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1 Introduction

Data mining (DM) can be perceived as a methodology for discovering hidden

patterns in data. DM is a relatively new area of research and applications,

stretching, over many domains like statistics, machine learning, fuzzy sets,

rough sets, cluster analysis, genetics algorithms, neural networks and others.

Despite many various techniques employed in DM yet it can be seen as a

distinct discipline with its own problems and aims.

Reasoning methods associated with discovering knowledge from data at-

tracted attention of philosophers for many years. Particularly some ideas of

B. Russell and K. Popper about data, induction and experimental knowledge

can be viewed as precursory ones for DM.

Many valuable papers and books have been published on data mining

recently. In this paper we will focus our attention on some problems pertinent

to rough sets and DM [2, 3, 5, 6, 7, 8, 9, 11, 14, 15, 16, 19, 24, 32, 33, 36, 37].

Rough set theory has proved to be useful in DM, and it "... constitutes a

sound basis for data mining applications" [4]. The theory o�ers mathematical

tools to discover hidden patterns in data. It identi�es partial or total depen-

dencies (i.e. cause-e�ect relations) in databases, eliminates redundant data,

gives approach to null values, missing data, dynamic data and others. The

methods of data mining in large databases using rough sets have recently

been proposed and investigated [5, 14, 16].

The theory is based on sound mathematical foundation. It can easily be

understood and applied. Several software systems based on rough set theory

have been implemented and many nontrivial applications of this methodology

for knowledge discovery have been reported. More about rough sets and their

applications can be found in [19].

The theory is not competitive but complementary to other methods and

can also be often used jointly with other approaches (e.g. fuzzy sets, genetic

algorithms, statistical methods, neural networks etc.).

The main objective of this talk is to give basic ideas of rough sets in the

context of DM. The starting point of rough set theory is a data set. The

theory can also be formulated in more general terms, however for the sake of

intuition we will refrain from general formulation. Data are usually organized

in the form of a table, columns of which are labeled by attributes, rows { by

objects and entries of the table are attribute values. Such a table will be
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called a database. Next, basic operations on sets in rough set theory, the

lower and the upper approximation of a set will be de�ned. These operations

will be used to de�ne the basic concepts of the theory (from the DM point

of view) { total and partial dependency of attributes in a database. The

concept of dependency of attributes is used to describe cause-e�ect relations

hidden in the data. Further, a very important issue, reduction of data, will be

introduced. Finally certain and possible decision rules determined by total

and partial dependencies will be de�ned and analyzed. Besides, certainty

and coverage factors of a decision rule will be de�ned and reasoning methods

based on the idea outlined.

2 Database

An example of a simple database is presented in Table 1.

Table 1. An example of a database

Store E Q L P

1 high good no pro�t

2 med. good no loss

3 med. good no pro�t

4 no avg. no loss

5 med. avg. yes loss

6 high avg. yes pro�t

In the database six stores are characterized by four attributes:

E { empowerment of sales personnel,

Q { perceived quality of merchandise,

L { high tra�c location,

P { store pro�t or loss.

Each store is described in terms of attributes E;Q;L and P .

Each subset of attributes determines a partition (classi�cation) of all ob-

jects into classes having the same description in terms of these attributes. For

example, attributes Q and L aggregate all stores into the following classes

f1; 2; 3g; f4g; f5; 6g:Thus, each database determines a family of classi�cation

patterns which are used as a basis of further considerations.

Formally a database will be de�ned as follows.

By a database we will understand a pair S = (U;A), where U and A are

�nite, nonempty sets called the universe and a set of attributes respectively.
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With every attribute a 2 A we associate a set Va of its values, called the

domain of a. Any subset B of A determines a binary relation I(B) on U ,

which will be called an indiscernibility relation and is de�ned as follows:

(x; y) 2 I(B) if and only if a(x) = a(y) for every a 2 A, where a(x)

denotes the value of attribute a for element x:

It can easily be seen that I(B) is an equivalence relation. The family of

all equivalence classes of I(B), i.e. partition determined by B will be denoted

by U=I(B) or simple U=B; an equivalence class of I(B), i.e. block of the

partition U=B containing x will be denoted by B(x):

If (x; y) belongs to I(B) we will say that x and y are B-indiscernible.

Equivalence classes of the relation I(B) (or blocks of the partition U=B) are

referred to as B-elementary sets or B-granules.

Equivalence relation as a basis for rough set theory for many applications

is not su�cient. Therefore other relations e.g. a tolerance relation, an ordering

relations and others, have been proposed, e.g. [21, 23, 31]. But for the sake

of simplicity in this paper we will stick to the equivalence relation as a basis

for rough set theory.

3 Approximations of Sets

First let us consider the following exmaple: what are the characteristic fea-

tures of stores having pro�t (or loss) in view of information available in Table

1. It can easily be seen that this question cannot be answered uniquely since

stores 2 and 3 display the same features in terms of attributes E;Q and L;

but store 2 makes a pro�t, whereas store 3 has a loss. In view of information

contained in Table 1, we can say for sure that stores 1 and 6 make a pro�t,

stores 4 and 5 have a loss, whereas stores 2 and 3 cannot be classi�ed as

making a pro�t or having a loss. Employing attributes E;Q and L, we can

say that stores 1 and 6 surely make a pro�t, i.e. surely belong to the set f1, 3,

6g, whereas stores 1, 2, 3 and 6 possibly make a pro�t, i.e. possibly belong to

the set f1, 3, 6 g. We will say that the set f1, 6g is the lower approximation of

the set (concept) f1, 3, 6g and the set f1, 2, 3, 6g is the upper approximation

of the set f1, 3, 6g. The set f2, 3g, being the di�erence between the upper

approximation, and the lower approximation, is referred to as the boundary

region of the set f1, 3, 6g.
Approximations can be de�ned formally as operations assigning to every

X � U two sets B�(X) and B�(X) called the B-lower and the B-upper

approximation of X , respectively and de�ned as follows:

B�(X) =
[

x2U

fB(x) : B(x) � Xg;

B�(X) =
[

x2U

fB(x) : B(x) \X 6= ;g:
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Hence, the B-lower approximation of a concept is the union of all B-granules

that are included in the concept, whereas the B-upper approximation of a

concept is the union of all B-granules that have a nonempty intersection with

the concept. The set

BNB(X) = B�(X)�B�(X)

will be referred to as the B-boundary region of X:

If the boundary region of X is the empty set, i.e., BNB(X) = ;, then X

is crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) 6= ;,

X is referred to as rough (inexact) with respect to B.

"Roughness" of a set can be also characterized numerically as

�B(X) =
card(B�(X))

card(B�(X))
;

where 0 � �B(X) � 1 and if �B(X) = 1; X is crisp with respect to B;

whereas if �B(X) < 1; X is rough with respect to B:

Rough sets can be also de�ned using a rough membership function [17],

de�ned as

�B
X

(x) =
card(B(x) \X)

card(B(x))
:

Obviously

0 � �BX(x) � 1:

Value of the membership function �B
X

(x) is a conditional probability �(X jB(x)),

and can be interpreted as a degree of certainty to which x belongs to X (or

1� �B
X

(x), as a degree of uncertainty).

4 Dependency of Attributes

Another important issue in data analysis is discovering dependencies between

attributes. Suppose that the set of attributes A in a database S = (U;A) is

divided into two subsets C and D, called condition and decision attributes

respectively, such that C [D = A and C \D = ;: Such databases are called

decision tables.

Intuitively, a set of attributes D depends totally on a set of attributes C,

denoted C ) D, if all values of attributes from D are uniquely determined

by values of attributes from C. In other words, D depends totally on C, if

there exists a functional dependency between values of C and D:

We would need also a more general concept of dependency, called a partial

dependency of attributes. Intuitively, the partial dependency means that only

some values of D are determined by values of C:

Dependency is strictly related with approximations and is the basic issue

in data mining, because it reveals relationships in a database.
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Formally, dependency can be de�ned in the following way. Let C and D

be subsets of A.

We will say that D depends on C to a degree k (0 � k � 1), denoted

C )k D, if

k = 
(C;D) =
X

X2U=D

card(C�(X))

card (U)
:

If k = 1 we say that D depends totally on C, and if k < 1, we say that D

depends partially (to a degree k) on C, and if k = 0; then D does not depend

on C:

The coe�cient k expresses the ratio of all elements of the universe, which

can be properly classi�ed to blocks of the partition U=D; employing attributes

C and will be called the degree of the dependency.

For example in Table 1 the degree of dependency between the attribute

P and the set of attributes fE;Q;Lg is 2/3.

Obviously if D depends totally on C then I(C) � I(D): That means that

the partition generated by C is �ner than the partition generated by D:

5 Reduction of Attributes

A reduct is the minimal set of condition attributes that preserves the degree

of dependency. It means that a reduct is a minimal subset of condition at-

tributes that enables to make the same decisions as the whole set of condition

attributes.

Formally if C )k D then a minimal subset C 0 of C, such that 
(C;D) =


(C 0; D) is called a D-reduct of C:

For example, in Table 1 we have two reducts fE;Qg and fE;Lg of con-

dition attributes fE;Q;Lg.
Reduction of attributes is the fundamental issue in rough set theory.

In large databases computation of reducts on the basis of the given de�-

nition is not a simple task and therefore many more e�ective methods have

been proposed. For references see [19].

6 Signi�cance of Attributes

The concept of a reduct enables us to remove some attributes in the database

in such a way that the basic relationships in the database are preserved. Some

attributes, however, cannot be removed from the database without changing

their properties. To express this idea more precisely we will need the notion

of signi�cance of an attribute, which is de�ned next.

Let C and D be sets of condition and decision attributes respectively and

let a be a condition attribute, i.e. a 2 C: We can ask how the coe�cient


(C;D) changes when removing the attribute a, i.e. what is the di�erence
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between 
(C;D) and 
(C � fag; D): We can normalize the di�erence and

de�ne the signi�cance of an attribute a as:

�(C;D)(a) =
(
(C;D)� 
(C � fag; D))


(C;D)
= 1�


(C � fag; D)


(C;D)
;

and denote simply by �(a), when C and D are understood.

Thus the coe�cient �(a) can be understood as an error which occurs

when attribute a is dropped. The signi�cance coe�cient can be extended to

set of attributes as follows:

�(C;D)(B) =
(
(C;D) � 
(C �B;D))


(C;D)
= 1�


(C �B;D)

(
C;D)
;

denoted by �(B), if C and D are understood, where B is a subset of C:

If B is a reduct of C, then �(B) = 1, i.e. after removing any reduct from

the set of decision rules one cannot make sure decisions, whatsoever.

7 Decision Rules

Dependences between attributes are usually symbolized as a set of decision

rules. For example, decision rules describing the dependency fE;Qg ) fPg
in Table 1 are the following:

(E, high) and (good) ! (pro�t),

(E, med.) and (good) ! (loss),

(E, med.) and (good) ! (pro�t),

(E, no) and (avg.) ! (loss),

(E, med.) and (avg.) ! (loss),

(E, high) and (avg.) ! (pro�t).

A set of decision rules is usually referred as a knowledge base.

Usually we are interested in the optimal set of decision rules associated

with the dependency, but we will not consider this issue here. Instead we will

analyze some probabilistic properties of decision rules.

Let S be a decision table and let C and D be condition and decision

attributes, respectively.

By �; 	 etc. we will denote logical formulas built up from attributes,

attribute-values and logical connectives (and, or, not) in a standard way. We

will denote by j�jS the set of all objects x 2 U satisfying � and refer to as

the meaning of � in S.

The expression �S(�) =
card(j�jS)
card(U) will denote the probability that the

formula � is true in S.

A decision rule is an expression in the form "if...then...", written �! 	 ;

� and 	 are referred to as condition and decision of the rule, respectively.
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A decision rule � ! 	 is admissible in S if j�jS is the union of some C-

elementary sets, j	 jS is the union of some D-elementary sets and j�^	 jS 6= ;:
In what follows we will consider admissible decision rules only.

With every decision rule �! 	 we associate a certainty factor

�S(	 j�) =
card(j� ^ 	 jS)

card(j�jS)
;

which is the conditional probability that 	 is true in S, given � is true in S

with the probability �S(�):

Besides, we will also need a coverage factor [26]

�S(�j	) =
card(j� ^ 	 jS)

card(j	 jS)
;

which is the conditional probability that � is true in S, given 	 is true in S

with the probability �S(	):

Let f�i ! 	gn be a set of decision rules such that all conditions �i are

pairwise mutually exclusive, i.e. j�i ^ �j jS = ;, for any 1 � i; j � n, i 6= j;

and
nX

i=1

�S(�ij	) = 1: (1)

Then the following properties hold:

�S(	) =

nX

i=1

�S(	 j�i) � �S(�i); (2)

�S(�j	) =
�S(	 j�) � �S(�)Pn

i=1 �S(	 j�i) � �S(�i)
: (3)

It can be easily seen that the relationship between the certainty factor

and the coverage factor, expressed by the formula (3) is the Bayes' theorem

[1]. The theorem enables us to discover relationships in the databases.

8 Conclusions

Data mining is the quest for knowledge in databases. Many methods have

been proposed for knowledge discovery in databases. No doubt rough sets

proved to be a valuable methodology for data mining. Some advantages of

rough set theory in this context are listed below:

� provides e�cient algorithms for �nding hidden patterns in data
� �nds minimal sets of data (data reduction)
� evaluates signi�cance of data
� generates minimal sets of decision rules from data
� it is easy to understand and o�ers straightforward interpretation of results

The rough set approach to data mining is not competive to other methods but

rather complementary and can be also used jointly with other approaches.
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