Investigation of Micromixing in Viscous Liquids
Department of Chemical and Process Engineering
Warsaw University of Technology

Antoni Rożeń

PhD Thesis
"Investigation of Micromixing in Viscous Liquids"

Supervisor: doc. dr hab. Jerzy Bałdyga

This work was financially supported by
DSM Research, Geleen, The Netherlands.

Warszawa 1995
Acknowledgements

First of all I wish to thank doc. dr hab. Jerzy Baldyga for being my supervisor and for his invaluable help, advice and critical remarks throughout this investigation.

I would also like to express my gratitude to Ir. Leo Smit and Ir. Frank Mostert who supervised this work on behalf of DSM Research for the versatile aid, constructive comments and stimulating discussions.

I sincerely thank Miss Jolanta Lipska for correcting language errors in this thesis.

Finally I wish to give special thanks to my parents for their understanding and support.

Antoni Rożeń
Contents.

1. Introduction ... 5

2. Literature review ... 7
 2.1. Mixing Indices .. 7
 2.2. Mixing with Deformation 10
 2.3. Mixing with Diffusion and Reaction 12
 2.4. Efficiency of Mixing .. 23
 2.5. Stability of Laminar Flows 31
 2.6. Application of Chemical Test Reactions to Investigate Mixing ... 34

3. Mechanisms of Laminar Mixing 39
 3.1. Molecular Diffusion in Deformed Liquid Elements 39
 3.2. Effects of Physical Properties of Mixed Media on the Course of Mixing ... 51

 4.1. Experimental System and Experimental Procedure 55
 4.2. Mixing of Liquids of Equal Viscosities and Densities 57
 4.3. Mixing of Liquids Differing in Viscosity and Density 61
 4.4. Stability Analysis of the Core-Annular Flow 65

5. Application of Integral Methods to Model Micromixing in Very Viscous Liquids 75
 5.1. Micromixing as Evolution of Concentration Moments 76
 5.2. An Integral Method for Mixing and Chemical Reaction in Deformed Diffusion Layers 86

6. An Experimental Method for Investigation of Micromixing in Very Viscous Liquids 100
 6.1. Description of the Test Reaction System 100
 6.2. Properties of Polyethylene-polypropylene Glycol 102
 6.2.1. Molecular Structure 102
 6.2.2. Viscosity of Aqueous Solutions 102
 6.2.3. Density of Aqueous Solutions 104
 6.2.4. Chemical Activity 105
 6.2.5. Alkalinity of Aqueous Solutions 107
 6.3. Measurements of Coefficients of Molecular Diffusivity in Aqueous Solutions of Polyethylene-polypropylene Glycol 109
 6.4. Measurements of Rate Constant of Alkaline Ester Hydrolysis in Aqueous Solutions of Polyethylene-polypropylene Glycol 115
6.5. An Analytical Method to Determine Concentration of Ethyl Chloroacetate. .. 118

7. Investigation of Mixing with the Test Reactions in a Semi-Batch Reactor. 120

7.1. Experimental System and Experimental Procedure. ... 120

7.2. Experimental results. .. 122

7.2.1. Effect of the Feeding Time on the Product Distribution. 122

7.2.2. Effect of the Rotational Speed on the Product Distribution 124

7.2.3. Effect of the Initial Volume Ratio on the Product Distribution. 126

7.2.4. Effect of the Viscosity Ratio on the Product Distribution. 128

7.3. Modelling of Micromixing in the Semi-Batch Reactor. 130

8. Investigation of Mixing with the Test Reactions in a Batch Reactor. 135

8.1. Experimental System and Experimental Procedure. .. 135

8.2. Experimental results. .. 138

8.2.1. Effect of the Rotational Speed on the Product Distribution 138

8.2.2. Effect of the Initial Volume Ratio on the Product Distribution 141

8.2.3. Effect of the Viscosity Ratio on the Product Distribution. 143

8.2.4. Effect of a Local Disturbance of a Unidirectional Cuvette Flow on the Product Distribution. .. 145

8.2.5. Effect of a Local Disturbance of a Periodic Cuvette Flow on the Product Distribution. .. 150

8.3. Modelling of Micromixing in the Batch Reactor. ... 153

9. Methodology of Determination of Energetic Efficiency of Mixing. 159

10.1. Description of Investigated Systems. ... 167

10.2. Conversion and Selectivity Computations. .. 168

10.3. Degrees of Segregation. ... 172

11. Conclusions. ... 175

12. Appendix A. ... 178

13. Appendix B. ... 179

14. Appendix C. ... 181

15. Appendix D. ... 185

16. Appendix E. ... 186

17. Notation. .. 191

18. References. .. 199
1. Introduction.

This dissertation treats the effects of laminar mixing of incompressible, Newtonian fluids of $Sc > 1$ (liquids) in single phase isothermal systems on the course of homogeneous chemical reactions. The considered liquids are completely miscible, but can differ in viscosity. Chemical reaction is a molecular level process so in the dissertation are investigated those features of mixing that cause the attainment of homogeneity on the molecular level. The process of mixing on the molecular scale is called micromixing; micromixing theory is thus concerned with the reduction of the scale of unmixed lumps of fluid by viscous deformation followed by molecular diffusion.

The subject is interesting from two points of view: practical and theoretical. In practice laminar mixing is of importance when highly viscous liquids are to be mixed. This happens in numerous industrial processes such as polymer processing and rubber, food, cosmetic or glass technology.

The main practical problems can be summarized as follows.

- Micromixing affects the course of chemical reactions. For single reactions there is an influence of micromixing on the time of reaction, conversion or reactor size; for multiple reactions which are combinations of simple reactions there can also be a much more important influence of micromixing on selectivity, weight distribution of polymer molecules and thus on the physical properties of polymers, etc.

- It is difficult to mix highly viscous liquids, specially when the liquids differ in viscosity; high inputs of mechanical energy or long mixing times are required.

- It is difficult to compare different systems (reactors, mixers) from the point of view of energetic efficiency of mixing; it would be desirable to develop a rigorous procedure based on experimental data and mixing mechanism leading to estimation of energetic efficiency which can be applied to compare the systems of different geometry. In relation to the concept of energetic efficiency it is essential to know if and how much the efficiency can be increased, how to perform this increase technically and how this increase affects the product quality.

From the theoretical point of view, micromixing investigations can supply new information about the mechanism of mixing and can be used to verify the existing and the proposed models of micromixing. The main problems here are as follows.

- Mixing mechanism is very complex and many aspects of mixing are still not completely understood.

- The theory of mixing is related to many branches of science, i.e.: fluid mechanics, theory
of stability, theory of deterministic chaos, theory of chemical reactors.

- Micromixing models available in the mixing literature are usually based on simplified mixing mechanisms. Application of those models is thus limited, but the limitations are usually not given explicit and often not known to the authors.

The literature says that the liquid elements deformation is the most important phenomenon in mixing of viscous liquids. Deformation reduces the scale of segregation, increases the intermaterial surface and increases gradients of concentration, accelerating finally molecular diffusion. However, to be efficient, deformation requires a proper orientation of liquid elements. The orientation of fluid elements in the deformation field and the deformation field itself can be strongly affected by instabilities of the flow.

In view of these remarks the main aims of the dissertation are:

- to identify the main aspects of mixing mechanism of very viscous liquids,
- to work out mathematical models of laminar micromixing,
- to apply the proposed models for interpretation of experimental data.

These aims should be achieved in the following scope:

- a literature review of mechanisms and models of mixing,
- an analysis of mixing phenomenon in simple flows, including a simple elongation and a simple shear,
- a stability analysis of a simple laminar flow of the completely miscible liquids differing in viscosity, using as an example a core-annular flow,
- presentation of mixing models describing different aspects of mixing with different accuracy including the author’s proposed models,
- selection of complex test reactions and the viscosity increasing agent,
- experimental investigations of mixing with chemical reactions,
- interpretation of experimental data with the use of the micromixing models,
- proposition of methodology of determination of the energetic efficiency of mixing; the method should enable comparison of mixing efficiency in different systems and provide facilities for establishing hierarchy of reactors and mixers from the point of view of efficient mixing,
- discussion of the concept of degree of segregation - the classical and new definitions.