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Abstract

Rough set based data analysis starts from a data table, called an information system.

The information system contains data about objects of interest characterized in terms of

some attributes. Often we distinguish in the information system condition and decision

attributes. Such information system is called a decision table. The decision table de-

scribes decisions in terms of conditions that must be satisfied in order to carry out the

decision specified in the decision table. With every decision table a set of decision rules,

called a decision algorithm can be associated. It is shown that every decision algorithm

reveals some well-known probabilistic properties, in particular it satisfies the total

probability theorem and the Bayes� theorem. These properties give a new method of

drawing conclusions from data, without referring to prior and posterior probabilities,

inherently associated with Bayesian reasoning.

� 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Rough set theory is a new mathematical approach to intelligent data

analysis and data mining. After almost 20 years of pursuing rough set theory

and its applications the approach reached a certain degree of maturity. In

recent years we witness a rapid grow of interest in rough set theory and its

applications, worldwide. Many international workshops, conferences and
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seminars included rough sets in their programs. About 2000 papers and

several books have been published until now on various aspects of rough

sets.

Rough set philosophy is founded on the assumption that with every object
of the universe of discourse we associate some information (data, knowledge).

Objects characterized by the same information are indiscernible (similar) in

view of the available information about them. The indiscernibility relation

generated in this way is the mathematical basis of rough set theory. Any set of

all indiscernible (similar) objects is called an elementary set, and forms a basic

granule (atom) of knowledge about the universe. Any union of some elemen-

tary sets is referred to as a crisp (precise) set – otherwise the set is rough (im-

precise, vague). Each rough set has boundary-line cases, i.e., objects which
cannot be with certainty classified, by employing the available knowledge, as

members of the set or its complement. Obviously rough sets, in contrast to

precise sets, cannot be characterized in terms of information about their ele-

ments. With any rough set a pair of precise sets – called the lower and the upper

approximation of the rough set is associated. The lower approximation consists

of all objects which surely belong to the set and the upper approxima-

tion contains all objects which possibly belong to the set. The difference be-

tween the upper and the lower approximation constitutes the boundary region

of the rough set. Approximations are two basic operations in the rough set

theory.

The rough set approach seems to be of fundamental importance to AI and

cognitive sciences, especially in the areas of machine learning, knowledge ac-

quisition, decision analysis, knowledge discovery from databases, expert sys-

tems, inductive reasoning and pattern recognition. Rough set theory has been

successfully applied in many real-life problems in medicine, pharmacology,

engineering, banking, finances, market analysis, environment management and
others.

The rough set approach to data analysis has many important advantages.

Some of them are listed below:

• provides efficient algorithms for finding hidden patterns in data;

• finds minimal sets of data (data reduction);

• evaluates significance of data;

• generates sets of decision rules from data;

• offers straightforward interpretation of obtained results;
• most algorithms based on the rough set theory are particularly suited for

parallel processing;

• it is easy to understand.

In the paper basic concept of rough set based data analysis will be outlined

and will be illustrated by a simple tutorial example, concerning global warming.

Basics of rough sets can be found in [1,4].

More about rough sets can by found in [3,5–9].
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2. Information systems and decision tables

Starting point of rough set based data analysis is a data set, called an in-

formation system.
An information system is a data table, whose columns are labeled by at-

tributes, rows are labeled by objects of interest and entries of the table are

attribute values.

Formally, by an information system we will understand a pair S ¼ ðU ;AÞ,
where U and A, are finite, nonempty sets called the universe, and the set of

attributes, respectively. With every attribute a 2 A we associate a set Va, of its
values, called the domain of a. Any subset B of A determines a binary relation

IðBÞ on U, which will be called an indiscernibility relation, and defined as fol-
lows: ðx; yÞ 2 IðBÞ if and only if aðxÞ ¼ aðyÞ for every a 2 B, where aðxÞ denotes
the value of attribute a for element x. Obviously IðBÞ is an equivalence relation.

The family of all equivalence classes of IðBÞ, i.e., a partition determined by B,

will be denoted by U=ðIBÞ, or simply by U=B; an equivalence class of IðBÞ, i.e.,
block of the partition U B, containing x will be denoted by BðxÞ.

If ðx; yÞ belongs to IðBÞ we will say that x and y are B-indiscernible (indis-

cernible with respect to B). Equivalence classes of the relation IðBÞ (or blocks of
the partition U=B) are referred to as B-elementary sets or B-granules.

If we distinguish in an information system two disjoint classes of attributes,

called condition and decision attributes, respectively, then the system will be

called a decision table and will be denoted by S ¼ ðU ;C;DÞ, where C and D are

disjoint sets of condition and decision attributes, respectively.

An example of a decision table is shown in Table 1.

In the table Solar Energy, Volcanic Activity and Residual CO2 are condition

attributes, and Temperature is a decision attribute.

The example concerns global warming and is taken after some simplifica-
tions from [2].

We want to explain what causes the high (low) temperatures, i.e., to describe

the set of facts {1, 2, 3, 5} ({4, 6}) in terms of condition attributes: Solar

Energy, Volcanic Activity and Residual CO2.

Table 1

An example of a decision table

Fact Solar energy Volcanic activity Residual CO2 Temperature Days count

1 Medium High Low High 20

2 High High High High 30

3 Medium Low High High 90

4 Low Low Low Low 120

5 High High Medium High 70

6 Medium Low High Low 34
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The data set is inconsistent because facts 3 and 6 are contradictory, therefore

the problem cannot be solved exactly but only approximately. Let us observe

what the data are telling us:

• facts 1, 2, 5 can be certainly classified as causing high temperature;
• fact 4 can be certainly classified as causing low temperature;

• facts 3, 6 can be possibly classified as causing high or low temperature.

3. Approximation of sets

Suppose we are given an information system S ¼ ðU ;AÞ, X � U , and B � A.
Our task is to describe the set X in terms of attribute values from B. To this end

we define two operations assigning to every X � U two sets B�ðX Þ and B�ðX Þ
called the B-lower and the B-upper approximation of X, respectively, and de-

fined as follows:

B�ðX Þ ¼
[
x2U

BðxÞ : BðxÞ � Xf g;

B�ðX Þ ¼
[
x2U

BðxÞ : BðxÞ \ Xf 6¼ ;g:

Hence, the B-lower approximation of a set is the union of all B-granules that

are included in the set, whereas the B-upper approximation of a set is the union

of all B-granules that have a nonempty intersection with the set. The set

BNBðX Þ ¼ B�ðX Þ � B�ðX Þ

will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set, i.e., BNBðX Þ ¼ ;, then X is

crisp(exact) with respect to B; in the opposite case, i.e., if BNBðX Þ 6¼ ;, X is

referred to as rough (inexact) with respect to B.

In our illustrative example we have, with respect to the condition attributes:

• the set f1; 2; 5g is the lower approximation of the set f1; 2; 3; 5g;
• the set f1; 2; 3; 5; 6g is the upper approximation of the set f1; 2; 3; 5g;
• the set f3; 6g is the boundary region of the set f1; 2; 3; 5g.

4. Decision rules

Decision rules constitute a formal language to describe approximations in

logical terms.
Decision rules are expressions in the form ‘‘if. . . then. . .’’, in symbols

U ! W:
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Examples of decision rules are shown below:

(Solar Energy, medium)^ (Volcanic Activity, high)! (Temperature, high);

(Solar Energy, high)! (Temperature, high).

Formally the language of decision rules, called a decision language, is defined
as shown below.

Let S ¼ ðU ;AÞ be an information system. With every B � A we associate a

formal language, i.e., a set of formulas ForðBÞ. Formulas of ForðBÞ are built up
from attribute-value pairs ða; vÞ where a 2 B and v 2 Va by means of logical

connectives ^ (and), _ (or), � (not) in the standard way.

For any U 2 ForðBÞ by kUkS we denote the set of all objects x 2 U satisfying

U in S defined inductively as follows:

kða; vÞkS ¼ fx 2 U : aðxÞ ¼ vg for all a 2 B and v 2 Va;

kU _ WkS ¼ kUkS [ kWkS ; kU ^ WkS ¼ kUkS \ kWkS ;
k � UkS ¼ U � kUkS:

A formula U is true in S if kUkS ¼ U :
A decision rule in S is an expression U ! W, read if U then W, where

U 2 ForðCÞ, W 2 ForðDÞ and C, D are condition and decision attributes, re-

spectively; U and W are referred to as conditions and decisions of the rule, re-
spectively.

A decision rule U ! W is true in S if kUkS � kWkS .
The number suppSðU;WÞ ¼ cardðkU ^ WkSÞ will be called the support of the

rule U ! W in S. We consider a probability distribution pU ðxÞ ¼ 1=cardðUÞ for
x 2 U where U is the (non-empty) universe of objects of S; we have pU ðX Þ ¼
cardðX Þ=cardðUÞ for X � U . For any formula U we associate its probability in

S defined by

pSðUÞ ¼ pU ðkUkSÞ:

With every decision rule U ! W we associate a conditional probability

called the certainty factor, and denoted cerSðU;WÞ defined as

cerSðU;WÞ ¼ pS WjUð Þ ¼ pU Wk kSj Uk kS
� �

:

We have

cerS U;Wð Þ ¼ pSðWjUÞ ¼
card U ^ Wk kS

� �

card Uk kS
� � ;

where kUkS 6¼ ;.
This coefficient is now widely used in data mining and is called confidence

coefficient.
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Obviously, pSðWjUÞ ¼ 1 if and only if U ! W is true in S.

If pSðWjUÞ ¼ 1, then U ! W will be called a certain decision rule; if 0 <
pSðWjUÞ < 1 the decision rule will be referred to as a uncertain decision rule.

Besides, we will also use a coverage factor denoted covSðU;WÞ and defined as

covSðU;WÞ ¼ pSðUjWÞ ¼ pU Uk kSj Wk kS
� �

:

Obviously we have

covSðU;WÞ ¼ pSðUjWÞ ¼
card U ^ Wk kS

� �

card Wk kS
� � :

The certainty factors in S can be interpreted as the frequency of objects having
the property W in the set of objects having the property U and the coverage

factor – as the frequency of objects having the property U in the set of objects

having the property W.

For example, for the decision rule

(Solar Energy, medium)^ (Volcanic Activity, low)! (Temperature, high)

we have: support¼ 90, strength¼ 0.25, certainty¼ 0.74, coverage¼ 0.43.

The number

rSðU;WÞ ¼ sup pS U;Wð Þ
cardðUÞ ¼ cerSðU;WÞ � pSðUÞ

will be called the strength of the decision rule U ! W in S.

Summing up, decision rules, which are in fact logical implications, constitute

a logical counterpart of approximations: certain rules correspond to the lower

approximation, whereas the uncertain rules correspond to the boundary region.
Thus we have two formal tools to deal with vagueness: approximations and

implications. Mathematically approximations are basic operations (interior and

closure) in a topology generated by a data set. Thus if we want to prove

properties of the data (find patterns in the data) the topological language of

approximations is the right tool. However, in order to describe the patterns in

the data for practical use the logical language of implications is the proper one.

The certainty and the coverage factors of decision rules are conditional

probabilities which express how exact is our knowledge (data) about the
considered reality. Let us remain that the factors are not assumed arbitrarily

but computed from the data, thus they are in a certain sense objective.

From logical point of view the certainty factor can be interpreted as a degree

of truth of the decision rule, i.e., how strongly the decision can be trusted in

view of the data. On the contrary, the coverage factor can be viewed as a degree

of truth of the ‘‘inverted’’ decision rule, i.e., to what degree the reasons for a

decision can be trusted in view of the data.

Statistically, the certainty factor reveals simply the frequency of facts sat-
isfying conditions, among the facts satisfying decision of the decision rule,

whereas the interpretation of the coverage factor is converse.
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Finally let us briefly comment the concept of the strength of a decision rule.

This number simply expresses the ratio of all facts which can be classified by

the decision rule to all facts in the data table. It will be shown in the next

sections that this coefficient plays essential role in further considerations, and
will be used to new formulation of Bayes� theorem.

5. Decision algorithms

In this section we define the notion of a decision algorithm, which is a logical
counterpart of a decision table.

Informally, a decision algorithm is a set of mutually exclusive and exhaus-

tive decision rules associated with a given decision table.

An example of a decision algorithm associated with Table 1 is given below.

1. (Solar Energy, medium)^ (Volcanic Activity, high)! (Temperature, high).

2. (Solar Energy, high)! (Temperature, high).

3. (Solar Energy, medium)^ (Volcanic Activity, low)! (Temperature, high).

4. (Solar Energy, low)! (Temperature, low).
5. (Solar Energy, medium)^ (Volcanic Activity, low)! (Temperature, low).

Formally a decision algorithm is defined as follows.

Let DecðSÞ ¼ fUi ! Wigmi¼1, mP 2, be a set of decision rules in a decision

table S ¼ ðU ;C;DÞ.
(1) If for every U ! W; U0 ! W0 2 DecðSÞ we have U ¼ U0 or kU ^ W0kS ¼ ;,

and W ¼ W0 or kW ^ W0kS ¼ ;, then we will say that DecðSÞ is the set of

pairwise mutually exclusive (independent) decision rules in S.

(2) If k n =mi¼1UikS ¼ U and k n =mi¼1WikS ¼ U we will say that the set of decision
rules DecðSÞ covers U.

(3) If U ! W 2 DecðSÞ and suppSðU;WÞ 6¼ 0 we will say that the decision rule

U ! W is admissible in S.

(4) If
S

X2U=D C�ðX Þ ¼ k n =U!W2DecþðSÞUkS where DecþðSÞ is the set of all

certain decision rules from DecðSÞ, we will say that the set of deci-

sion rules DecðSÞ preserves the consistency of the decision table S ¼
ðU ;C;DÞ.

The set of decision rules DecðSÞ that satisfies (1)–(4), i.e., is independent,
covers U, preserves the consistency of S and all decision rules U ! W 2 DecðSÞ
are admissible in S – will be called a decision algorithm in S.

If U ! W is a decision rule then the decision rule W ! U will be called an

inverse decision rule of U ! W.

Let Dec�ðSÞ denote the set of all inverse decision rules of DecðSÞ.
It can be shown that Dec�ðSÞ satisfies (1)–(4), i.e., it is an decision algorithm

in S.

If DecðSÞ is a decision algorithm then Dec�ðSÞ will be called an inverse de-
cision algorithm of DecðSÞ.
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The inverse decision algorithm for the decision algorithm (1)–(5) is as follows:

(10) (Temperature, high)! (Solar Energy, medium)^ (Volcanic Activity, high).

(20) (Temperature, high)! (Solar Energy, high).

(30) (Temperature, high)! (Solar Energy, medium)^ (Volcanic Activity, low).
(40) (Temperature, low)! (Solar Energy, low).

(50) (Temperature, low)! (Solar Energy, medium)^ (Volcanic Activity, low).

The inverse decision algorithm can be used as an explanation of decision in

terms of conditions, i.e., it gives reasons for decisions.

As mentioned at the beginning of this section decision algorithm is a

counterpart of a decision table. Properties (1)–(4) have been chosen in such a

way that the decision algorithm preserves basic properties of the data in the

decision table, in particular approximations and boundary regions of decisions.
Crucial issue in the rough set based data analysis is the generation of ‘‘op-

timal’’ decision algorithms from the data. This is a complex task, particularly

when large databases are concerned. Many methods and algorithms have been

proposed to deal with this problem but we will not dwell upon this issue here,

for we intend to restrict this paper to rudiments of rough set theory only. The

interested reader is advised to consult the references and the web.

6. Decision algorithms and approximations

Decision algorithms can be used as a formal language for describing ap-

proximations.

For example, certain decision rules

1. (Solar Energy, medium)^ (Volcanic Activity, high)! (Temperature, high).

2. (Solar Energy, high)! (Temperature, high) describe the lower approxima-

tion of the decision (Temperature, high) and uncertain decision rule.
3. (Solar Energy, medium)^ (Volcanic Activity, low)! (Temperature, high) de-

scribes the boundary region of the decision (Temperature, high).

The above relationships can be defined more precisely as follows:

Let DecðSÞ be a decision algorithm in S and let U ! W 2 DecðSÞ. By CðWÞ
we denote the set of all conditions of W in DecðSÞ and by DðUÞ – the set of all

decisions of U in DecðSÞ.
Then we have the following relationships:

(a) C� Wk kS
� �

¼ k n =U02CðWÞ;p WjU0ð Þ¼1U
0kS ;

(b) C� Wk kS
� �

¼ k n =U02CðWÞ;0<p WjU0ð Þ6 1U
0kS ;

(c) BNC Wk kS
� �

¼ k n =U02CðWÞ;0<p WjU0ð Þ<1U
0kS .

From the above properties we can get the following definitions:

ii(i) IfkUkS ¼ C�ðkWkSÞ, then formula U will be called the C-lower approxima-

tion of the formula W and will be denoted by C�ðWÞ.
i(ii) If kUkS ¼ C�ðkWkSÞ, then the formula U will be called the C-upper approx-

imation of the formula U and will be denoted by C�ðWÞ.
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(iii) If kUkS ¼ BNC ¼ ðkWkSÞ, then U will be called the C-boundary of the for-

mula W and will be denoted by BNCðWÞ.
The above properties say that any decision W 2 DecðSÞ can be uniquely

described by the following certain and uncertain decision rules respectively:

C�ðWÞ ! W;

BNCðWÞ ! W:

Thus decision algorithms can be viewed as a logical counterpart of approxi-

mations, or more exactly as a formal language to describe approximations. The

language of decision rules is more convenient to describe decisions in terms of

conditions than the topological language of approximations. However, ap-

proximations give better insight into vagueness and uncertainty of data.

7. Some properties of decision algorithms

Decision algorithms have interesting probabilistic properties which are
discussed next.

Let DecðSÞ be a decision algorithm and let U ! W 2 DecðSÞ. Then the fol-

lowing properties are valid:
X

U02CðWÞ
cerS U0;W

� �
¼ 1; ð1Þ

X
W02DðUÞ

covS U;W0
� �

¼ 1; ð2Þ

pSðWÞ ¼
X

U02CðWÞ
cerS U0;W

� �
� pS U0

� �
¼

X
U02CðWÞ

rS U0;W
� �

; ð3Þ

cerS U;Wð Þ ¼ covS U;Wð Þ � pSðWÞP
W02DðUÞ covS U;W0� �

� pS W0� � ¼ rS W;Uð Þ
pSðUÞ : ð4Þ

That is, any decision algorithm, and consequently any decision table, sat-

isfies (1)–(4). Observe that (3) is the well-known total probability theorem and
(4) is the Bayes’ theorem.

Note that we are not referring to prior and posterior probabilities – fun-

damental in Bayesian data analysis philosophy.

In other words the Bayes� theorem in our case reveals some relationships

between decisions and their reasons, or more exactly it discovers some rela-

tionships in every set of data.

Thus in order to compute the certainty and coverage factors of decision

rules it is enough to know the strength (support) of all decision rules in the
decision algorithm only.
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The certainty and coverage factors for the decision algorithm (1)–(5) are

given in Table 2.
The strength of decision rules can be computed from the data or can be a

subjective assessment.

From the certainty factors of the decision algorithm we can conclude the

following:

1. If the solar energy is medium and the volcanic activity is high then the tem-

perature is certainly high.

2. If the solar energy is high then the temperature is certainly high.

3. If the solar energy is medium and the volcanic activity is low then the prob-
ability that the temperature is high equals to 0.74.

4. If the solar energy is low then the temperature is certainly low.

5. If the solar energy is medium and the volcanic activity is low then the prob-

ability that the temperature is low equals to 0.26.

The coverage factors of the decision algorithm leads us to the following ex-

planation of global warming:

10. If the temperature is high then the probability that the solar energy is me-

dium and the volcanic activity is high amounts to 0.10.
20. If the temperature is high then the probability that the solar energy is high

to equals 0.47.

30. If the temperature is high then the probability that the solar energy is me-

dium and the volcanic activity is low equals to 0.43.

40. If the temperature is low then the probability that the solar energy is low

equals to 0.79.

50. If the temperature is low then the probability that the solar energy is me-

dium and the volcanic activity is low equals to 0.21.
Summing up, from the data we can conclude that:

• medium solar energy and high volcanic activity or high solar energy certainly

cause high temperature;

• low solar energy certainly causes low temperature;

• medium solar energy and low volcanic activity cause:

� high temperature with (probability¼ 0.74);

� low temperature with (probability¼ 0.26).

Whereas the data lead to the following explanation of global warming.

Table 2

Certainty and coverage factors

Decision rule Support Strength Certainty Coverage

1 20 0.06 1.00 0.10

2 100 0.27 1.00 0.47

3 90 0.25 0.74 0.43

4 120 0.33 1.00 0.79

5 34 0.09 0.26 0.21
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The reasons for high temperature are:

• medium solar energy and high volcanic activity (probability¼ 0.10);

• high solar energy (probability¼ 0.47);

• medium solar energy and low volcanic activity (probability¼ 0.43).
The reasons for low temperature are:

• low solar energy (probability¼ 0.79);

• medium solar energy and low volcanic activity (probability¼ 0.21).

In short, we can derive from the data the following conclusions:

• medium solar energy and high volcanic activity or high solar energy certainly

cause high temperature;

• low solar energy certainly causes low temperature;

• medium solar energy and low volcanic activity most probably cause high
temperature

and the following explanations:

• the most probable reason for high temperature is high solar energy;

• the most probable reason for low temperature is low solar energy.

Summing up, from the rough set view Bayes� theorem reveals probabilistic

structure of a data set (i.e., any decision table or decision algorithm) without

referring to either prior or posterior probabilities, inherently associated with

Bayesian statistical inference methodology. In other words, it identifies prob-
abilistic relationships between conditions and decisions in decision algorithms,

in contrast to classical Bayesian reasoning, where data are employed to verify

prior probabilities. This is not the case in rough set based data analysis.

Let us also stress that Bayes� theorem in the rough set approach has a new

mathematical form based on strength of decision rules, which simplifies es-

sentially computations and gives a new look on the theorem.

8. Conclusions

Approximations, basic concepts of rough set theory have been defined and

discussed. Some probabilistic properties of approximation have been revealed,

in particular the relationship with the total probability theorem and the Bayes�
theorem. These relationships give a new efficient method of drawing conclu-

sions from data, without referring to prior and posterior probabilities intrin-

sically associated with Bayesian reasoning. The application of the proposed

method, by means of a simple tutorial example, concerning global warming has
been outlined.
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