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Vagueness and uncertainty have attracted attention of philosophers and logicians for many
years. Recently Al researchers contributed essentially to this area of research. Fuzzy set theory
and the theory of evidence are seemingly the most appealing ones. In this note we present a new
outlook on these problems, based on the rough set theory - which seems to be a very suitable
mathematical tool to deal with these problems. The paper is a modified version of the authors talk
entitled ” An inquiry into vagueness and uncertainty”, which was delivered on the AT Conference in

Wigry (Poland), 1995.
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INTRODUCTION

The problems of vagueness and uncertainty have been for a long time considered
by philosophers and logicians e.g. (Russell 1923; Russell 1950; Black 1937; Black 1963;
Fine 1975). Also computers scientists, in particular, researchers interested in AI have
brought new ideas to this area of research. The most important ones are seemingly
the fuzzy set theory Zadeh (1965) and the theory of evidence Shafer (1976).

In this paper we would like to outline briefly another approach to these problems
offered by the rough set theory Pawlak (1991). Although the proposed approach
is somehow related to that offered by the fuzzy set theory Pawlak (1994) and the
evidence theory, Skowron (1994) it can be viewed in its own rights.

The rough set theory bears on the assumption that we have initially some infor-
mation (knowledge) about elements of the universe we are interested in. Evidently
to some elements of the universe the same information can be associated and con-
sequently the elements can be similar or indiscernible in view of the available infor-
mation. Similarity is assumed to be a reflexive and symmetric relation, whereas the
indiscernibility relation is also transitive. Thus similarity is a tolerance relation and
indiscernibility is an equivalence relation.

It is worthwhile to mention in this context that the concepts of similarity and
indiscernibility attracted attention of philosophers and logicians for many years e.g.
Williamson (1990), nevertheless these concepts are still not understood fully. Inter-
esting study of these problems can be also found in two recent papers of Marcus
(Marcus 1994a; Marcus 1994b).

We will refrain in this paper from philosophical discussions and simply give the
definitions and properties necessary to explain the ideas of vagueness and uncertainty
from the rough sets perspective.

1. VAGUENES AND THE BOUNDARY REGION
Let us start from the basic definitions supporting the rough set theory.
Suppose we are given a finite not empty set U called the universe, and let I be a

binary relation on U. By I(z) we mean the set of all y € U such that ylxz. If I is reflex-
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ive and symmetric, i.e. «lz,for every @ € U and zly,implies ylz for every z,y € U,
then I is a tolerance relation. If I is also transitive, i.e. 1y and ylz implies 21z, then
I is an equivalence relation. In this case I(z) = [z]; , i.e. I(2) is an equivalence class
of the relation I containing element x. If I is a tolerance relation and z Iy, then z,y
are called similar with respects to I' (I-similar), whereas if I is an equivalence relation
and zly, then z,y are referred to as indiscernible with respect to I (I-indiscernible).
Sometimes indiscernibility is identified with similarity Marcus (1994b).
Let us define now two operations on sets

IL(X)={zecU:I(z)C X},

F(X)={z €U :I(z)n X # 0},

assigning to every subset X of the universe U two sets I,(X ) and I*(X) called the
I-lower and the [-upper approximation of X respectively. The set

BN[(X)=I"(X) - L(X)
will be referred to as the I-boundary region of X.

If the boundary region of X is the empty set, i.e. BNy(X) = 0, then the set X
will be called crisp (exact) with respect to I; in the opposite case, i.e. if BNj(X) # 0,
the set X will be referred to as rough (inexact) with respect to I.

Thus rough sets can be viewed as a mathematical model of vague concepts.

Vagueness can be also characterized numerically by defining the following coeffi-
cient

[ L(X))]
[=(X)I

ar(X) =

where | X | denotes the cardinality of the set X.

Obviously 0 < ar(X) < 1.If a7(X) = 1, the set X is crisp with respect to I (the
concept X is precise with respect to I), and otherwise, if aj(X) < 1, the set X is
rough with respect to I (the concept X is vague with respect to I).

The idea of vagueness presented here is close to that expressed by Frege who
fathered the so called ”boundary-line” view on vagueness. According to his view

?The concept must have a sharp boundary. To the concept without a sharp bound-
ary there would correspond an area that had not a sharp boundary-line all around *.
Frege (1903).

Thus Frege’s idea of vagueness is due to the boundary-line cases, i.e. a vague
concept must have boundary-line examples which cannot be classified, on the basis
of available information, neither to the concept nor to its complement. For example
the concept of an odd (even) number is precise, because every number is either odd
or even - whereas the concept of a beauliful women is vague, because for some women
we cannot decide whether they are beautiful or not (there are boundary-line cases).

2. UNCERTAINTY AND THE MEMBERSHIP FUNCTION

A vague concept has a boundary-line cases, i.e. elements of the universe which
cannot be with certainty classified as elements of the concept. Hence uncertainty
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is related to the question of membership of elements to a set. Therefore in order
to discuss the problem of uncertainty from the rough set perspective we have to
define the membership function related to the rough set concept (rough membership
function), and investigate its properties.
The rough membership function can be easily defined employing the relation I
in the following way:
Ly X0

Obviously
I
pz() € [0,1].
The rough membership function, can be used to define the approximations and the
boundary region of a set, as shown below:

L(X) = {eeU:pk(z)=1
I"(X) = {zeU:uk(z)>0
BN(X) = {2 eU:0<pk(z)<1}.

Thus there exists a strict connection between vagueness and uncertainty. As we men-
tioned above vagueness is related to sets (concepts), whereas uncertainty is related
to elements of sets, and the rough set approach shows clear connection between the
two concepts, namely vagueness is defined in terms of uncertainty.

It can be shown Pawlak (1994) that the rough membership function has the
following properties:

o

ph(z) = 1iff 2 € I(X),

pl(z)=0iff 2 € U - I"(X),

0 < ph(z) < 1iff 2 € BN/(X),

If I = {(z,2): 2 € U}, then pk(z) is the characteristic function of X,

If 21y, then uk (z) = p% (y) provided I is an equivalence relation,

uh_x(2) =1 — ph(z) for any « € U,

ki (2) 2 max(u (2), () for any & €

Wy (2) < min(uk (), pf-(2)) for any = € U,

If X is a family of pair wise disjoint sets of U, then ,ubx(:v) = Yxex k() for

o T

ol

-

= o 0]
R L S e N e R e

—-

any z € U, provided that I is an equivalence relation.

The above ideas can be generalized in the same way as proposed by Ziarko in the
variable precision rough model Ziarko (1993). Let 8 be a real number such that
0 < B < 0.5. Approximations can be defined now as follows:

Lp(X) = {z € U s pk(2) > 1 - B},

I3X)={z € U:p(z) > B}
Note that if 3 =0, we get the previous case.

Remark. We could also assume that 0.5 < 3 < 1 and consequently

Lo(X)={z € U : pk(z) > B},
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INX)={z € U:pk(z)>1- 5}

a
The boundary region BNIB(X) =I(X)-Lp(X)={eeU:8< ph(z) < 1-8}.

The following properties are obvious

if © € I.g(X), then not necessarily I(z) C X,

if 2 € U — I3(X), then not necessarily X N I(z) =0,
if X N1I(z)#0,then not necessarily = € I3(X),

if I(z) € X, then not necessarily z ¢ I3(X).

o

o
R v

d

Besides we have

L(X) C Ly(X) and T(X) D I3(X).

The idea of variable precision rough sets enables one to relax strict conditions super-
imposed on the definitions of approximations and can be viewed as a weaker form of
the original definitions.

3. CLASSIFICATION OF VAGUE CONCEPTS

It turns out that the above considerations give rise to the following basic four
classes of rough sets:

X is roughly I-observable, if 0,1 € {u (z): 2z € U},

X is internally I-unobservable, if 1 ¢ {u%(z): 2 € U} and 0 € {pk(z):z € U},
X is externally I-unobservable, if 0 ¢ {u (z): 2 € U} and 1 € {ul(z):2 € U},
X is totally I-unobservable, if 0,1 ¢ {uk(z) 2 € U}).

o T o
N N N N’

Directly from the above definitions we get the following properties:

there exists 2,y € U such that I(z) C X and I(y) N X = § iff X is roughly
I-observable,

a)
) I(z) € X for any 2 € U and I(y) N X = @ for some y € U, iff X is internally
)
)

=

I-unobservable,
I(z)NX # 0 for any @ € U and I(y) C X for some y € U, iff X is externally
I-unobservable,

I(z)Z X and I(z) N X # 0 for any « € U, iff X is totally Funobservable.

c
d

The above considered sets can be also defined using the concept of approxima-
tions, as shown below:

a) L(X)#0and I"(X) # U, iff X is roughly I-observable,

b) L(X)=0and I*(X) # U, iff X is internally I-unobservable,
¢) L(X)#0and I*(X)=U,iff X is externally I-unobservable,
d) L(X)=0and I*(X)=U,iff X is totally I-unobservable.

The intuitive meaning of this classification is the following;:
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If set X is roughly Fobservable, this means that we are able to decide for some
elements of U whether they belong to X or —X.

If X is internally I-unobservable, this means that we are able to decide whether
some elements of U belong to —X, but we are unable to decide for any element of
U, whether it belongs to X or not.

If X is externally I-unobservable, this means that we are able to decide for some
elements of U whether they belong to X, but we are unable to decide, for any element
of U whether it belongs to —X or not.

If X is totally IFunobservable, we are unable to decide for any element of U
whether it belongs to X or —X.

That means, that the set X is roughly observable if there are some elements in the
universe which can be positively classified, to the set X. This definition also implies
that there are some other elements which can be classified without any ambiguity as
being outside the set X.

FExternal I-unobservability of a set refers to the situation when positive classifica-
tion is possible for some elements, but it is impossible to determine that an element
does not belong to X.

The above classification leads to the conclusion that there are four natural classes
of vagueness and corresponding uncertainties. It turns out that besides theoretical
importance the above classification has also great practical significance when using
the rough set theory to data analysis Slowinski (1992).

CONCLUSION

The rough set theory seems to be a natural mathematical model of vagueness
and uncertainty. Vagueness is a property of sets (concepts) and can be attributed to
the boundary region of a set, whereas uncertainty is a property of elements of sets
and is related to the rough membership function.

The presented approach can be seen as complementary view of the problems
considered to that offered by the fuzzy set theory and the evidence theory.
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