Decision algorithms
and flow graphs; a rough set approach

Zdzisław Pawlak

Abstract — This paper concerns some relationship between Bayes’ theorem and rough sets. It is revealed that any decision algorithm satisfies Bayes’ theorem, without referring to either prior or posterior probabilities inherently associated with classical Bayesian methodology. This leads to a new simple form of this theorem, which results in new algorithms and applications. Besides, it is shown that with every decision algorithm a flow graph can be associated. Bayes’ theorem can be viewed as a flow conservation rule of information flow in the graph. Moreover, to every flow graph the Euclidean space can be assigned. Points of the space represent decisions specified by the decision algorithm, and distance between points depicts distance between decisions in the decision algorithm.

Keywords — rough sets, decision algorithms, flow graphs, data mining.

1. Introduction

Decision algorithm is a finite set of “if .. then” decision rules. With every decision rule three coefficients are associated: the strength, the certainty and the coverage factors of the rule. The coefficients can be computed from the data or can be a subjective assessment. It is shown that these coefficients satisfy Bayes’ formula.

Bayesian inference methodology consists in updating prior probabilities by means of data to posterior probabilities, which express updated knowledge when data become available. The strength, certainty and coverage factors can be interpreted either as probabilities (objective), or as a degree of truth, along the line proposed by Łukasiewicz [5]. Moreover, they can be also interpreted as a deterministic flow distribution in flow graphs associated with decision algorithms. This leads to a new look on Bayes’ theorem and its applications in reasoning from data, without referring to its probabilistic character.

In this context it is worthwhile to mention that in spite of great power of statistical Bayesian methodology of inference methods, the theorem raised wide criticism. E.g., “The technical result at the heart of the essay is what we now know as Bayes’ theorem. However, from a purely formal perspective there is no obvious reason why this essentially trivial probability result should continue to excite interest” [1]. “Opinion as to the values of Bayes’ theorem as a basic for statistical inference has swung between acceptance and rejection since its publication on 1763” [2].

In this paper are different to flow networks introduced by Ford and Fulkerson [4], which are intended to model the flow in transportation network – in contrast to flow graphs, which are meant to be used as a model for decision analysis in decision algorithms. Besides, with every decision algorithm the Euclidean decision space is associated. The decision space is intended to be used to depict differences between decisions of a decision algorithm in a geometrical way.

2. Decision algorithms

A decision rule is an expression in the form $\Phi \rightarrow \Psi$, read “if Φ then Ψ”, where Φ and Ψ are logical formulas called condition and decision of the rule, respectively [8]. Let $\{\Phi\}$ denote the set of all objects from the universe U, having the property Φ.

If $\Phi \rightarrow \Psi$ is a decision rule then $supp(\Phi, \Psi) = card(\{\Phi \land \Psi\})$ will be called the support of the decision rule and

$$\sigma(\Phi, \Psi) = \frac{supp(\Phi, \Psi)}{card(U)}$$

will be referred to as the strength of the decision rule.

With every decision rule $\Phi \rightarrow \Psi$ we associate a certainty factor

$$cer(\Phi, \Psi) = \frac{supp(\Phi, \Psi)}{card(\{\Phi\})}$$

and a coverage factor

$$cov(\Phi, \Psi) = \frac{supp(\Phi, \Psi)}{card(\{\Psi\})}$$.

Remark. These coefficients for a long time have been used in data bases and machine learning [9, 10], but first they have been introduced by Łukasiewicz [5] in connection with his study of logic and probability. If $cer(\Phi, \Psi) = 1$, then the decision rule $\Phi \rightarrow \Psi$ will be called certain, otherwise the decision rule will be referred to as uncertain.

A set of decision rules $Dec(\Phi, \Psi) = \{\Phi_i \rightarrow \Psi_i\}_{i=1}^{n}$, $n \geq 2$, will be called a decision algorithm if all its decision rules are:

- admissible, i.e., $supp(\Phi_i, \Psi_i) \neq \emptyset$ for every $1 \leq i \leq n$,
- mutually exclusive (independent), i.e., for every $\Phi_i \rightarrow \Psi_i$ and $\Phi_j \rightarrow \Psi_j$, $\Phi_i = \Psi_j$, or $\Phi_i \land \Psi_j = \emptyset$ and $\Psi_i = \Psi_j$, or $\Psi_i \land \Phi_j = \emptyset$,
- cover U, i.e., $|\bigvee_{i=1}^{n} \Phi_i| = |\bigvee_{i=1}^{n} \Psi_i| = U$.

3/2003 JOURNAL OF TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY
If \(\text{Dec}(\Phi, \Psi) = \{ \Phi_j \rightarrow \Psi_j \}_{j=1}^n \) is a decision algorithm, then \(\text{Dec}(\Psi, \Phi) = \{ \Psi_j \rightarrow \Phi_j \}_{j=1}^n \) is also a decision algorithm and will be called an inverse decision algorithm of \(\text{Dec}(\Phi, \Psi) \).

\(\text{Dec}(\Psi, \Phi) \) gives reasons (explanations) for decisions of the algorithm \(\text{Dec}(\Phi, \Psi) \).

3. Properties of decision algorithms

Let \(\text{Dec}(\Phi, \Psi) \) be a decision algorithm and let \(\Phi \rightarrow \Psi \) be a decision rule in the decision algorithm. By \(D(\Phi) \) and \(C(\Psi) \) we denote the set of all decisions of \(\Phi \) and the set of all conditions of \(\Psi \) in \(\text{Dec}(\Phi, \Psi) \), respectively [8]. It can be shown that every decision algorithm has the following probabilistic properties:

\[
\sum_{\Phi' \in C(\Psi)} \text{cov}(\Phi', \Psi) = 1, \tag{1}
\]

\[
\sum_{\Psi' \in D(\Phi)} \text{cer}(\Phi, \Psi') = 1, \tag{2}
\]

\[
\pi(\Psi) = \sum_{\Phi' \in C(\Psi)} \text{cer}(\Phi', \Psi) \cdot \pi_2(\Phi') = \sum_{\Phi' \in C(\Psi)} \sigma(\Phi', \Psi), \tag{3}
\]

\[
\pi(\Phi) = \sum_{\Psi' \in D(\Phi)} \text{cov}(\Phi, \Psi') \cdot \pi_2(\Psi') = \sum_{\Psi' \in D(\Phi)} \sigma(\Phi, \Psi'), \tag{4}
\]

\[
\text{cer}(\Phi, \Psi) = \frac{\text{cov}(\Phi, \Psi) \cdot \pi(\Psi)}{\sum_{\Psi' \in D(\Phi)} \text{cov}(\Phi, \Psi')} = \frac{\sigma(\Psi, \Phi)}{\pi(\Phi)}, \tag{5}
\]

\[
\text{cov}(\Phi, \Psi) = \frac{\text{cer}(\Phi, \Psi) \cdot \pi(\Phi)}{\sum_{\Psi' \in C(\Psi)} \text{cer}(\Phi', \Psi')} = \frac{\sigma(\Phi, \Psi)}{\pi(\Psi)}, \tag{6}
\]

where \(\pi(\Psi) = \frac{\text{card}(\Psi)}{\text{card}(U)} \) and \(\pi(\Phi) = \frac{\text{card}(\Phi)}{\text{card}(U)} \).

The idea to replace probability by truth values is due to Łukasiewicz [5], but we will not discuss this issue here.

4. Flow graphs

With every decision algorithm we associate a directed, acyclic, connected graph defined in the following way: to every condition and decision of the decision rule in the decision algorithm we associate a node of the graph. To every decision rule \(\Phi \rightarrow \Psi \) we assign a directed branch connecting the input node \(\Phi \) and the output node \(\Psi \). Strength of the decision rule represents the throughflow of the corresponding branch. More about flow graphs and decision algorithms can be found in [7]. Consequently, the flow graphs can be regarded as a third model of Bayes’ theorem, in which the theorem describes flow distribution in a flow graph.

5. Decision space

With every decision algorithm with \(n \)-valued decisions we can associate \(n \)-dimensional Euclidean space, where values of decisions determine \(n \) axis of the space and condition attribute values (equivalence classes) determine point of the space. Strengths of decision rules are to be understood as coordinates of corresponding points. Distance \(\delta(x, y) \) between point \(x \) and \(y \) in an \(n \)-dimensional decision space is defined as

\[
\delta(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2},
\]

where \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \) are vectors of strengths of corresponding decision rules.

6. An example

For the sake of illustration let us consider a very simple decision algorithm describing vote distribution for two political parties \(X_1 \) and \(X_2 \), from three mutually disjoint sample group of voters \(Y_1 \), \(Y_2 \) and \(Y_3 \):

1. \(Y_1 \rightarrow X_1 (400) \)
2. \(Y_1 \rightarrow X_2 (200) \)
3. \(Y_2 \rightarrow X_1 (250) \)
4. \(Y_2 \rightarrow X_2 (50) \)
5. \(Y_3 \rightarrow X_1 (90) \)
6. \(Y_3 \rightarrow X_2 (10) \).

Number given at the end of each rule is the support of the rule, i.e., the number of voters from group \(X_i \) voting for party \(Y_j \).
The strength, certainty and coverage factors for each decision rule are given in Table 1.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Strength</th>
<th>Certainty</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.40</td>
<td>0.67</td>
<td>0.54</td>
</tr>
<tr>
<td>2</td>
<td>0.20</td>
<td>0.33</td>
<td>0.77</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>0.83</td>
<td>0.34</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>5</td>
<td>0.09</td>
<td>0.90</td>
<td>0.12</td>
</tr>
<tr>
<td>6</td>
<td>0.01</td>
<td>0.10</td>
<td>0.04</td>
</tr>
</tbody>
</table>

The corresponding flow graph is shown in Fig. 1.

![Flow graph](image)

Fig. 1. The flow graph corresponding to the example.

Thus from the decision algorithm follows, for example, that 83% voters from group \(Y_2 \) voted for party \(X_1 \) and 17% voters voted for party \(X_2 \). From the inverse decision algorithm we get, for example, that for party \(X_1 \) voted 54% voters of group \(Y_1 \), 34% – of group \(Y_2 \), and 12% – of group \(Y_3 \). The corresponding distance space is shown in Fig. 2.

<table>
<thead>
<tr>
<th>(Y_1)</th>
<th>(Y_2)</th>
<th>(Y_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_1)</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>(Y_2)</td>
<td>0.37</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Table 2

Distances between voters

7. Summary

In this paper a relationship between decision algorithms, flow graphs and Bayes’ theorem are defined and briefly analyzed. It is shown that decision algorithms satisfy Bayes’ theorem, and that the theorem can be also interpreted without referring to its probabilistic connotation – in a purely deterministic way. This property leads to a new look on Bayes’ theorem and new applications of Bayes’ rule in data analysis.

References

Zdzisław Pawlak was born in Łódź (Poland), in 1926. He obtained his M.Sc. in 1951 in electronics from Warsaw University of Technology, Ph.D. in 1958 and D.Sc. in 1963 in the theory of computation from the Polish Academy of Sciences. He is a Professor of the Institute of Theoretical and Applied Informatics, Polish Academy of Sciences and the University of Information Technology and Management and Member of the Polish Academy of Sciences. His current research interests include intelligent systems and cognitive sciences, in particular, decision support systems, knowledge representation, reasoning about knowledge, machine learning, inductive reasoning, vagueness, uncertainty and decision support. He is an author of a new mathematical tool, called rough set theory, intended to deal with vagueness and uncertainty. About two thousand papers have been published by now on rough sets and their applications world wide. Several international workshops and conferences on rough sets have been held in recent years. He is a recipient of many awards among others the State Award in Computer Science in 1978, the Hugo Steinhaus Award for achievements in applied mathematics in 1989, Doctor honoris causa of Poznań University of Technology in 2002. Member of editorial boards of several dozens international journals. Deputy Editor-in-Chief of the Bulletin of the Polish Academy of Sciences. Program committee member of many international conferences on computer science. Over forty visiting university appointments in Europe, USA and Canada, about fifty invited international conference talks, and over one hundred seminar talks given in about fifty universities in Europe, USA, Canada, China, India, Japan, Korea, Taiwan, Australia and Israel. About two hundred articles in international journals and several books on various aspects on computer science and application of mathematics. Supervisor of thirty Ph.D. theses in computer science and applied mathematics.
e-mail: zip@mimuw.edu.pl
University of Information Technology and Management
Newelska st 6
01-447 Warsaw, Poland