(B), or sim-
ply by U/B; an equivalence class of I(B), i.e.,
block of the partition U/B, containing x will
be denoted by B(x) and referred to as B-elemen-

tary set or B-granule induced by x.
If (x,y) belongs to I(B) we will say that x and y

are B-indiscernible (indiscernible with respect to B).
If we distinguish in an information system

two disjoint classes of attributes, called condition

and decision attributes, respectively, then the sys-
tem will be called a decision table and will be
denoted by S = (U,C,D), where C and D are
disjoint sets of condition and decision attributes,
respectively.

For the purpose of conflict analysis considered
in this paper we assume that U represents agents,
condition attributes are meant to describe features
of agents (e.g., sex, age, etc.) and the only decision
attribute is v with values 1,0,�1 (+,0,�) repre-
senting opinion of agents. It is also possible to
interpret the proposed model differently (see e.g.
[6]).
4. Decision rules and decision tables

Every decision table describes decisions deter-
mined, when some conditions are satisfied. In
other words each row of the decision table specifies
a decision rule which determines decisions in terms
of conditions.

Let us describe decision rules more exactly.
Let S = (U,C,D) be a decision table. Every

x 2 U determines a sequence c1(x), . . . ,cn(x),
d1(x), . . . ,dm(x) where {c1, . . . ,cn} = C and
{d1, . . . ,dm} = D.

The sequence will be called a decision rule in-

duced by x (in S) and denoted by
c1(x), . . . ,cn(x)!d1(x), . . . ,dm(x), in short C!xD

or C!D when x is known.
The number suppx(C,D) = jC(x) \ D(x)j will be

called the support of the decision rule C!xD,
where C(x) and D(x) denote C and D granules in-
duced by x, respectively and jXj denotes the card-
inality of X.

The number

rxðC;DÞ ¼ suppxðC;DÞ=jU j ð5Þ

will be referred to as the strength of the decision
rule C!xD.

With every decision rule C!xD we associate
the certainty factor of the decision rule, denoted
cerx(C,D) and defined as follows:

cerxðC;DÞ ¼ suppxðC;DÞ=jCðxÞj
¼ rxðC;DÞ=pðCðxÞÞ; ð6Þ

where p(C(x)) = jC(x)j/jUj.
The certainty factor may be interpreted as con-

ditional probability that y belongs to D(x) given y

belongs to C(x), symbolically px(DjC), or as
certainty to which C implies D.

If cerx(C,D) = 1, then C!xD will be called a
certain decision rule in S; if 0 < cerx(C,D) < 1 the
decision rule will be referred to as an uncertain

decision rule in S.



Table 1
Voting result

Fact Party Voting Support

1 A + 200
2 A 0 30
3 A � 10
4 B + 15
5 B � 25
6 C 0 20
7 C � 40
8 D + 25
9 D 0 35
10 D � 100
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Besides, we will also use a coverage factor of the
decision rule, denoted covx(C,D) and defined as

covxðC;DÞ ¼ suppxðC;DÞ=jDðxÞj
¼ rxðC;DÞ=pðDðxÞÞ; ð7Þ

where p(D(x)) = jD(x)j/jUj.
Similarly, covx(C,D) = px(CjD).
If C!xD is a decision rule, then D!xC is the

inverse decision rule. Inverse decision rules can be
used to give explanations for decisions.

Let us observe that the coverage factor is the
certainty factor for the inverse decision rule.

For many applications exact values of certainty
of coverage factors of decision rules are not neces-
sary. To this end we introduce ‘‘approximate’’
decision rules, denoted C)D and read ‘‘C mostly

implies D’’. C)D if and only if cer(C,D) > 0.5.
5. Flow graphs and decision tables

With every decision table we associate a flow

graph, i.e., a directed, connected, acyclic graph de-
fined as follows: to every decision rule C!xD we
assign a directed branch x connecting the input

node C(x) and the output node D(x). Strength of
the decision rule represents a throughflow of the
corresponding branch. Thus branches of the flow
graph connect C-granules and D-granules of the
graph.

Flow distribution analysis can be used to study
the relationship between agents involved in the
conflict.

More about flow graphs can be found in [7].
Table 2
Certainty and coverage factors

Fact Strength Certainty Coverage

1 0.40 0.833 0.833
2 0.06 0.125 0.353
3 0.02 0.042 0.057
4 0.03 0.375 0.063
5 0.05 0.625 0.143
6 0.04 0.333 0.235
7 0.08 0.667 0.229
8 0.05 0.156 0.104
9 0.07 0.219 0.412
10 0.20 0.625 0.571
6. An example

In this section we will illustrate the above pre-
sented ideas by means of a very simple tutorial
example.

Table 1 presents a decision table in which the
only condition attribute is Party, whereas the deci-
sion attribute is Voting. The table describes voting
results in a parliament containing 500 members
grouped in four political parties denoted A, B, C
and D. Suppose the parliament discussed certain
issue (e.g. membership of the country in European
Union) and the voting result is presented in col-
umn Voting, where +, 0 and � denoted yes, absten-
tion and no, respectively. The column support

contains the number of voters for each option.
The strength, certainty and the coverage factors

for Table 1 are given Table 2.
From the certainty factors we can conclude, for

example, that

� 83.3% of party A voted yes,
� 12.5% of party A abstained,
� 4.2% of party A voted no.

From the coverage factors we can get, for exam-
ple, the following explanation of voting results:

� 83.3% yes votes came from party A.
� 6.3% yes votes came from party B.
� 10.4% yes votes came from party C.



Fig. 4. Conflict graph.

Fig. 2. Flow graph.

Fig. 5. Inverse approximate flow graph.
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The flow graph associated with Table 2 is
shown in Fig. 2.

Branches of the flow graph represent decision
rules together with their certainty and coverage
factors. For example, the decision rule A!0 has
the certainty and coverage factors 0.125 and
0.353, respectively.

The flow graph gives a clear insight into the vot-
ing structure of all parties.

We can replace flow graph shown in Fig. 2 by
‘‘approximate’’ flow graph presented in Fig. 3.
Fig. 3. Approximate flow graph.
From this graph we can see that parties B, C
and D form a coalition, which is in conflict with
party A, i.e., every member of the coalition is in
conflict with party A. The corresponding conflict
graph is shown in Fig. 4. Moreover from the
flow graph shown in Fig. 2 we can obtain an ‘‘in-
verse’’ approximate flow graph which is shown in
Fig. 5.

This flow graph contains all inverse decision
rules with certainty factor greater than 0.5. From
this graph we can see that yes votes were obtained
mostly from party A and no votes mostly from
party D.
7. Summary

This paper contains a new approach to conflict
analysis. The approach is based on some ideas of
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rough set theory. Moreover it is shown that with
any conflict situation a flow graph can be associ-
ated. Flow distribution in the graph can be used
to study the relationship between agents involved
in the conflict.
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