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Abstract. The rough set concept is a new mathematical approach to im-
precision, vagueness and uncertainty. To some extend it overlaps with fuzzy set
theory and evidence theory – nevertheless the rough set theory can be viewed in its
own rights, as an independent discipline. Many real-life applications of the theory
have proved its practical usefulness. The paper presents the basic assumptions
underlying the rough sets philosophy, gives its fundamental concepts and discusses
briefly some areas of applications, in particular in decision support. Finally further
problems are shortly outlined.

1 Introduction

1.1 Basic Philosophy

The rough set concept proposed by the author in [5] is a new mathematical ap-
proach to imprecision, vagueness and uncertainty. The rough set philosophy is
founded on the assumption that with every objects of the universe of discourse we
associate some information (data, knowledge). E.g. if objects are patients suffering
from a certain disease, symptoms of the disease form information about patients.
Objects characterized by the same information are indiscernible (similar) in view
of the available information about them. The indiscernibility relation generated in
this way is the mathematical basis of the rough set theory.

Any set of all indiscernible (similar) objects is called elementary set, and form
basic granule (atom) of knowledge about the universe. Any union of some elemen-
tary sets is referred to as crisp (precise) set – otherwise a set is rough (imprecise,
vague).

Consequently each rough set has boundary-line examples, i.e. objects which
cannot be with certainty classified as members of the set or its complement. Obvi-
ously crisp sets have no boundary-line elements at all. That means that boundary-
line cases cannot be properly classified by employing the available knowledge.
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Thus the assumption that objects can be ”seen” only through the information
available about them leads to the view that knowledge has granular structure. Due
to the granularity of knowledge some objects of interest cannot be discerned and
appear as the same (or similar). As a consequence vague concepts, in contrast
to precise concepts, cannot be characterized in terms of information about their
elements. Therefore in the proposed approach we assume that any vague concept
is characterized by pair of precise concepts – called the lower and the upper ap-
proximation of the vague concept. The lower approximation consists of all objects
which surely belong to the concept and the upper approximation contain all objects
which possible belong to the concept. Obviously the difference between the upper
and the lower approximation constitute the boundary region of the vague concept.
Approximations are two basic operations in the rough set theory.

1.2 The Relationship to Other Theories

The rough set concept overlaps – to some extent – with many other mathematical
tools developed to deal with imperfect knowledge.

Frequently the rough set theory is contrasted with the fuzzy set theory. Basi-
cally the idea of fuzzy set and rough set are not competitive, but complementary
since they refer to different aspects of imprecision, and consequently are meant to
be used in different areas. In the fuzzy set theory imprecision is expressed by a
membership function, whereas the rough set approach is based on indiscernibility
and approximations [7].

Another relationship exists between the rough set theory and Dempster-Shafer
theory of evidence [10]. The main difference is that Dempster-Shafer theory uses
belief functions as a main tool, while rough set theory makes use of sets – lower
and upper approximations.

Furthermore, some relations exist between the rough set theory and discrimi-
nant analysis [3] and the Boolean reasoning methods [11].

Despite of the relationships the rough set theory can be viewed in its own rights,
as an independent discipline.

1.3 Some Remarks on Applications

The rough set theory has found many interesting applications. The rough set
approach seems to be of fundamental importance to AI and cognitive sciences,
especially in the areas of machine learning, knowledge acquisition, decision analy-
sis, knowledge discovery from databases, expert systems, inductive reasoning and
pattern recognition. It seems of particular importance to decision support systems.

The main advantage of rough set theory is that it does not need any preliminary
or additional information about data –like probability in statistics, or basic proba-
bility assignment in Dempster-Shafer theory, grade of membership or the value of
possibility in fuzzy set theory. An extensive study of various mathematical models
of uncertainty can be found in [1].



For basic ideas of the rough set theory the reader is referred to [6]. Many
interesting applications of this approach are presented and discussed in [4,12,14].
The relationship between the rough set theory and decision analysis is presented
in [8]. The present state of the rough set theory and its further perspectives are
discussed in [9].

2 Basic Concepts of the Rough Set Theory

2.1 Indiscernibility Relation

As we mentioned in the introduction basic operations in the rough set theory are
approximations of sets. In this section we define these concepts more precisely.

Suppose we are given a finite set of objects U called the universe and a binary
relation I over U called the indiscernibility relation. The indiscernibility relation
can be an equivalence or the tolerance relation. The second is more general then the
first one but for the sake of simplicity we assume that I is an equivalence relation.
The relation I is meant to express the fact that our knowledge about elements of
the universe is limited and therefore we are unable, in general, discern them. That
means that, in general, we are unable to deal with single elements of the universe
but with clusters of similar elements (atoms), which from the mathematical point
of view are equivalence classes of the indiscernibility relation I.

2.2 Approximations

Let X ⊆ U. The I-lower and the I-upper approximation of X are defined thus:

I∗(X) = {x ∈ U : I(x) ⊆ X},
I∗(X) = {x ∈ U : I(x) ∩ X �= ∅},

where I(x) denotes the set of all objects indiscernible with x, i.e. equivalence class
determined by x.

The boundary region of X is the set BNI(X) = I∗(X) − I∗(X).
If the boundary region of X is the empty set, i.e., BNI(X) = ∅, then the set

X will be called crisp with respect to I; in the opposite case, i.e., if BNI(X) �= ∅,
the set X will be referred to as rough with respect to I.

Vagueness (roughness) can be characterized numerically by defining the follow-
ing coefficient

αI(X) =
|I∗(X)|
|I∗(X)| ,

where |X| denotes the cardinality of the set X.
Obviously 0 ≤ αI(X) ≤ 1. If αI(X) = 1, the set X is crisp with respect to I;

otherwise, if αI(X) < 1, the set X is rough with respect to I. Thus the coefficient
αI(X) can be understood as the accuracy of approximation of the concept X.



2.3 Rough Membership

A vague concept has boundary-line cases, i.e., elements of the universe which cannot
be – with certainty – classified as elements of the concept. Hence uncertainty is
related to the question of membership of elements to a set. Therefore in order to
discuss the problem of uncertainty from the rough set perspective we have to define
the membership function related to the rough set concept (the rough membership
function).

The rough membership function can be defined employing the indiscernibility
relation I as

μI
X(x) =

|X ∩ I(x)|
|I(x)| .

Obviously, 0 ≤ μI
X(x) ≤ 1.

The rough membership function can be used to define the approximations and
the boundary region of a set, as shown below:

I∗(X) = {x ∈ U : μI
X(x) = 1},

I∗(X) = {x ∈ U : μI
X(x) > 0},

BNI(X) = {x ∈ U : 0 < μI
X(x) < 1}.

One can see from the above definitions that there exists a strict connection
between vagueness and uncertainty in the rough set theory. As we mentioned
above vagueness is related to sets, while uncertainty is related to elements of sets.

Thus approximations are necessary when speaking about vague concepts, whereas
rough membership is needed when uncertain data are considered.

2.4 Reduction of Knowledge and Dependencies

Usually we need many classification patters of objects. For example patients can be
classified according to temperature, blood pressure etc. Hence we can assume that
we have not one, but a family of indicernibility relations I = {I1, I2, . . . , In} over
the universe U . Set theoretical intersection of equivalence relations I1, I2, . . . , In ,
denoted ⋂

I =
n⋂

i=1
Ii,

is also an equivalence relation. In this case elementary sets are equivalence classes
of the equivalence relation

⋂
I. Because elementary sets uniquely determine our

knowledge about the universe, the question arises whether some classification pat-
terns can be removed without changing the family of elementary sets - or in other
words, preserving the indiscernibility. Minimal subset I′ of I such that

⋂
I =

⋂
I′

will be called a reduct of I.
Of course I can have many reducts. Finding reducts is not a very simple task and

there are many methods to solve this problem, however we will not consider them



here, but explain it by means of example in the next section. Readers interested
in precise mathematical formulation of this problem are referred to [6] and [11].

Another important issue is the relationship between various classification pat-
terns, i.e. between equivalence relations in the family I. We will say that indis-
cernibility relation I depends on the indiscernibility relation I ′, I ′ → I, if I ′ ⊆ I,
i.e. each equivalence class of I ′ is included in some equivalence class of I. In other
words it means that if I ′ → I, then every elementary set generated by I ′ is included
in some elementary set generated by I. That is to say that any granule of knowl-
edge associated with I ′ is a part of some granule of knowledge associated with I.
Thus dependecy explains relationship between various classfication patterns.

3 Ilustrative Example

Departure points of the rough set philosophy from the computational point of
view are data tables, called also attribute-value tables or information systems, or
decision tables, when condition and decision attributes are distinguished. Basic
problems which can be solved using the rough set approach are the following:

1) description of objects in terms of attribute values

2) dependencies (full or partial) between attributes

3) reduction of attributes

4) significance of attributes

5) decision rules generation

and others.
All the above mentioned problems can be formulated in terms of the two basis

operations in the rough set theory, the lower and the upper approximations, which
will be illustrated be the following example. Suppose we are given data about 6
patients, as shown in Table 1.

Patient Headache Muscle-pain Temperature Flu
p1 no yes high yes
p2 yes no high yes
p3 yes yes very high yes
p4 no yes normal no
p5 yes no high no
p6 no yes very high yes

Tab.1

Columns of the table are labelled by attributes (symptoms) and rows by objects
(patients), whereas entries of the table are attribute values. Thus each row of the
table can be seen as information about specific patient. For example patient p2 is



characterized in the table by the following attribute-value set

(Headache, yes), (Muscle-pain, no), (Temperature, high), (Flu, yes),

which form information about the patient.
In the table patients p2, p3 and p5 are indiscernible with respect to the at-

tribute Headache, patients p3 and p6 are indiscernible with respect to attributes
Muscle-pain and Flu, and patients p2 and p5 are indiscernible with respect to
attributes Headache, Muscle-pain and Temperature. Hence, for example, the at-
tribute Headache generates two elementary sets {p2,p3,p5} and {p1,p4,p6}, whereas
the attributes Headache and Muscle-pain form the following elementary sets:
{p1,p4,p6}, {p2,p5} and {p3}. Similarly one can define elementary set generated
by any subset of attributes.

Because patient p2 has flu, whereas patient p5 does not, and they are indis-
cernible with respect to the attributes Headache, Muscle-pain and Temperature,
thus flu cannot be characterized in terms of attributes Headache, Muscle-pain and
Temperature. Hence p2 and p5 are the boundary-line cases, which cannot be prop-
erly classified in view of the available knowledge. The remaining patients p1, p3
and p6 display symptoms which enable us to classify them with certainty as having
flu, patients p2 and p5 cannot be excluded as having flu and patient p4 for sure
has not flu, in view of the displayed symptoms. Thus the lower approximation of
the set of patients having flu is the set {p1,p3,p6} and the upper approximation of
this set is the set {p1,p2,p3,p5,p6}, where as the boundary-line cases are patients
p2 and p5. Similarly p4 has not flu and p2, p5 can not be excludes as having
flu, thus the lower approximation of this concept is the set {p4} whereas – the
upper approximation is the set {p2,p4,p5} and the boundary region of the concept
”not flu” is the set {p2,p5} the same as in the previous case.

The accuracy coefficient for the concept ”flu” is

αI(flu) =
|{p1, p3, p6}|

|{p1, p2, p3, p5, p6}| = 3/5,

and for the concept ”not flu” we have

αI(notflu) =
|{p4}|

|{p2, p4, p5}| = 1/3.

We can also compute membership value for each patient to the concept ”flu”
or ”not flu”. The numerical values of the membership function are given below:

μI
flu(p1) =

|{p1, p2, p3, p6} ∩ {p1}|
|{p1}| = 1,

μI
flu(p2) =

|{p1, p2, p3, p6} ∩ {p2, p4}|
|{p2, p4}| = 1/2,

μI
flu(p3) =

|{p1, p2, p3, p6} ∩ {p3}|
|{p3}| = 1,



μI
flu(p4) =

|{p1, p2, p3, p6} ∩ {p4}|
|{p4}| = 0,

μI
flu(p5) =

|{p1, p2, p3, p6} ∩ {p2, p5}|
|{p2, p5}| = 1/2,

μI
flu(p6) =

|{p1, p2, p3, p6} ∩ {p6}|
|{p6}| = 1.

The interpretation of the accuracy coefficients and the membership grades is left
to the interested reader.

We may also ask whether all attributes in this table are necessary to define flu.
One can easily see, for example that, if a patient has very high temperature, he
has for sure flu, but if he has normal temperature he has not flu whatsoever.

The problem of elimination of superfluous attributes boils down to finding so
called reducts of the whole set of attributes.

One can compute that for the example shown in Tab.1 we have two reducts:
{Headache, Temperature} and {Muscle-pain, Temperature}. That means that ei-
ther the attribute Headache or Muscle-pain can eliminated from the table without
changing its elementary sets. Hence instead of Tab 1. we can use either Tab.2

Patient Headache Temperature Flu
p1 no high yes
p2 yes high yes
p3 yes very high yes
p4 no normal no
p5 yes high no
p6 no very high yes

Tab.2

or Tab.3

Patient Muscle-pain Temperature Flu
p1 yes high yes
p2 no high yes
p3 yes very high yes
p4 yes normal no
p5 no high no
p6 yes very high yes

Tab.3

Either table can be used equivalently to analyze the decisions without loosing
any information in comparison to Tab.1.

The tables considered above are also known as decision tables, where Headache,
Muscle-pain and Temperature are refereed to as condition attributes whereas Flu
is called the decision attribute. Each decision table can be represented in the form



of a decision algorithm, consisting of decision rules of the form ”IF ... THEN ...”.
For example Tab.2 can be represented in the form:

IF (Headache,no) & (Temperature, high) → THEN (Flu,yes)
IF (Headache,yes) & (Temperature, high) → THEN (Flu,yes)
IF (Headache,yes) & (Temperature, very high) → THEN (Flu,yes)
IF (Headache,no) & (Temperature, normal) → THEN (Flu,no)
IF (Headache,yes) & (Temperature, high) → THEN (Flu,no)
IF (Headache,no) & (Temperature, very high) → THEN (Flu,yes).

Using the rough set technique (cf. [6]) the decision algorithm can be simplified
further as shown below:

IF (Headache,no) & (Temperature, high) → THEN(Flu,yes)
IF (Headache,yes) & (Temperature, high) → THEN (Flu,yes)
IF (Temperature, very high) → THEN (Flu,yes)
IF (Temperature, normal) → THEN (Flu,no)
IF (Headache,yes) & (Temperature, high) → THEN (Flu,no).

Let us observe that rules

IF (Headache,yes) & (Temperature, high) → THEN (Flu,yes)
IF (Headache,yes) & (Temperature, high) → THEN (Flu,no)

have the same conditions but different decisions, so that proper decision cannot be
made by applying this kind of rules. They are called inconsistent (nondetermin-
istic, conflicting) rules. The remaining three rules are consistent (deterministic).
Consistent and inconsistent rules are also often called sure (certain) and possible
rules, respectively. Sure decision rules determine uniquely decisions, whereas possi-
ble decision rules determine set of possible decision, which can be made on the basis
of given conditions. With every possible decision rule we will associate a credibility
factor, which evaluates the credibility of each possible decision suggested be the
rule. There are many ways to define this coefficient. We propose here to employ
the membership function to this end. Any decision rule is generated from a row of
the decision table. It turns out that the membership function value for the object
associated with the decision rule can be used as a basis to define the credibility of
decision rules.

Let δ(x) denote the decision rule associated with object x. We will say also that
x supports rule δ(x). Then the credibility factor of this rule can be defined as

C(δ(x)) =

{
1, if μI

X(x) = 0 or 1
μI

X(x), if 0 < μI
X(x) < 1.

In this way any consistent rule will get one as a credibility factor value, while any
inconsistent rule will get credibility factor, which is smaller then one (but not equal
to zero). The closer is the credibility factor is to one the more credible is the rule.



If a decision rule is supported by more then one object, then as the credibility
factor coefficient we assume the credibility factor of the most supporting object.
The credibility factor for both inconsistent rules in the example above is 0.5. This
coefficient can be seen as an alternative to Dempster-Shafer approach [10], where
belief and plausibility functions are used.

In fact the above considerations give rise to the question whether Flu depends on
symptoms Headache, Muscle-pain and Temperature. As the above analysis shows
this is not the case in our example, since the inconsistent rules do not allow to give
definite answer. In order to tackle with this kind of situations partial dependency
of attributes can be defined [6]. Partial dependency is expressed by the degree to
which the dependency between attributes hold and is defined simple as the ratio of
the number of deterministic rules to the number of all rules in the decision table.
In our example the ratio is 4/6 = 2/3. If all decision rules were deterministic then
the dependency coefficient would be one and the dependency is called in this case
total.

4 Rough Sets and Decision Analysis

Any decision problem involves a set of objects, e.g. actions, states, processes,
competitors, etc. In general objects can be anything we can think of. The objects
are described by a attribute-value pairs. As we mentioned already, such sets of
data can be represented by a table rows of which correspond to objects, columns
to attributes and entries of the table are attribute value.

The data table represents some facts about the decision problem. In particular
it may represent opinions of agents, groups of agents, decision makers, etc. In the
table two classes of attributes are usually distinguished – called usually condition
and decision attributes. Such tables are known as decision tables. Each row of the
decision table specifies a decision rule, which determines decision (action) which
should be performed if specific conditions are satisfied. In other words the decision
table can be viewed as a collection of ”if...than...”decision rules.

The aim of the decision analysis is to answer the following two basic questions.
The first: question is to explain decision in terms of circumstances in which the
decision has been made. The second is to give prescription how to make decision
under specific circumstances. Prescription is mainly based on decision rules derived
from desicion table [2,13]. In this sens, the rough set approach is similar to inductive
learning approach, however, the former one is going far beyond the latter because
in the rough set approach, the prescription task is preceded by the explanation
which gives pertinent information useful decision support. Besides, optimization
of decision rules as well discovering dependencies between rules, and elimination of
superfluous ones is also of great importance.

The rough set theory offers mathematical tools to answer the above mentioned
questions, and seems particularly suited to analyze this kind of problems. In other
words the rough set theory offers technic to generate optimal set of decision rules
from specification of the decision process.



More about the application of the rough set theory in decision analysis can be
found in [8].

5 Conlusion

Many software systems for decision support based on the rough set theory have
been implemented in many countries, and successfully applied to many real-life
problems in various areas, e.g. medicine, pharmacology, business, banking, market
research, engineering design, meteorology, vibration analysis, conflict analysis, im-
age processing, voice recognition, concurrent system analysis and others and others.
Some of them are available commercially.

The rough set theory turned out to be a very useful tool for decision support
systems, especially when vague concepts and uncertain data are involved in the
decision process. Nevertheless several theoretical and practical problems require
further attention. The most important one seems to develop a decision logic for
imprecise reasoning, based on the rough set philosophy. A great deal of effort has
been devoted to pursue this problem, but it remains still open.

Another important issue is efficient software development for rough set based
data analysis. Present software products are not always satisfactory, particularly
if large collections of data are to be analyzed.

Last but not least rough set computer is badly needed for more serious compu-
tations in decision support. Some research in this area is already in progress.
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