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Decision Analysis Using Rough Sets
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We show that the rough set theory is a useful tool for analysis of decision situations, in particular
multi-criteria sorting problems. It deals with vagueness in the representation of a decision situation, caused
by granularity of the representation. The rough set approach produces a set of decision rules involving a
reduced number of most important criteria. It does not correct vagueness manifested in the representation;
instead, the rules produced are categorized into deterministic and non-deterministic. The set of decision
rules explains the decision situation and may be used to support new decisions, An example illustrates the
rough set analysis of a multi-criteria sorting problem.
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INTRODUCTORY REMARKS ABOUT DECISION ANALYSIS AND ROUGH SETS

Decision analysis is one of the most natural acts of human beings. It has attracted scientists for a long
time who offered various mathematical tools to deal with it. Mathematical decision analysis intends
to bring to light those elements of a decision situation which are not evident to the agents (decision
makers, experts) involved and may influence their attitude towards the situation. More precisely, the
elements revealed by mathematical decision analysis either explain the situation or prescribe, or
simply privilege, some behaviour in order to increase the coherence between the evolution of the
decision process on the one hand and the goals and value systems of the agents, on the other hand (cf.
Roy, 1993).

One of the factors hindering revelation of the above mentioned elements is vagueness inherent to
the representation of a decision situation. Vagueness may be caused by granularity of the
representation. Due to the granularity, the facts describing a situation are either expressed precisely
by means of ‘granules’ of the representation or only approximately.

A formal framework for discovering facts from a representation of a decision situation has been
given by Pawlak (1982) and called rough set theory. The rough set theory assumes the representation
of objects of interest in a table form called an information system. Rows of this table correspond to
objects (actions, alternatives, candidates, patients, etc.) and columns correspond to attributes. To
each pair (object, attribute) there is assigned a value called descriptor. Each row of the table contains
descriptors representing information about the corresponding object of a given decision situation. If
the set of attributes is partitioned into two subsets, condition attributes (criteria, tests, symptoms, etc.)
and decision attributes (decisions, classifications, taxonomies, etc.), the information system is called a
decision table. ‘

Let us suppose a decision situation represented by a decision table where a finite set of objects is
described by several condition attributes and a single decision attribute. The observation that objects
may be indiscernible in terms of descriptors is a starting point of the rough set philosophy.
Indiscernibility of objects by means of condition attributes generally prevents their precise
assignment to a set following from a partition generated by the decision attribute. In this case, the
only sets which can be characterized precisely in terms of the classes of indiscernible objects are lower
and upper approximations of the given set. A rough set is just a set characterized by its lower and
upper approximations. Using a lower and an upper approximation of a set (or family of sets) one can
define an accuracy and a quality of approximation. These are numbers from interval [0, 1] which
define how exactly one can describe the examined set of objects using available information.

As in decision problems the concept of criterion is often used instead of condition attribute; it
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should be noticed that the latter is more general than the former because the domain (scale) of a
criterion has to be ordered according to decreasing or increasing preference while the domain of a
condition attribute does not have to be ordered. Similarly, the domain of a decision attribute may be
ordered or not. The ordering property has to be taken into account in considerations concerning a
special dependency among attributes — concordance between criteria or agents (cf. Boryczka, 1989).
Apart from this specific case, the ordering property has no influence on rough set analysis, so there
will be no distinction between criteria and condition attributes unless specified.

Depending on the kind of a decision situation, the rough set approach can bring into light different
elements of this situation. In this paper, we shall limit our considerations to a multi-criteria sorting
problem. It consists of the assignment of each object from a set to an appropriate pre-defined category
(for instance: acceptance, rejection or request for additional information). The objects are described
by several condition attributes and the categories are distinguished by a single decision attribute.
Rough set analysis of this decision problem gives the following results:

¢ evaluation of importance of particular criteria,

® construction of reduced subsets of independent criteria having the same ability to approximate the
decision as the whole set,

¢ intersection of the reduced subsets giving a core of criteria which cannot be eliminated without
disturbing the ability to approximate the decision,

® climination of redundant criteria from the decision table,

e generation of the sorting rules (deterministic or not) from the reduced decision table; they explain a
decision policy and may be used for sorting new coming objects.

The aim of this paper is to show the usefulness of the rough set approach to decision analysis, in
particular, the analysis of a multi-criteria sorting problem. In the next section, we recall basic
concepts of the rough set theory. Then, we apply the rough set methodology to an example sorting
problem. The final section groups the conclusions.

BASIC CONCEPTS OF ROUGH SET THEORY
‘Common-sense’ and mathematical foundations of the rough set theory

A central premise of the rough set philosophy is that knowledge consists of the ability to classify.
Rational behaviour of any agent in the outer realm is based on its ability to classify real or abstract
objects, for example, sensory signals. In order to classify, one has to perceive some differences
between objects, thus forming classes of objects which are not noticeably different. These
indiscernibility classes can be viewed as basic building blocks (concepts) used to build up knowledge
about a real or abstract world. For example, if objects are classified according to colour and shape,
then the indiscernibility classes are: red triangles, black squares, red circles, etc.; in other words, the
two attributes make a partition in the set of objects. Hence, knowledge can be defined as a family of
partitions of a fixed set (universe) U or, what is the same from a mathematical point of view, as a
family of equivalence relations R on U. This view of knowledge is semantic in nature where
granularity of knowledge (indiscernibility of some objects) is of primary importance and can be used
to define the key concepts of the rough set theory: approximation, dependency and reduction. Let us
explain them informally.

Suppose we are given a finite set of objects (universe} U and a finite family of equivalence relations
R on U (knowledge about U). Thus, formally, knowledge R about U can be considered as a relational
system K = (U, R ». The main problem we are interested in is the following. Given subset X < U
and knowledge K = ( U, R >, express properties of X in terms of available knowledge. Because set
theoretical intersection of equivalence relations is also an equivalence relation, the resulting family of
equivalence classes (partition) can be viewed as a family of elementary sets (atoms, granules) of
knowledge K = { U,R>. Hence, our problem boils down to define the subset X in terms of .
elementary sets, i.e. to represent it as a union of atoms.

Seemingly, this is not always possible. Therefore, the concept of the lower and the upper

approximation has been introduced.
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The lower approximation of X in K ={U,R) 1s the union of all elementary sets which are
included in X, whereas the upper approximation of X in K = ¢ U, R ) is the union of all elementary
sets which have non empty intersection with X . These approximations correspond, respectively, to a
maximal set including objects which surely belong to X and a minimal set of objects which possibly
belong to X. The difference between the lower and the upper approximations is a houndary set
consisting of all objects which cannot be classified with certainty to X or to its complement. The
cardinality of the boundary set describes how exactly we can describe X in terms of available
knowledge.

Discovering dependencies in K = { U, R ) consists of finding out relationships between partitions,
i.e. equivalence relations belonging to family R. In other words, dependency says how some concepts
of knowledge K = ( U, R ) can be expressed by other concepts of knowledge K = (U,R ).

Let us observe that for knowledge K = (U, R ) two different families of equivalence relations, R
and R’ (a subfamily of R), may give the same family of elementary sets. Then, it is important to know
whether it is possible to reduce R’ while preserving the family of elementary sets, i.e. without losing a
part of the knowledge.

The rough set concept has led to many theoretical results in:

e topology and abstract algebra,
e logics,

¢ Boolean algebra,

e probability and evidence theory,
e fuzzy sets, and others.

According to a recent bibliography of rough set theory (Ziarko, 1993), these results are presented in
several hundred papers. A part of them has been summarized in Pawlak (1991).

The practical utility of the rough set concept has also been proven by many applications (cf.
Stowinski, 1992).

Let us pass now to more formal presentation of the concepts used in the following part of the

paper.

Information system

For algorithmic reasons, knowledge will be represented in the form of an information system.
By an information system we understand the 4-tuple S = {U,Q,V,p >, where U 1s a finite set of

objects, Q is a finite set of attributes, V= | ¥, and V, is a domain of the attribute g, and

qeQ
p:U x Q - Vis a total function such that p(x,q)e V, for every g€ @, xeU, called an information

function (cf. Pawlak, 1991).
Let S = ¢ U,Q, V, p > bean information system and let P = Q and x, ye U. We say that xand y are

indiscernible by the set of attributes P in S iff p(x,q) = p(y,q) for every qe P. Thus every P = Q
generates a binary relation on U which will be called an indiscernibility relation, denoted by IND({P).
Obviously, IND(P) is an equivalence relation for any P. Equivalence classes of IND(F) are called
P-elementary sets in S. The family of all equivalence classes of relation IND(P) on U is denoted by
U|IND(P) or, in short, U{P.

Des,(X ) denotes a description of the P-elementary set X € U | P in terms of values of attributes from
P ie.

Des,(X) = {(¢,v):f(x,9) = v,¥xeX,VgeP}.

Approximation of sets

Let P< @ and Y < U. The P-lower approximation of Y, denoted by PY, and the P-upper
approximation of Y, denoted by PY, are defined as:
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PY=J{XeU|P: X<V},
PY=|J{XeU|P:XnY# &)

The P-boundary (doubtful region) of set Y is defined as
Bn,(Y) = PY — PY.

Set PY is the set of all elements of U which can be certainly classified as elements of ¥, employing
the set of attributes P. Set PYis the set of elements of U which can be possibly classified as elements of
Y, using the set of attributes P. The set Bny(Y) is the set of elements which cannot be certainly
classified to Y using the set of attributes P.

With every set ¥ = U, we can associate an accuracy of approximation of set Y by Pin S, or in short,
accuracy of Y, defined as:

_ card(PY)
ap(¥) = card(PY)’

Approximation of a partition of U

Let S be an information system, P = @,and let % = {Y, ¥,,.. ., Y,} be a partition of U. The origin
of this partition is independent of attributes from P; it can follow from solving a sorting problem by
an expert. Subsets Y,,i = 1,...,n are categories of partition %. By P-lower (P-upper) approximation
of #in § we mean sets P% = {PY,,PY,,...,PY,} and P% = {PY ,PY,,...,PY,}, respectively. The
coefficient

2. card(PY))
_i=1

(@) = card(U)

is called the quality of approximation of partition % by set of attributes P, or in short, quality of sorting.
It expresses the ratio of all P-correctly sorted objects to all objects in the system.

Reduction and dependency of attributes

We say that the set of attributes R < Q depends on the set of attributes P < Q in § (denoted P — R) if
IND(P) = IND(R). Discovering dependencies between attributes is of primary importance in the
rough set approach to knowledge analysis.

Another important issue is that of attribute reduction, in such a way that the reduced set of
attributes provides the same quality of sorting as the original set of attributes. The minimal subset
R = P = Q such that yp(%) = yx(#) is called the ¥-reduct of P (or, simply, reduct if there is no
ambiguity in the understanding of %) and denoted by RED,(P). Let us note that an information
system may have more than one #%-reduct. Intersection of all #-reducts is called the #-core of P, i .e.
CORE4(P) = [} RED4(P). The core is a collection of the most significant attributes in the system.

Decision tables

An information system can be seen as decision table assuming that Q = Cu Dand C n D = (F, where
C are called condition attributes, and D decision attributes. The decision table S = (U, CuD,V,p>
is deterministic iff C - D; otherwise it i1s non-deterministic. The deterministic decision table uniquely
describes the decisions to be made when some conditions are satisfied. In the case of a
non-deterministic table, decisions are not uniquely determined by the conditions. Instead, a subset of
decisions is defined which could be taken under circumstances determined by conditions.
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From the decision table a set of decision rules can be derived. Let U|IND(C) be a family of all
C-elementary sets called condition classes, denoted by X, (i = 1,.. ., k). Let, moreover, U | IND(D) be
the family of all D-elementary sets called decision classes, denoted by Y, (j=1,...,n).

Des (X ;)= Desy(Y;) is called a (C, D)-decision rule. The rules can be also expressed as logical
statements ‘if . . . then . . . relating descriptions of condition and decision classes. The set of decision
rules for each decision class ¥; (j=1,...,n)is denoted by {r;;}. Precisely,

{r} = {Desc(X;) = Desp(Y;): X;n Y; # &, i= 1,...,k}.

Rule r,; is deterministic iff X, = ¥, and r,; is non-deterministic, otherwise. Non-deterministic rules
are consequences of an approximate description of decision classes (categories} in terms of condition
classes (blocks of objects indiscernible by condition attributes). It means that using the available
knowledge, one is unable to decide whether some objects (from the boundary region) belong to a
given category or not. In other words, some objects are indiscernible in view of one’s knowledge
(partition) and create granules of the knowledge representation, but from the viewpoint of another
knowledge they can belong to different classes — hence, description of the latter partition in terms of
the granules is non-deterministic {ambiguous).

Procedures for derivation of decision rules from decision tables were presented by Boryczka and
Stowinski (1988), Stowinski and Stefanowski (1992), Grzymala-Busse (1992), Skowron and
Grzymala-Busse (1993), Skowron (1993) and by Ziarko et al. (1993).

MULTI-CRITERIA SORTING PROBLEM

The analysis of a multi-criteria sorting problem consists of discovering decision rules, taking into
account the agent’s (decision maker’s, expert’s) preferences. It is often the case that the preferences
are expressed by the agent through examples of sorting decisions. A set of examples constitutes a
decision table. In inductive learning, such a set is called a training sample. Decision rules are derived

from the examples and then applied to new coming objects.
To illustrate the rough set analysis of a multi-criteria sorting problem, let us consider a simple case

of selection of candicates to a school (¢f. Moscarola, 1978).

The candidates to the school have submitted their application packages with secondary school
certificate, curriculum vitae and opinion from a previous school, for consideration by an admission
committee. Based on these documents, the candidates were described using seven criteria (condition
attributes). The list of these criteria together with corresponding scales, ordered from the best to the

worst value, is given below:

¢, - score in mathematics, {5,4,3}

¢, - score in physics, {5,4,3}

¢, — score in English, {5,4,3}

¢, — mean score in other subjects, {5,4,3}
¢, ~ type of secondary school, {1,2,3}

¢ — motivation, {1, 2,3}

¢, — opinion from previous school, {1,2,3}.

Fifteen candidates having rather different application packages have been sorted by the committee
after due consideration. They create the set of examples.

The decision attribute d makes a dichotomic partition & of the candidates: d = A means
admission and d = R means rejection. The decision table with 15 candidates is shown in Table 1. Itis
clear that C = {¢,,C5,C3,CasCs, Cq, €} and D = {d}.

Let ¥, be the set of candidates admitted and Y, the set of candidates rejected by the committee,
Y= {xuxuxs,xv,xa,xxo’xxuxnaxls}, Yo = {X3, X3, Xg X9, X13: X12}, ¥ = {Ya, Y} Sets ¥, and
Y, are D-definable sets in the decision table. There are 13 C-elementary sets: couples of indiscernible
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Table 1. Decision table composed of sorting examples

riterion €, €, €3 €, €5 ‘C. €, Decision
Candidate d
Xy 4 4 4 4 2 2 1 A
X, 3 3 4 3 2 1 1 R
X, 3 4 3 3 1 2 2 R
Xy 5 3 5 4 2 1 2 A
xq 4 4 5 & 2 2 1 A
Xg 3 4 3 .3 2 1 3 R
x, 4§ 4 5 4 2 2 2 A
xg 4 4 4 L) 2 2 2 A
19 4 4 4 4 2 2 2 R
X0 5 3 5 4 2 1 2 A
xll 5 4 4 4 1 1 2 A
X1 5 3 4 4 2 2 2 A
Xy3 4 3 3 3 3 2 2 R
X4 3 3 4 3 2 3 3 R
X5 4 5 5 4 2 1 1 A

candidates {x,,x,,}, {xg xo} and 11 discernible candidates. The C-lower and the C-upper
approximations of sets ¥, and Yy are equal, respectively, to:

CYp = {X), %4, X35, X7, X105 %11, X125 X5}

CYp = {X}, X4, X5, X7, X3, X0s X105 %1 1> X125 X 5}
Bno(Y,) = {xg, %o}

CYr = {X3,X3, X6 X 13, %14}

CYg = {x3, X3, Xg) X5, Xy X3, X 14
Bnc(Yy) = {x5, xo}

The accuracy of approximation of sets Y, and ¥y by Cis equal to 0.8 and 0.71, respectively, and
the quality of approximation of the decision by C is equal to 0.87.

Let us observe that the C-doubtful region of the decision is composed of two candidates: x; and x,.
Indeed, they have the same value according to criteria from C but the committee has admitted x; and
rejected x,. This means that the decision is inconsistent with evaluation of the candidates by criteria
from C. So, apparently, the committee took into account additional information from the
application packages of the candidates or from an interview with them, This conclusion suggests to
the committee, either adoption of an additional discriminatory criterion or, if its explicit definition
would be too difficult, creation of a third category of candidates: those who should be invited to an
interview.

The next step of the rough set analysis of the decision table is construction of minimal subsets of
independent criteria ensuring the same quality of sorting as the whole set C, i.e. the reduects of C. In

our case, there are three such reducts:
RED‘.}V(C) = {CZsC.!’Ce’CT}
REDZ(C) = {c,,¢3, ¢4}
RED}(C) = {¢5,¢3,¢5,¢4).
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It can be said that the committee took the 15 sorting decisions taking into account the criteria from
one of the reducts and discarded all the remaining criteria. Let us notice that criterion ¢, has no
influence at all on the decision because it is not represented in any reduct.

Tt is interesting to sce the intersection of all reducts, i.e. the core of criteria:

CORE,/(C) = REDY(C) n RED3(C) n RED}(C) = {c,,¢5}.

The core is the most essential part of set C, i.e. it cannot be eliminated without disturbing the
ability of approximating the decision.

In a real case, all the reducts and the core should be submitted for consideration by the committee
in view of getting its opinion about what reduct should be used to generate decision rules from the
reduced decision table.

Let us suppose that the committee has chosen reduct REDZ(C)composed of ¢, ¢3, ¢4, 1.€. scores in
mathematics and English, and opinion from previous school. This choice could be explained in such
a way that the score in mathematics (c,) seems to the committee more important than the score in
physics (c,} plus type of secondary school (¢c;) or motivation (cg).

Now, the decision table can be reduced to criteria represented in RED3(C). The decision rules
generated from the reduced decision table have the following form:

rule #1:if ¢, = 5: thend = A
rule #2: if c3=35 thend = A
rule #3:if ¢, =4 and ¢, =1thend=A
rule #4: if ¢, =d and c; =4 and ¢; =2 thend =A or R
rule #5:if ¢, =3 then d = R
rule #6: if c3=3 then d = R

Five rules are deterministic and one is non-deterministic. The non-deterministic rule #4 follows
from the indiscernibility of candidates x, and x, which belong to different categories of decision. It
defines a profile of candidates which should create the third category of decision, e.g. those
candidates who should be invited to an interview.

The rules represent clearly the following policy of the selection commmittee:

Admit all candidates having score 5 in mathematics or in English. Admit also those who have score 4 in
mathematics and in English but very good opinion from a previous school. In the case of score 4 in
mathematics and in English but only a moderate opinion from a previous school, invite the candidate to
an interview. Candidates having score 3 in mathematics or in English are to be rejected.

The considered sample of 15 candidates can be considered as a training sample used to reveal the
selection policy of the committee. This policy could be applied next to support sorting decisions
concerning other candidates.

The set of sorting rules can be viewed as a global preference model, alternative to a functional or a
relational model classically used in multi-criteria decision making. It explains the preferential
attitude of an agent through important facts in terms of significant criteria only. Interpretation of the
rules is also more straightforward than that of a function or relation. The use of sorting rules to
decision support is being investigated by Stowinski (1993).

Let us conclude this section by a remark that, using the rough set approach, we are able to derive
implicit facts from explicit and unquestionable facts (knowledge) about a decision situation. The
implicit facts are mathematical ‘consequences’ of the explicit facts, i.e. approximations of partitions,
dependencies and reduction. Their interpretation is simple and straightforward. They are robust
because they are obtained without additional assumptions. On the one hand they can explain a
decision situation and, on the other hand, they can be used to prescribe a solution.
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CONCLUDING REMARKS

The aim of this paper was to show that the rough set theory is a useful tool for analysis of decision
situations, in particular multi-criteria sorting problems. This class of decision situations has a very

large practical representation.
The main advantages of the rough set approach can be summarized in the following points:

e it analyses only facts hidden in the representation of a decision situation,
¢ it does not need any additional information like probability in statistics or grade of membership in

fuzzy set theory,
e it does not correct vagueness manifested in the representation of a decision situation; instead, the

rules produced are categorized as deterministic and non-deterministic,
¢ it gives reducts of independent criteria having the same ability of approximating the decision as the

whole set,
& it explains a decision situation and can be used to prescribe a solution,

e it is conceptually simple and needs simple algorithms.
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